Recommandations sur l’utilisation des vaccins contre la COVID-19

Avis au lecteur

Ceci s'agit d'une version qui a été archivée. Veuillez consulter les pages actuelles sur le vaccin contre la COVID-19 :

Date de publication : Le 22 octobre 2021

Sur cette page

Tableau des mises à jour

Ce document évolutif sera mis à jour au fur et à mesure que l'utilisation des vaccins contre la COVID-19 sera autorisée et que les vaccins seront disponibles au Canada et que les données sur ces vaccins évolueront. Ce tableau résume les renseignements mis à jour fournis dans la version. Veuillez consulter le Tableau des mises à jour pour voir la liste complète des mises à jour des versions précédentes.

Section Mise à jour Date
Vaccins : calendrier Le Tableau 3 a été révisé pour refléter l'intervalle optimal entre la première et la deuxième dose pour les vaccins contre la COVID-19 à deux doses. Une section supplémentaire a été ajoutée sous le tableau afin de fournir les preuves et la justification des intervalles optimaux. 2021-10-22
Innocuité du vaccin et effets secondaires suivant l'immunisation La section « Myocardite ou péricardite après l'administration d'un vaccin à ARNm » a été mise à jour pour inclure les données de surveillance canadiennes et internationales. 2021-10-22
Vaccins : précautions à prendre Les directives concernant les réactions allergiques immédiates sévères (par exemple, l'anaphylaxie) après l'administration des vaccins contre la COVID-19 autorisés ont changé. Des études ont montré que les personnes présentant une réaction allergique immédiate sévère après une dose précédente de vaccin à ARNm peuvent être revaccinées avec le même vaccin ou un autre vaccin à ARNm contre la COVID-19. 2021-10-22
Recommandations La recommandation no 3 sur la prolongation de l'intervalle avant l'administration de la deuxième dose du vaccin contre la COVID-19 jusqu'à quatre mois après la première dose a été retirée. L'approvisionnement en vaccins pour les séries primaires n'est plus un problème pour les populations admissibles. 2021-10-22
Recommandations La recommandation du CCNI sur l'utilisation des vaccins contre la COVID-19 a été mise à jour pour inclure la recommandation d'une dose de rappel pour les résidents d'établissements de soins de longue durée (ÉSLD) et les personnes âgées vivant dans d'autres milieux de vie collectifs qui ont déjà reçu une série primaire de vaccins contre la COVID-19. 2021-10-22

Préambule

Le Comité consultatif national de l'immunisation (CCNI) et un organisme consultatif externe qui donne à l'Agence de la santé publique du Canada (ASPC) des conseils indépendants, continus et à jour dans le domaine de la médecine, des sciences et de la santé publique liés aux questions de l'ASPC concernant l'immunisation.

En plus de la prise en compte du fardeau associé aux maladies et des caractéristiques vaccinales, l'ASPC a élargi le mandat du CCNI de façon à lui permettre d'inclure l'étude systématique des facteurs liés aux programmes dans la formulation de ses recommandations axées sur des données probantes. Cette initiative devrait aider le CCNI à prendre des décisions en temps opportun en ce qui a trait aux programmes de vaccination financés par les fonds publics à échelle provinciale et territoriale.

Les nouveaux facteurs que le CCNI devra examiner de façon systématique sont les suivants : économie, équité, éthique, acceptabilité et faisabilité. Les déclarations du CCNI ne nécessiteront pas toutes une analyse approfondie de l'ensemble des facteurs programmatiques. Même si l'étude systématique des facteurs liés aux programmes sera effectuée à l'aide d'outils fondés sur des données probantes afin de cerner les problèmes distincts susceptibles d'avoir une incidence sur la prise de décision pour l'élaboration des recommandations, seuls les problèmes distincts considérés comme étant propres au vaccin ou à la maladie pouvant être prévenue par un vaccin seront inclus.

La présente déclaration contient les conseils indépendants et les recommandations du CCNI, qui reposent sur les connaissances scientifiques les plus récentes et diffuse ce document à des fins d'information. Les personnes qui administrent le vaccin devraient également connaître le contenu de la monographie de produit pertinente. Les recommandations d'utilisation et les autres renseignements qui figurent dans le présent document peuvent différer du contenu de la monographie de produit rédigée par le fabricant du vaccin au Canada. Les fabricants ont fait homologuer les vaccins et ont démontré leur innocuité et leur efficacité potentielle lorsqu'ils sont utilisés conformément à la monographie de produit uniquement. Les membres du CCNI et les membres de liaison doivent se conformer à la politique de l'ASPC régissant les conflits d'intérêts, notamment déclarer chaque année les conflits d'intérêts possibles.

Sommaire

Les paragraphes suivants présentent des renseignements clés et actuels sur les vaccins contre la COVID-19 à l'intention des fournisseurs de vaccination. Les données probantes sur la COVID-19 et les vaccins contre cette maladie évoluent. Les données probantes issues des essais cliniques sont limitées en raison de la taille et de la durée du suivi des populations des essais. Toutefois, des essais et études cliniques en conditions réelles sont en cours. Le CCNI continuera à surveiller les données probantes et à mettre à jour ses recommandations si nécessaire. Voir le reste de la Déclaration pour obtenir plus de précisions.

Quoi

Maladie

Vaccins actuellement autorisés (vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19, vaccin Spikevax de Moderna contre la COVID-19, vaccin Vaxzevria d'AstraZeneca contre la COVID-19, vaccin contre la COVID-19 de Janssen)

Qui

Le CCNI fait les recommandations suivantes :

Une série complète de vaccins à ARNm contre la COVID-19 devrait être proposée de préférence aux personnes appartenant au groupe d'âge autorisé qui ne présentent pas de contre-indications au vaccin.

Un vaccin à vecteur viral contre la COVID-19 peut être proposé aux personnes appartenant au groupe d'âge autorisé qui ne présentent pas de contre-indications au vaccin pour initier une série lorsque d'autres vaccins autorisés contre la COVID-19 sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de la TTIV, ainsi que sur la nécessité de demander des soins médicaux immédiats en cas d'apparition de symptômes.

Pour ceux qui sont modérément à gravement immunodéprimés dans le groupe d’âge autorisé qui n’ont pas encore été vaccinés, une série primaire de trois doses d’un vaccin ARNm autorisé devrait être proposée. Pour ceux qui sont modérément à gravement immunodéprimés dans le groupe d’âge autorisé qui ont déjà reçu une série primaire de vaccins contre la COVID-19 à une ou deux doses (avec un calendrier homologue ou hétérologue de vaccins à ARNm ou à vecteur viral), une dose supplémentaire d’un vaccin à ARNm autorisé contre la COVID-19 devrait être proposée.

Une dose de rappel d’un vaccin à ARNm autorisé contre la COVID-19 devrait être proposée aux résidents d’établissements de soins de longue durée (ÉSLD) et aux personnes âgées vivant dans d’autres milieux de vie collectifs qui ont déjà reçu une série primaire du vaccin contre la COVID-19. Cette dose devrait être proposée à un intervalle recommandé d’au moins six mois après la fin de la série primaire

Une série complète de vaccins contre la COVID-19 actuellement autorisés peut être proposée :

Le CCNI recommande ce qui suit :

Le CCNI continue à recommander les éléments suivants pour guider la prise de décision éthique, comme indiqué dans son document Guide du CCNI sur les populations clés pour la vaccination précoce contre la COVID-19 :

Comment

Pourquoi

Introduction

L'objectif de la réponse du Canada à la pandémie est de réduire au minimum le risque de maladie grave et de décès tout en atténuant les perturbations sociales pouvant être subies par la population dans le cadre de la pandémie de COVID-19. Des vaccins contre la COVID-19 sûrs et efficaces pourraient contribuer à l'atteinte de cet objectif. Des essais cliniques portant sur de nombreux vaccins expérimentaux contre la COVID-19 sont en cours.

Le présent document d'orientation fournira des recommandations sur l'utilisation du ou des vaccins contre la COVID-19 autorisés dont l'utilisation est approuvée au Canada, et au fur et à mesure de l'évolution des données probantes sur ces vaccins.

Il y a quatre (4) vaccins contre la COVID-19 dont l'utilisation est actuellement autorisée au Canada.

  1. L'utilisation du vaccin contre la COVID-19 de Pfizer-BioNTech a été autorisée au Canada le 9 décembre 2020 pour les personnes de 16 ans et plus en vertu d'une ordonnance provisoire. Le 5 mai 2021, Santé Canada (SC) a étendu l'autorisation d'ordonnance provisoire du vaccin contre la COVID-19 de Pfizer-BioNTech aux adolescents de 12 à 15 ans. Le 16 septembre 2021, SC a autorisé l'utilisation du vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19 au Canada en vertu du Règlement sur les aliments et drogues.
  2. L'utilisation du vaccin contre la COVID-19 de Moderna au Canada pour les personnes de 18 ans et plus a été autorisée le 23 décembre 2020 en vertu d'une ordonnance provisoire. Le 27 août 2021, SC a élargi l'autorisation de l'ordonnance provisoire pour le vaccin contre la COVID-19 de Moderna afin d'inclure les jeunes de 12 à 17 ans. Le 16 septembre 2021, SC a autorisé l'utilisation du vaccin Spikevax de Moderna contre la COVID-19 au Canada en vertu du Règlement sur les aliments et drogues.
  3. L'utilisation du vaccin contre la COVID-19 d'AstraZeneca au Canada pour les 18 ans et plus a été autorisée le 26 février 2021 en vertu d'une ordonnance provisoire.
    • SC a autorisé deux fabricants à produire ce vaccin mis au point par AstraZeneca et l'Université d'Oxford : AstraZeneca et le Serum Institute of India (SII). Le CCNI n'a pas examiné en particulier les données probantes concernant le vaccin du SII, mais SC a jugé que les vaccins du SII et d'AstraZeneca étaient comparables. L'autorisation du vaccin contre la COVID-19 du SII (COVISHIELD) a été fondée sur sa comparabilité avec le vaccin contre la COVID-19 d'AstraZeneca, déterminée en évaluant et en comparant directement les procédés et contrôles de fabrication, ainsi que les caractéristiques de qualité des deux produits. Les résultats de cette comparaison effectuée par SC ont permis de déterminer que les deux produits étaient suffisamment similaires et que l'efficacité potentielle, l'immunogénicité et l'innocuité du COVISHIELD pouvaient être inférées des études non cliniques et cliniques du vaccin contre la COVID-19 d'AstraZeneca.
  4. L'utilisation du vaccin contre la COVID-19 de Janssen au Canada pour les 18 ans et plus a été autorisée le 5 mars 2021 en vertu d'une ordonnance provisoire.

Les données probantes sur la COVID-19 et les vaccins contre la COVID-19 évoluent rapidement. À ce jour, le CCNI a publié les documents d'orientation fondés sur des données probantes suivants :

  1. Priorités de recherche pour les vaccins contre la COVID-19 à l'appui des décisions de santé publique (archivées), afin d'orienter les essais cliniques des vaccins expérimentaux contre la COVID-19 pour protéger contre l'infection, les maladies graves et les décès causés par le SRAS-CoV-2.
  2. Orientations préliminaires sur les principales populations à immuniser en priorité contre la COVID-19 (archivée), pour planifier l'attribution efficace, utile et équitable d'un vaccin contre la COVID-19, à terme, lorsque l'approvisionnement initialement limité en vaccins nécessitera d'immuniser certaines populations avant les autres.
  3. Orientations sur l'administration prioritaire des premières doses du vaccin contre la COVID-19 (archivée) pour une administration prioritaire efficace et équitable des premières doses de vaccin contre la COVID-19 afin d'aider à la planification de l'attribution des premiers programmes d'immunisation contre la COVID-19.
  4. Orientations sur l'établissement de l'ordre de priorité des principales populations à immuniser contre la COVID-19 (archivée) pour une répartition équitable, éthique et efficace des vaccins contre la COVID-19 autorisés, dans le contexte de l'arrivée échelonnée de l'approvisionnement en vaccins, qui nécessitera de vacciner en priorité certaines populations avant les autres.
  5. Réponse rapide du CCNI : Allongement des intervalles entre les doses des vaccins contre la COVID-19 pour optimiser les campagnes de vaccination précoces et la protection des populations au Canada (archivée) pour maximiser le nombre de personnes bénéficiant de la première dose de vaccin en prolongeant l'intervalle pour la deuxième dose jusqu'à quatre mois après la première. Cette réponse rapide a été suivie d'une déclaration plus complète du CCNI (archivée) donnant un aperçu détaillé des données probantes et des considérations qui ont conduit à la recommandation du CCNI.
  6. Réponse rapide du CCNI : Utilisation recommandée du vaccin contre la COVID-19 d'AstraZeneca chez les jeunes adultes (archivée) directives élaborées en réponse à l'enquête du thrombocytopénie immunitaire prothrombotique induite par le vaccin (TIPIV) [ ci-après désignée par le terme de thrombocytopénie thrombotique induite par le vaccin (TTIV)] suivant son administration contre la COVID-19 d'AstraZeneca fait l'objet d'un examen plus approfondi.
  7. Recommandation sur l'utilisation du vaccin contre la COVID-19 de Pfizer-BioNTech chez les adolescents de 12 à 18 ans (archivée) recommandant qu'une série complète du vaccin contre la COVID-19 de Pfizer-BioNTech soit proposée aux personnes de 12 à 18 ans sans contre-indications au vaccin ; archivée après la publication des lignes directrices mises à jour à la suite de l'autorisation du vaccin Spikevax de Moderna chez les 12 à 17 ans.
  8. Réponse rapide du CCNI : Interchangeabilité des vaccins contre la COVID-19 autorisés (archivée) pour fournir des conseils sur l'interchangeabilité des vaccins contre la COVID-19 autorisés dans le contexte d'un calendrier de primovaccination à deux doses pour la vaccination contre la COVID-19 au Canada.
  9. Recommandation sur l'utilisation des vaccins à ARNm contre la COVID-19 chez les adolescents de 12 à 17 ans recommandant qu'une série complète d'un vaccin à ARNm contre la COVID-19 soit proposée aux adolescents de 12 à 17 ans sans contre-indications au vaccin.
  10. Réponse rapide : Dose supplémentaire du vaccin contre la COVID-19 chez les personnes immunodéprimées suivant une série primaire de 1 ou 2 doses recommandant que les personnes modérément à sévèrement immunodéprimées qui n'ont pas encore été vaccinées reçoivent une série primaire de 3 doses d'un vaccin à ARNm contre la COVID-19 autorisé, et que les personnes modérément à sévèrement immunodéprimées qui ont déjà reçu une série initiale complète devraient se voir proposer une dose supplémentaire d'un vaccin à ARNm contre la COVID-19 autorisé.
  11. Réponse rapide : Dose de rappel chez les résidents d’ÉSLD et les personnes âgées vivant dans d’autres milieux de vie collectifs recommandant qu’une dose de rappel d’un vaccin à ARNm autorisé contre la COVID-19 soit offerte aux résidents des ÉSLD et aux personnes âgées vivant dans d’autres milieux de vie collectifs qui ont déjà reçu une série primaire de vaccins contre la COVID-19. Cette dose devrait être proposée à un intervalle recommandé d’au moins six mois après la fin de la série primaire.
  12. Recommandations sur l'utilisation du vaccin contre la COVID-19 (archivées) ont été publiées à l'origine le 12 décembre 2020 et mises à jour de façon itérative avec l'arrivée de nouvelles données probantes et avec l'autorisation de vaccins contre la COVID-19 supplémentaires. Cette déclaration reflète les orientations les plus récentes.

Objectif des orientations

L'objectif de la présente déclaration du comité consultatif est de fournir des conseils éclairés sur l'utilisation efficace et équitable des vaccins contre la COVID-19 autorisés au Canada. Ce document évolutif sera mis à jour au fur et à mesure que l'utilisation des vaccins contre la COVID-19 sera autorisée au Canada et que les données probantes sur ces vaccins évolueront ou que la situation pandémique justifie des changements d'orientation. Dans le présent document d'orientation, les données probantes et la justification des recommandations ainsi que les lacunes actuelles dans les connaissances seront résumées. Les résumés des données probantes sur les caractéristiques de vaccins contre la COVID-19 particuliers figureront dans des annexes.

Méthodologie

Les détails du processus d'élaboration des recommandations du CCNI peuvent être consultés ailleursNote de bas de page 9 Note de bas de page 10. En bref, voici les étapes générales de la préparation d'une déclaration du comité consultatif du CCNI :

  1. Synthèse des connaissances
  2. Synthèse du corpus de données probantes sur les avantages et les risques, compte tenu de la qualité des données probantes synthétisées et de l'ampleur et de la certitude des effets observés dans l'ensemble des études.
  3. Transposition des données probantes en recommandations

Afin d'élaborer des recommandations détaillées et appropriées au sujet des programmes d'immunisation, le CCNI tient compte d'un certain nombre de facteurs. Outre l'évaluation critique des données probantes sur le fardeau de la maladie et les caractéristiques des vaccins, comme, l'efficacité, l'immunogénicité et l'efficacité réelle ou de terrain, le CCNI utilise un cadre publié revu par des pairs et des outils fondés sur des données probantes pour s'assurer que les questions liées à l'éthique, à l'équité, à la faisabilité et à l'acceptabilité (EEFA) sont systématiquement évaluées et intégrées dans ses orientationsFootnote 10. Le secrétariat du CCNI a appliqué ce cadre avec les outils fondés sur des données probantes qui l'accompagnent (filtres d'éthique intégrés, matrice d'équité, matrice de faisabilité, matrice d'acceptabilité) afin de prendre systématiquement en compte ces facteurs programmatiques dans l'élaboration de recommandations claires, complètes et appropriées pour une prise de décision transparente en temps utile. Pour plus de détails sur l'élaboration et l'application du cadre ÉÉFA et des outils fondés sur des données probantes (y compris les filtres et matrices déjà mentionnés), voir le document A framework for the systematic consideration of ethics, equity, feasibility, and acceptability in vaccine program recommendations (en anglais seulement).

Pour les besoins de la présente déclaration du comité consultatif, le CCNI a utilisé le cadre GRADE (Grading of Recommendations, Assessment, Development and Evaluation) pour élaborer des recommandations axées sur la population. De plus amples renseignements sur ce cadre peuvent être consultés dans le document GRADE Handbook (en anglais seulement).

Le 25 novembre 2020, le CCNI a examiné et approuvé les questions de politiques importantes utilisées pour orienter l'élaboration des recommandations et a évalué les résultats en fonction de leur importance pour la prise de décision. Le Comité canadien sur l'immunisation (CCI) a fourni des commentaires sur les questions de politiques importantes afin d'assurer leur harmonisation avec les besoins du programme. D'importantes considérations d'ordre éthique concernant les questions de politiques clés ont été présentées le 26 novembre 2020, le 15 décembre 2020 et le 26 janvier 2021, le 6 avril 2021, le 3 mai 2021 et le 6 juillet 2021 au Groupe consultatif en matière d'éthique en santé publique de l'ASPC, qui a fourni une évaluation des considérations éthiques pertinentes pour l'élaboration de recommandations. La synthèse des connaissances et l'évaluation de la qualité des données probantes non publiées des essais cliniques ont été effectuées par le secrétariat du CCNI et ont été éclairées par l'évaluation des résultats par le CCNI. Les données probantes non publiées des essais cliniques de Phases 1, 2 et 3 ont été présentées au Groupe de travail sur les vaccins contre les maladies infectieuses à haut risque et au CCNI pour discussion. Les recommandations proposées ont ensuite été présentées et approuvées à l'occasion de réunions d'urgence du CCNI. On trouvera dans le texte une description des considérations pertinentes, des justifications des décisions et des lacunes dans les connaissances.

Dates clés

Épidémiologie

Les renseignements sur la COVID-19 évoluent continuellement. La section suivante décrit la base des connaissances actuelles, et souligne les meilleures données canadiennes disponibles, lorsque possible. Pour accéder aux mises à jour les plus récentes concernant certains aspects précis, veuillez consulter les liens ci-dessous.

Description de la maladie

Agent infectieux

La COVID-19 est causée par le SRAS-CoV-2, qui a été reconnu pour la première fois à Wuhan, en Chine, en décembre 2019.

Transmission

Les données probantes actuelles laissent entendre que le SRAS-CoV-2 se propage par les gouttelettes respiratoires et les aérosols créés lorsqu'une personne infectée tousse, éternue, chante, crie ou parle. Une personne peut être infectieuse pendant une période pouvant aller jusqu'à trois jours avant de présenter des symptômes.

Vous trouverez de plus amples renseignements sur la transmission du SRAS-CoV-2 sur les pages Web de l'ASPC COVID-19 : Principaux modes de transmission et Signes, symptômes et gravité de la COVID-19 : Guide à l'intention des cliniciens.

Variants préoccupants

Des mutations génétiques du virus SRAS-CoV-2 dont certaines rendent le virus plus infectieux et plus transmissible ont été repérées. Elles pourraient également avoir une incidence sur la gravité de la maladie et sur le niveau de protection offert par les vaccins.

De plus amples informations sur les VP signalés au Canada sont disponibles dans la mise à jour de l'épidémiologie de la COVID-19. La mise à jour épidémiologique hebdomadaire de la COVID-19 de l'Organisation mondiale de la Santé (en anglais seulement) fournit un résumé de la distribution mondiale et des données probantes émergentes concernant les VP et les VI. Les différences entre les VP et les VI se trouvent dans Variants du SRAS-CoV2 : définitions, classifications et actions de santé publique nationales.

Le CCNI continuera à surveiller l'épidémiologie et les données probantes concernant les VP et les vaccins contre la COVID-19.

Facteurs de risque

Tout le monde peut être infecté par le SRAS-CoV-2. Cependant, certaines populations sont plus exposées au virus (p. ex., en raison de leur cadre de vie ou de travail), et d'autres sont exposées à un risque accru de maladie et de complications sévères (p. ex., hospitalisation et décès) en raison de divers facteurs biologiques (p. ex., âge avancé, affection préexistante) et sociaux (p. ex., statut socio-économique, appartenance à une population racialisée) qui peuvent se croiser. L'exposition et le risque de facteurs de maladie sévère peuvent se chevaucher, ce qui augmente encore le risque. Toute combinaison de ces facteurs, ainsi que l'accès variable aux services de soins de santé, peut avoir des conséquences disproportionnées pour certaines populations particulières caractérisées par des taux accrus d'infection et de maladie, de maladie sévère, d'hospitalisation ou de décès.

Voir la Déclaration du comité consultatif du CCNI sur les principales populations à vacciner en priorité contre la COVID-19 (archivée) et la matrice d'équitéNote de bas de page 11 pour obtenir un résumé des iniquités associées à la COVID-19, les raisons possibles de ces iniquités et leurs intersections, et les interventions suggérées pour réduire les iniquités et améliorer l'accès aux vaccins. Les orientations sur l'établissement de l'ordre de priorité des principales populations à immuniser contre la COVID-19 du CCNI (archivée) s'appuient sur le cadre fondamental pour l'allocation équitable, éthique et efficace des vaccins autorisés contre la COVID-19 dans le contexte de l'arrivée échelonnée de l'approvisionnement en vaccins qui nécessitera d'offrir des vaccins à certaines populations plus tôt que d'autres. Ces conseils ont été éclairés par l'évolution des données probantes sur les facteurs de risque de la COVID-19.

Le Tableau 1 résume les populations à risque souffrant de complications sévères liées à la COVID-19 (hospitalisations et/ou décès) sur la base des résultats issus d'une revue rapide mise à jour des données probantes provenantNote de bas de page 12 d'études menées dans des pays membres de l'Organisation de coopération et de développement économiques (OCDÉ), ainsi que les populations à risque accru d'exposition à la COVID-19 (en raison de l'absence de distanciation physique et/ou de l'accès réduit aux mesures de prévention et de contrôle des infections) qui sont identifiées, en partie, dans les rapports canadiens (épidémiologiques et analytiques).

La revue du Alberta Research Centre for Health Evidence (ARCHE) a trouvé de solides données probantes (de certitude modérée à élevée) sur l'augmentation double du taux de mortalité attribuable à la COVID-19 chez les personnes de 60-69 ans par rapport aux personnes de moins de 60 ansNote de bas de page 12. Une revue antérieure menée par ARCHE a trouvé des données probantes de certitude modérée sur l'augmentation de cinq fois le taux de mortalité et d'hospitalisation chez les personnes de plus de 70 ans (par rapport aux personnes de 45 ans et moins)Note de bas de page 13. Les études qui ont été réalisées en fonction de l'âge sur un continuum ou selon de petits incréments ont systématiquement trouvé que les risques d'hospitalisation et de mortalité augmentaient avec l'âge (c.-à-d. une augmentation relative du risque d'environ 2-6 % et 5-10 % par année)Note de bas de page 12.

La revue de ARCHE a trouvé de solides données probantes (certitude modérée à élevée) sur l'augmentation d'au moins deux fois le taux de mortalité attribuable à la COVID-19 chez les personnes souffrant d'un petit nombre d'affections médicales (classifiées de Niveau 1 au Tableau 1)Note de bas de page 12. La revue a trouvé des données probantes de faible certitude sur l'augmentation d'au moins deux fois le taux de mortalité attribuable à la COVID-19, et/ou des données probantes de certitude faible à modérée sur l'augmentation d'au moins deux fois le taux d'hospitalisation pour une liste plus longue d'affections médicales (classifiées de Niveau 2). On a constaté que les personnes souffrant de deux affections médicales ou plus présentaient une augmentation d'au moins deux fois plus d'hospitalisations et de mortalité attribuables à la COVID-19 (certitude de preuve modérée). De même, dans les populations de 21 ans et moins, on a constaté que les personnes souffrant de deux affections médicales ou plus présentaient au moins deux fois plus d'hospitalisations pour la COVID-19 (certitude de preuve modérée). Toutefois, il n'y a aucune donnée probante directe sur quelle combinaison d'affections médicales augmente ce risqueNote de bas de page 12.

Il faut faire preuve de prudence en matière d'interprétation des données probantes de faible certitude (c.-à-d. pour les affections médicales de Niveau 2). À mesure que les données probantes s'accumulent, les associations observées pourraient changer. Par exemple, une revue rapide antérieure menée par ARCHENote de bas de page 14 a trouvé des données probantes de faible certitude sur l'augmentation d'au moins deux fois le taux d'hospitalisation ou de décès chez les hommes, les personnes atteintes d'une maladie du foie et chez les personnes souffrant d'insuffisance cardiaque. Au fur et à mesure que les données probantes s'accumulent, il existe actuellement des données probantes plus solides concernant l'association faible ou nulle de complications sévères à ces populations. La liste des affections médicales figurant au Tableau 1 peut ne pas être exhaustive, car elle n'est fondée que sur les données probantes issues des études publiées qui sont incluses dans la revue ARCHE.

Tableau 1. Résumé des facteurs de risque liés aux complications sévères attribuables à la COVID-19 et du risque accru d'exposition à la COVID-19
Risque accru des complications sévères attribuables à la COVID-19 (hospitalisations/décès)Footnote a Risque accru de l'exposition à la COVID-19Footnote 12 (p. ex., en raison de l'incapacité de respecter la distanciation physique, de l'accès réduit à la CPI)Footnote b

Augmentation de l'âge (données probantes solides) (sur la base de données probantes de certitude modérée d'au moins 2 fois l'augmentation des décès)

  • Résidents et personnel des lieux d'habitation collective qui assurent des soins aux personnes âgées
  • Travailleurs de la santé de première ligne
  • Adultes dans les communautés autochtones
  • Résidents et personnel d'autres lieux d'habitation collective (p. ex., habitations pour les travailleurs migrants, abris, établissements correctionnels, foyers de groupe)
  • Adultes dans les communautés racialisées et marginalisées
  • Premiers intervenants (p.ex., policiers, pompiers)
  • Travailleurs essentiels de première ligne qui ne peuvent pas travailler virtuellement

Affections médicales - Niveau 1 (données probantes solides)Note de bas de page 12 (sur la base de données probantes de certitude modérée à élevée d'au moins deux fois l'augmentation des décès)

  • Syndrome de Down
  • Maladie rénale au stade terminal
  • Épilepsie
  • Maladie des motoneurones, sclérose en plaques, myasthénie grave, maladie de HuntingtonFootnote d
  • Diabète de type 1 et de type 2

Affections médicales - Niveau 2 (données probantes limitées)Note de bas de page 12

Niveau 2a (sur la base de données probantes de faible certitude concernant une augmentation d'au moins deux fois le taux de mortalité

  • Paralysie cérébrale
  • Trouble psychiatrique grave (schizophrénie, trouble schizo-affectif ou trouble bipolaire); en combinaison avec la prise de médicaments pour l'affection en question depuis 6 mois
  • Obésité classe III (IMC 40 kg/m2)
  • Maladie de Parkinson
  • Anémie falciforme ou immunodéficience sévères, greffe (tous genres)
  • Greffe d'organe solide
  • Greffe de moelle osseuse ou greffe de cellules souches récente
  • Cancer métastatique
  • Chimiothérapie ou radiothérapie récente ou en cours

Niveau 2b (sur la base de données probantes de certitude faible ou modérée concernant l'augmentation d'au moins 2 fois le taux d'hospitalisation)

  • Accident cérébrovasculaire antécédent
  • Grossesse (tout stage)
  • Fragilité (chez les personnes à domicile de communautés et hors communautés; des échelles de barème dont la perte de poids, l'épuisement, l'activité physique, la vitesse de marche, la force de préhension, la santé générale, l'invalidité, la présence d'une maladie, la démence, les chutes, le mieux-être mental)
  • Vascularite
  • Obésité -_toutes les classes (IMC de plus de 30 kg/m2)
Risque accru des complications sévères (hospitalisations/décès)Footnote c et risque accru d'expositionNote de bas de page 12
  • Résidents d'ÉSLD
  • Minorités visibles (comprend essentiellement Asiatique du sud, Chinois, Noir, Philippin, Latino-Américain, Arabe, Asiatique du Sud-Est, Asiatique de l'Ouest, Coréen, Japonais)
Note de bas de tableau 1 (a)

Tiré d'une revue rapide de données probantes de pays membres de l'OCDE concernant une association indépendante aux complications sévères attribuables à la COVID-19.

Retour à la référence de la note de bas de page a

Note de bas de tableau 1 (b)

Tiré, en partie, des rapports épidémiologiques canadiens.

Retour à la référence de la note de bas de page b

Note de bas de tableau 1 (c)

Identifié par l'entremise d'une revue rapide d'études canadiennes pouvant avoir une association avec des hospitalisations et des décès attribuables à la COVID-19. Ces études peuvent ne pas avoir tenu compte d'autres co-variables.

Retour à la référence de la note de bas de page c

Note de bas de tableau 1 (d)

Ces affections ont été regroupées dans une seule étude; les données probantes concernant les affections individuelles sont soit non disponibles ou de faible certitude.

Retour à la référence de la note de bas de page d

La liste des affections médicales au Tableau 1 peut être différente de celle d'autres administrations en raison des différences au niveau de l'épidémiologie locale et des niveaux distincts de données probantes prises en compte.

Les données probantes sur les facteurs de risque liés à la COVID-19 continuent d'évoluer.

Spectre de la maladie clinique

La durée médiane de la période d'incubation des non-variants du SRAS-CoV-2 a été estimée à 5 à 6 jours entre l'exposition et l'apparition des symptômes, la plupart des individus (97,5 %) constatant le développement de symptômes dans les 11,5 jours suivant l'exposition. La période d'incubation varie de 1 à 14 jours.

Le tableau clinique et les symptômes de la COVID-19 varient en fréquence et en gravité. À ce jour, il n'existe aucune liste de symptômes pour laquelle la spécificité élevée ou la sensibilité à la COVID-19 n'a été validée.

Pour de plus amples renseignements sur le spectre de la maladie clinique, voir la page Web de l'ASPC : Signes, symptômes et gravité de la COVID-19 : Guide à l'intention des cliniciens.

Incidence de la maladie

À l'échelle mondiale

Des données internationales actualisées sur les cas et les décès liés à la COVID-19 sont accessibles à l'adresse suivante : Visualisations interactives de données de COVID-19.

Des mises à jour épidémiologiques hebdomadaires mettant en évidence les principales données mondiales, régionales et nationales sur les cas et les décès liés à la COVID-19 sont accessibles auprès de l'OMS à l'adresse suivante (en anglais seulement) : Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update.

À l'échelle nationale

Des données actualisées à l'échelle nationale, provinciale et territoriale sur les cas et les décès liés à la COVID-19 au Canada au fil du temps peuvent être consultées sur la page Web de l'ASPC suivante : Maladie à coronavirus (COVID-19) : Mise à jour sur l'éclosion.

Vaccins

La section suivante résume les renseignements sur les vaccins contre la COVID-19 dont l'utilisation est autorisée au Canada. De plus amples renseignements sur les vaccins figurent aux Annexes A à D. Un panorama de la situation actuelle concernant les vaccins expérimentaux contre la COVID-19 au stade de l'évaluation clinique peut être consulté sur la page Web de l'OMS suivante (en anglais seulement) : Draft landscape of COVID-19 candidate vaccines. Aux termes de l'Arrêté d'urgence concernant l'importation, la vente et la publicité de drogues à utiliser relativement à la COVID-19, SC peut prendre des décisions réglementaires à l'égard des vaccins contre la COVID-19 pour lesquels les essais cliniques de Phase 3 en vue de l'autorisation de l'utilisation au Canada sont achevés.

Le 16 septembre 2021, l'utilisation du vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19 et du vaccin Spikevax de Moderna contre la COVID-19 a été autorisée au Canada en vertu du Règlement sur les aliments et drogues et ne fait plus l'emploi en vertu d'une ordonnance provisoire. Par souci de facilité et de cohérence, les noms de marque ne seront généralement pas utilisés tout au long de la déclaration.

La plupart des vaccins expérimentaux en cours d'élaboration dont l'utilisation pourrait être autorisée au Canada font appel à diverses technologies pour administrer la protéine de spicule (protéine S) du SRAS-CoV-2 aux personnes vaccinées. Cette protéine est exprimée à la surface du SRAS-CoV-2 et constitue une cible majeure pour la liaison et la neutralisation des anticorps ainsi que pour les réponses immunitaires à médiation cellulaire.

Vaccins à ARNm

Les vaccins contre la COVID-19 à ARN messager (ARNm) contiennent des nucléotides modifiés délivrant des instructions génétiques pour neutraliser les protéines des spicules du SRAS-CoV-2. Une formulation de nanoparticules lipidiques permet d'acheminer l'ARNm dans les cellules du sujet vacciné. Une fois à l'intérieur du cytoplasme d'une cellule, l'ARNm ordonne aux mécanismes de production de protéines intracellulaires de libérer l'antigène qui s'ancrera sur les protéines externes des spicules transmembranaires. L'ARNm ne pénètre pas dans le noyau de la cellule et ne modifie pas l'ADN humain. Pour induire des réactions immunitaires humorales et cellulaires, le système immunitaire est mobilisé à la fois par les protéines des spicules transmembranaires et par les récepteurs immunitaires porteurs des antigènes qui se fixeront aux spicules. L'ARNm, les nanoparticules lipidiques, et les protéines de spicule sont dégradés ou excrétés dans les jours ou les semaines qui suivent l'immunisation. Les vaccins à ARNm ne sont pas des vaccins vivants et ne peuvent pas provoquer d'infection chez l'hôte.

Le Canada s'est procuré un nombre suffisant de vaccins à ARNm pour vacciner en totalité l'ensemble de la population canadienne admissible à l'heure actuelle.

Vaccins à vecteur viral non réplicatif

Les vaccins contre la COVID-19 basés sur des plateformes de vecteurs viraux se servent d'un virus modifié pour transporter les gènes contenant le code des protéines de spicule du SRAS-CoV-2 dans les cellules hôtes. Un virus vecteur est un type d'adénovirus qui a été modifié pour porter les gènes de la COVID-19 et pour en empêcher la réplication. Ces modifications visent à empêcher le vecteur viral de propager la maladie (c'est-à-dire qu'ils ne se reproduisent pas). Une fois à l'intérieur de la cellule, les gènes de la protéine de spicule du SRAS-CoV-2 sont transcrits en ARNm dans le noyau et se traduisent en protéines dans le cytosol de la cellule. Le vaccin d'AstraZeneca contient un vecteur adénovirus modifié du chimpanzé (ChAd). Le vaccin de Janssen utilise un vecteur adénovirus humain modifié de sérotype 26 (Ad26).

Préparations des vaccins contre la COVID-19 dont l'utilisation est approuvée au Canada

Tableau 2. Vaccins contre la COVID-19 dont l'utilisation est approuvée au Canada
Nom de marque du produit Vaccin Comirnaty de Pfizer-BioNTech Vaccin Spikevax de Moderna Vaccin Vaxzevria d'AstraZeneca /COVISHIELD Vaccin contre la COVID-19 de Janssen
Type de vaccin ARNm ARNm Vecteur viral non réplicatif (ChAd) Vecteur viral non réplicatif (Ad26)
Date d'autorisation de l'ordonnance provisoire au Canada 9 décembre, 2020 (16 ans et plus); 5 mai 2021 (12 ans et plus) 23 décembre 2020 (18 ans et plus); 9 août 2021 (12 ans et plus) 26 février 2021 5 mars 2021
Groupe d'âge pour lequel le vaccin est approuvé 12 ans et plus 12 ans et plus 18 ans et plus 18 ans et plus
Dose 0,3 mL (30 mcg d'ARNm)Note de bas de page a 0,5 mL (100 mcg d'ARNm) 0,5 mL (5 x 1010 particules virales) 0,5 mL (5 x 1010 particules virales)
Calendrier autoriséNote de bas de page b 2 doses, à 3 semaines d'intervalle 2 doses, à 4 semaines d'intervalle 2 doses, de 4 à 12 semaines d'intervalle 1 dose
Voie d'administration IM IM IM IM
Nature de l'antigène Protéine de spicule en perfusion transmembranaire Protéine de spicule en perfusion transmembranaire Protéine de spicule transmembranaire Protéine de spicule en perfusion transmembranaire
Adjuvant (si présent) Aucun Aucun Aucun Aucun
Exigences relatives à l'entreposage primaire avant la perforationNote de bas de page e -90 °C à -60 °C ou -25 °C à -15 °C pendant 2 semaines au maximumNote de bas de page d -25 °C à -15 °CNote de bas de page d +2 °C à +8 °C De +2 °C à +8 °C
Option d'entreposage supplémentaires avant perforationNote de bas de page c Flacons congelés : -25 °C à -15 °C pendant 2 semaines au maximume Décongelés sous-frigération : 1 mois à +2 °C à +8 °C Décongelés à température ambiante 2 heures à une température maximale de +25 °C 30 jours à une température comprise entre +2 °C et +8 °C
ou
24 heures à une température comprise entre +8 °C et +25 °C
+2 °C à +8 °C De +2 °C à +8 °C
Diluant Oui Non Non Non
Limite d'utilisation après perforation 6 heures à une température comprise entre +2 °C et +25 °CNote de bas de page f 24 heures entre +2 °C et +25 °C 6 heures à température ambiante (jusqu'à +30 °C)
ou
48 heures de +2 °C à +8 °C.

3 heures à température ambiante (jusqu'à +25 °C)
ou
6 heures de +2 °C à +8 °C.

Presentations disponibles offertes Flacon multidose (6 doses)Note de bas de page a, sans agent de conservation Flacon multidose (10 doses), sans agent de conservation Fiole multidoses
(8 et 10 doses), sans agent de conservation

Fiole multidose
(5 doses), sans agent de conservation

Note de bas de tableau 2 (a)

Après dilution, la fiole contient 6 doses de 0,3 mL. En utilisant des seringues et des aiguilles standards, le volume pourrait être insuffisant pour permettre le prélèvement d'une 6e dose dans une même fiole. Voir la monographie du produit disponible dans la Base de données sur les produits pharmaceutiques de Santé Canada pour le choix du diluant et les instructions de dilution, et le type de seringues qui peuvent être utilisées pour extraire 6 doses d'un seul fiole.

Retour à la référence de la note de bas de page a

Note de bas de tableau 2 (b)

Calendrier autorisé. Pour de plus amples informations relatives aux recommandations du CCNI sur les intervalles entre les doses, voir le Tableau 3.

Retour à la référence de la note de bas de page b

Note de bas de tableau 2 (c)

À l'abri de la lumière pendant l'entreposage.

Retour à la référence de la note de bas de page c

Note de bas de tableau 2 (d)

Ne pas le stocker pas sur de la glace sèche ou à une température inférieure à -40 ºC.

Retour à la référence de la note de bas de page d

Note de bas de tableau 2 (e)

Les flacons entreposés entre -25 °C et -15 °C pendant un maximum de 2 (deux) semaines peuvent être remis une fois dans les conditions d'entreposage recommandées de -90 °C à -60 °C. La durée totale cumulée d'entreposage des flacons entre -25 °C et -15 °C devrait faire l'objet d'un suivi et ne devrait pas dépasser 2 (deux) semaines.

Retour à la référence de la note de bas de page e

Note de bas de tableau 2 (f)

Une fois dilué, le vaccin doit être utilisé dans les six heures.

Retour à la référence de la note de bas de page f

Abréviations :

  • IM : intramusculaire
  • ARNm : acide ribonucléique messager
  • ChAd : adénovirus du chimpanzé
  • Ad26 : adénovirus humain modifié 26

Efficacité potentielle et efficacité réelle

Comme seules des données provenant d'essais cliniques à court terme sont disponibles, la durée de protection offerte par le vaccin contre la COVID-19 est actuellement inconnues. Cependant, des études sont en cours.

La section suivante présente les principales données sur l'efficacité potentielle et l'efficacité réelle des vaccins à ARNm contre la COVID-19 qui ont été autorisés (vaccin contre la COVID-19 de Pfizer-BioNTech, vaccin contre la COVID-19 de Moderna) et des vaccins à vecteur viral contre la COVID-19 autorisés (vaccin contre la COVID-19 d'AstraZeneca, vaccin contre la COVID-19 de Janssen) uniquement. Pour de plus amples renseignements concernant le plan d'étude, y compris la population étudiée, la durée du suivi et l'efficacité potentielle en ce qui a trait aux vaccins autorisés et disponibles, voir le résumé des données probantes à l'Annexe A (vaccin contre la COVID-19 de Pfizer-BioNTech), à l'Annexe B (vaccin contre la COVID-19 de Moderna), à l'Annexe C (vaccin contre la COVID-19 d'AstraZeneca), et à l'Annexe D (vaccin contre la COVID-19 de Janssen).

Efficacité potentielle contre la COVID-19 symptomatique

Les vaccins à ARNm contre la COVID-19 actuellement autorisés se sont révélés très utiles à court terme contre la maladie à coronavirus 2019 symptomatique confirmée (présence d'un ou plusieurs symptômes, et confirmation en laboratoire de l'infection par le SRAS-CoV-2). Le calendrier autorisé des vaccins à ARNm à deux doses est tout aussi efficace chez les adultes présentant une ou plusieurs comorbidités, ainsi que chez adolescents, les jeunes adultes et les personnes âgées.

Lors des essais cliniques, le vaccin à vecteur viral contre la COVID-19 d'AstraZeneca a montré une efficacité potentielle modérée à court terme contre la COVID-19 symptomatique (présence d'au moins un symptôme prédéfini de la COVID-19 plus confirmation en laboratoire de l'infection par le SRAS-CoV-2) chez les adultes de 18 à 64 ans au moins deux semaines après avoir reçu la série complète des deux doses standard (DS) du vaccin. Les données des essais cliniques montrent que l'efficacité potentielle a augmenté avec l'intervalle entre les doses. À l'heure actuelle, les données d'essais cliniques chez les adultes de >65 ans et plus sont insuffisantes pour évaluer l'efficacité du vaccin dans cette tranche d'âge. Le vaccin est tout aussi efficace chez les adultes de >18 ans et plus avec et sans comorbidités prédéfinies (présence d'une ou plusieurs maladies cardiovasculaires légères à modérées et contrôlées, de maladies respiratoires, de diabète ou d'obésité).

En l'absence initiale de données suffisantes issues d'essais cliniques à ce jour sur l'efficacité potentielle du vaccin contre la COVID-19 d'AstraZeneca chez les personnes âgées de 65 ans et plus, une revue de trois études d'observation réalisées au R.-U. et publiées sous forme de prétirés sur l'efficacité réelle du vaccin dans ce groupe d'âge a été réalisée afin d'éclairer les recommandations du CCNI dans ce groupe d'âge. Les conclusions de cet examen sont résumées à l'Annexe C. Ces études fournissent des estimations d'efficacité réelle après la première dose du vaccin d'AstraZeneca principalement et ont montré une réduction du risque de maladie symptomatique et d'hospitalisation qui semble atteindre un niveau comparable à celui observé chez les personnes d'âge similaire ayant reçu une dose de vaccin à ARNm.

Le vaccin contre la COVID-19 de Janssen démontre une efficacité potentielle modérée contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant entre 14 et 28 jours après la vaccination, sachant que la définition de la maladie modérée inclut la présence d'un ou deux signes et symptômes ou plus parmi un éventail relativement large qui sont compatibles avec la COVID-19, plus la confirmation en laboratoire de l'infection par le SRAS-CoV-2. Les estimations ponctuelles de l'efficacité potentielle du vaccin à ces deux points dans le temps pour divers groupes d'âge sont similaires à l'estimation globale, y compris chez les participants à l'étude âgés de 65 ans et plus qui ont représenté environ 20 % de la population étudiée. Les estimations ponctuelles de l'efficacité potentielle du vaccin à 14 jours après la vaccination sont comparables chez les participants à l'étude avec et sans une ou plusieurs comorbidités. En revanche, l'estimation ponctuelle de l'efficacité potentielle chez les participants présentant des comorbidités est un peu plus faible, à 28 jours après la vaccination. L'efficacité potentielle du vaccin de Janssen a été fondée sur des essais cliniques qui ont été menées dans des pays où des VP circulaient largement (Afrique du Sud et Brésil), ce qui peut avoir influé sur son efficacité globale. Ceci contraste avec les essais cliniques d'autres vaccins contre la COVID-19 autorisés.

Les données des essais cliniques établissent que les vaccins à ARNm contre la COVID-19 autorisés sont utiles à court terme chez les individus présentant ou non des signes d'infection antérieure par le SRAS-CoV-2. Toutefois, les participants dont l'infection par le SRAS-CoV-2 a été confirmée en laboratoire (à l'aide d'un test d'amplification des acides nucléiques, comme la technique RT-PCR) avant l'inscription ont été exclus des essais, et le nombre de participants à l'essai présentant des signes d'infection antérieure (selon la définition de ce terme énoncée dans le protocole de l'essai) et chez lesquels la COVID-19 symptomatique a été confirmée au cours de l'essai était peu nombreux. Par conséquent, l'efficacité potentielle dans cette population et la façon dont elle se compare à l'efficacité chez les participants sans infection antérieure sont inconnues pour le moment. L'efficacité potentielle du vaccin contre la COVID-19 de Janssen chez les personnes antérieurement infectées et confirmées n'est pas concluante actuellement en raison de la petite taille de l'échantillon, et cette complication n'a pas été évaluée dans le cas du vaccin contre la COVID-19 d'AstraZeneca.

La première dose des vaccins contre la COVID-19 autorisés se sont révélés offrir à tout le moins une protection à court terme contre la maladie COVID-19 confirmée. Pour les vaccins à ARNm, l'efficacité potentielle la plus élevée s'observe après l'administration de la deuxième dose. Il n'existe actuellement aucune donnée probante concernant l'utilité à moyen ou à long terme du vaccin contre la COVID-19 autorisé, mais des essais sont en cours, et la présente déclaration sera mise à jour à mesure que les données probantes deviendront disponibles.

Efficacité potentielle et efficacité réelle contre la forme sévère de la maladie

Les essais cliniques sur les vaccins contre la COVID-19 autorisés et disponibles ont évalué l'efficacité potentielle contre la forme sévère de la maladie, mais ils n'ont pas tous fourni des données suffisantes pour évaluer l'efficacité potentielle contre les hospitalisations ou les décès.

Les vaccins à ARNm et le vaccin contre la COVID-19 de Janssen autorisés semblent être efficaces contre les complications sévères liées à la COVID-19 selon des données provenant d'essais cliniques à des fins d'autorisation pour les vaccins ARNm (les issues sévères ont été définies comme la COVID-19 confirmée en laboratoire présentant l'une des caractéristiques supplémentaires suivantes : signes cliniques au repos indicateurs d'une maladie systémique sévère; insuffisance respiratoire; signes de choc; dysfonctionnement rénal, hépatique ou neurologique aigu important; admission à l'unité de soins intensifs [USI] ou décès). Toutefois, le nombre de cas sévères observés à ce jour était faible dans l'essai clinique de Pfizer-BioNTech chez les participants de 16 ans et plus et trop faible dans les essais cliniques d'AstraZeneca pour évaluer l'efficacité potentielle. Aucun cas sévère n'a été identifié chez les adolescents de 12 à 15 ans dans l'essai clinique de Pfizer-BioNTech, ni chez les adolescents âgés de 12 à 17 ans dans l'essai clinique de Moderna. L'efficacité contre l'hospitalisation n'a pas été évaluée dans les essais cliniques menés sur les vaccins à ARNm mais les essais cliniques portant sur les vaccins à vecteur viral suggèrent un effet protecteur contre l'hospitalisation. Àce jour, très peu de décès associés à la COVID-19 ont été recensés dans le cadre des essais cliniques, ce qui rend difficile l'évaluation de l'efficacité potentielle pour ce résultat. Toutefois, parmi les décès attribuables à la COVID-19 recensés dans les essais cliniques, aucun ne s'est produit chez les participants à l'étude ayant reçu des vaccins contre la COVID-19.

Les données probantes émergentes en conditions réelles et provenant d'études menées au R.-U.Note de bas de page 15Note de bas de page 16Note de bas de page 17, en IsraëlNote de bas de page 18Note de bas de page 19Note de bas de page 20Note de bas de page 21, aux États-Unis (E-U)Note de bas de page 22 et au CanadaNote de bas de page 23Note de bas de page 24 suggèrent une efficacité réelle modérée à élevée contre les formes sévères de COVID-19 après l'administration d'une première ou deuxième dose de vaccin à ARNm contre la COVID-19 chez les adultesNote de bas de page 15Note de bas de page 16Note de bas de page 17Note de bas de page 18Note de bas de page 19Note de bas de page 20Note de bas de page 21Note de bas de page 22Note de bas de page 23 et après l'administration d'une première dose du vaccin contre la COVID-19 d'AstraZenecaNote de bas de page 15Note de bas de page 16Note de bas de page 17, y compris chez les populations âgéesNote de bas de page 15Note de bas de page 16Note de bas de page 17Note de bas de page 20 et fragilesNote de bas de page 15. L'hospitalisation liée à la COVID-19 était la complication sévère la plus souvent évaluéeNote de bas de page 15Note de bas de page 16Note de bas de page 17Note de bas de page 18Note de bas de page 19Note de bas de page 21Note de bas de page 22, tandis que peu d'études ont fourni des estimations de l'efficacité réelle contre les formes graves de la maladieNote de bas de page 18Note de bas de page 19 et le décèsNote de bas de page 16Note de bas de page 18Note de bas de page 23. Des données probantes émergentes provenant d'études israéliennes suggèrent une efficacité réelle élevée du vaccin contre la COVID-19 de Pfizer-BioNTech contre les formes sévères de la maladieNote de bas de page 18Note de bas de page 19, les hospitalisations liées à la COVID-19Note de bas de page 18Note de bas de page 21 et les décèsNote de bas de page 21 après l'administration d'une deuxième dose du vaccin. Des études sur les vaccins contre la COVID-19 sont en cours et les nouvelles données sur leur efficacité réelle contre les complications sévères liées à la COVID-19 seront évaluées au fur et à mesure.

Efficacité potentielle et efficacité réelle contre l'infection asymptomatique et la transmission

Les données préliminaires issues de l'essai clinique en cours sur le vaccin contre la COVID-19 de Moderna ont démontré une plus faible prévalence de positivité du SRAS-CoV-2 par RCP chez les participants asymptomatiques à un moment donné (après la première dose, mais avant la deuxième dose) et par conséquent, de l'excrétion virale, dans le groupe qui a reçu le vaccin par rapport au groupe placebo. Toutefois, les données actuelles sont insuffisantes pour tirer des conclusions. Les analyses exploratoires du vaccin à vecteur viral d'AstraZeneca n'ont pas montré d'efficacité potentielle contre les infections asymptomatiques par le SRAS-CoV-2 confirmées, mais le nombre d'infections asymptomatiques était faible. L'essai clinique du vaccin contre la COVID-19 de Janssen a montré que ce vaccin offre une protection modérée contre l'infection par la COVID-19 asymptomatique et non détectée. Des études sont en cours pour ces vaccins.

Des données probantes ont commencé à émerger des études post-commercialisation menées en IsraëlNote de bas de page 18, au R.-U.Note de bas de page 25 et aux É-UNote de bas de page 26 sur l'efficacité réelle des vaccins contre la COVID-19 face à l'infection asymptomatique chez les adultes. Les estimations de l'efficacité réelle contre la COVID-19 de Pfizer-BioNTech face à l'infection par le SRAS-CoV-2 sans symptômes signalés étaient de modérées à élevées après la première doseNote de bas de page 18Note de bas de page 25 (en fonction du temps écoulé depuis la vaccination) et élevées après la deuxième doseNote de bas de page 18Note de bas de page 25. Des résultats similaires ont été signalés pour les vaccins à ARNm contre la COVID-19 en général (ex. Moderna and Pfizer-BioNTech) Note de bas de page 26. Dans une étude britannique, les infections asymptomatiques par le SRAS-CoV-2 étaient nettement moins susceptibles de survenir chez les participants vaccinésNote de bas de page 25. Il n'y a pas encore de résultats particuliers aux autres vaccins contre la COVID-19, mais des études sont en cours.

Efficacité potentielle et efficacité réelle contre les variants

Les données probantes sur la protection et l'efficacité réelle diverses qui sont offertes par des vaccins à ARNm contre la COVID-19 autorisés (vaccin contre la COVID-19 de Pfizer-BioNTech, vaccin contre la COVID-19 de Moderna) et par les vaccins contre la COVID-19 à vecteur viral (vaccin contre la COVID-19 d'AstraZeneca, vaccin contre la COVID-19 de Janssen) contre les variants du SRAS-CoV-2 sont en pleine évolution. Voir le Tableau 5 pour consulter le résumé de ces données probantes.

L'essai clinique du vaccin de Janssen a été mené pendant l'émergence des VP du SRAS-CoV-2. Dans le cadre des tests effectués au cours de l'essai, une partie des isolats de cas a été séquencée génétiquement, et parmi les isolats séquencés, un peu plus des deux tiers des isolats du Brésil appartenaient au VI P.2 (zêta) et presque tous les isolats d'Afrique du Sud correspondaient au VP B.1.351 (béta). Les estimations ponctuelles de l'efficacité potentielle du vaccin contre une infection par le SRAS-CoV-2 confirmée symptomatique modérée à sévère/critique 28 jours suivant l'administration du vaccin sont comparables à l'estimation globale de l'efficacité potentielle contre cette complication au Brésil et en Afrique du Sud.

Il existe des données probantes montrant que les vaccins de Pfizer BioNTech et d'AstraZeneca protègent contre le VP B.1.1.7 (alpha). Bien que la protection contre l'infection par le VP B.1.617.2 (delta) après la première dose des vaccins de Pfizer-BioNTech et d'AstraZeneca semble être réduite par rapport à d'autres souches, les données émergentes suggèrent que le vaccin de Pfizer-BioNTech offre une très bonne protection et le vaccin d'AstraZeneca offre une bonne protection contre l'infection par le VP B.1.617.2 (delta) après la deuxième dose. De plus, les vaccins offrent une bonne protection contre l'hospitalisation après les premières doses. Il existe également des données émergentes sur l'efficacité potentielle et l'efficacité réelle des vaccins à ARNm contre le VP B.1.351 (béta). Des données probantes provenant des essais cliniques du vaccin de Janssen indiquent qu'il protège contre l'infection à la COVID-19 symptomatique modérée à sévère/critique dans des régions où le VP B.1.351 (béta) et le VI P.2. (zêta) circulent largement. L'essai clinique d'AstraZeneca a été mené lorsque la souche B.1.351 (béta) était la plus courante en Afrique du Sud, et l'efficacité potentielle du vaccin n'était pas démontré contre cette souche.

Le CNNI continuera à surveiller les données probantes et à mettre à jour ses recommandations si nécessaire.

Immunogénicité

Aucun corrélat immunologique de protection n'a été déterminé pour le SRAS-CoV-2; par conséquent, toutes les données probantes immunologiques à l'appui de l'efficacité du vaccin sont indirectes et ne peuvent être utilisées directement pour estimer l'efficacité potentielle et l'efficacité réelle.

Il existe plusieurs lacunes importantes dans les connaissances qui nuisent à la compréhension des réponses immunitaires au vaccin contre la COVID-19 :

En raison des limitations du nombre de participants évalués pour les conséquences liées à l'immunogénicité et des données sur la durée du suivi dans les essais cliniques sur la COVID-19, les données probantes à long terme sur l'immunogénicité sont inconnues. Cependant, des études sont en cours.

La section suivante présente les principales données sur l'immunogénicité des vaccins à ARNm contre la COVID-19 qui ont été autorisés (vaccin contre la COVID-19 de Pfizer-BioNTech, vaccin contre la COVID-19 de Moderna) et des vaccins contre la COVID-19 à vecteur viral (vaccin contre la COVID-19 d'AstraZeneca, vaccin contre la COVID-19 de Janssen) uniquement. Pour de plus amples renseignements concernant le plan d'étude, y compris la population étudiée, la durée du suivi et l'immunogénicité en lien avec les vaccins autorisés, voir le résumé des données probantes à l'Annexe A (vaccin contre la COVID-19 de Pfizer-BioNTech), à l'Annexe B (vaccin contre la COVID-19 de Moderna), à l'Annexe C (vaccin contre la COVID-19 d'AstraZeneca) et à l'Annexe D (vaccin contre la COVID-19 de Janssen).

Réponses immunitaires humorales

Tous les vaccins contre la COVID-19 autorisés induisent des réactions immunitaires humorales, y compris des réactions à anticorps de liaison et de neutralisation. Les réactions humorales ont atteint un pic après la deuxième dose de vaccin à ARNm et après la deuxième dose de vaccin d'AstraZeneca chez les participants qui n'avaient pas été infectés auparavant. Les réponses immunitaires humorales furent élevées après l'administration de la seule dose du vaccin de Janssen. Certains vaccins entraînent des réactions immunitaires plus fortes chez les populations jeunes.

Les vaccins à base de vecteurs viraux peuvent induire des réactions immunitaires anti-vectorielles, qui peuvent avoir un impact sur l'efficacité potentielle et réelle futures du vaccin et peuvent varier selon l'âge, la dose et l'intervalle entre les doses.

Réponses immunitaires cellulaires

Il a été démontré que tous les vaccins contre la COVID-19 autorisés et disponibles déclenchent des réactions immunitaires cellulaires. Les réactions immunitaires cellulaires ont augmenté après la deuxième dose du vaccin à ARNm contre la COVID-19, tandis que les réponses au vaccin contre la COVID-19 d'AstraZeneca se sont maintenues ou ont diminué après la deuxième dose. Les réponses immunitaires cellulaires étaient présentes après l'administration d'une seule dose du vaccin de Janssen.

Administration des vaccins

Pour de plus amples renseignements spécifiques aux vaccins, consultez le dépliant du produit ou l'information contenue dans la monographie de produit disponible dans la Base de données sur les produits pharmaceutiques de Santé Canada.

Voir le chapitre Méthodes d'administration des vaccins dans le GCI, Partie 1 - Information clé sur l'immunisation, pour de plus amples renseignements.

Comme pour l'administration normale de tous les vaccins, les vaccins contre la COVID-19 devraient être administrés dans des conditions permettant de gérer l'anaphylaxie. Voir le site Anaphylaxie et autres réactions aiguës après la vaccination dans le Guide canadien d'immunisation (GCI), Partie 2 - La sécurité des vaccins pour de plus amples renseignements sur la gestion de l'anaphylaxie après la vaccination.

Dose, voie d'administration et calendrier

Dose
Vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19

Chaque dose est d'un volume de 0,3 mL après dilution, et contient 30 mcg d'ARNm de la protéine de spicule du SRAS-CoV-2.

La dose du vaccin contre la COVID-19 de Pfizer-BioNTech (0,3 mL) est unique par rapport à celle de la plupart des vaccins systématiques. Il convient de prendre des précautions particulières pour s'assurer que la dose correcte est prélevée dans le flacon multidose.

Vaccin Spikevax de Moderna contre la COVID-19

Chaque dose fait un volume de 0,5 mL et contient 100 mcg d'ARNm de la protéine de spicule du SRAS-CoV-2.

Aucune dilution n'est requise.

Vaccin Vaxzevria d'AstraZeneca contre la COVID-19

Chaque dose fait un volume de 0,5 mL et contient 5 x 1010 particules de la protéine de spicule du SRAS-CoV-2.

Aucune dilution n'est requise.

Vaccin contre la COVID-19 de Janssen

Chaque dose fait un volume de 0,5 mL et contient 5 x 1010 particules de la protéine de spicule du SRAS-CoV-2.

Aucune dilution n'est requise.

Voie d'administration

Les vaccins contre la COVID-19 sont administrés par injection intramusculaire (IM) dans le muscle deltoïde. Le muscle deltoïde du bras est le site d'injection privilégié chez les adolescents et les adultes (à moins que la masse musculaire ne soit pas adéquate ou que la vaccination à ce site ne soit pas possible. Dans ces cas, on peut utiliser la partie antérolatérale de la cuisse).

Pour en savoir plus, voir le chapitre Méthodes d'administration des vaccins dans le GCI, Partie 1 - Information clé sur l'immunisation.

Calendrier

Voir le tableau 3 pour consulter le résumé des calendriers d'immunisation pour les vaccins contre la COVID-19 autorisés.

Tableau 3. Calendrier de vaccination pour la série primaire, par vaccin contre la COVID-19
Produit de vaccination Calendrier d'immunisationNote de bas de page a Intervalle minimal Intervalle autorisé Intervalle optimalNote de bas de page b
Vaccin Comirnaty de Pfizer-BioNTech Calendrier à 2 doses 19 joursNote de bas de page c 21 jours 8 semaines
Vaccin Spikevax de Moderna Calendrier à 2 doses 21 joursNote de bas de page d 28 jours 8 semaines
Vaccin Vaxzevria d'AstraZeneca Calendrier à 2 doses 28 jours De 4 à 12 semaines Au moins 8 semaines
Vaccin contre la COVID-19 de Janssen Calendrier à 1 dose S.O. S.O. S.O.
Note de bas de tableau 3 (a)

Sur la base de données probantes sur une réponse immunitaire réduite à la vaccination contre la COVID-19 chez les personnes modérément à sévèrement immunodéprimées et sur une réponse immunitaire accrue après une troisième dose d'un vaccin à ARNm, le CCNI recommande que les personnes modérément à sévèrement immunodéprimées qui n'ont pas encore été vaccinées reçoivent une série primaire de 3 doses d'un vaccin à ARNm contre la COVID-19 autorisé, et que les personnes modérément à sévèrement immunodéprimées qui ont déjà reçu une série primaire complète se voient proposer une dose supplémentaire d'un vaccin à ARNm COVID-19 autorisé. Voir la réponse rapide du comité consultatif du CCNI : Dose supplémentaire du vaccin contre la COVID-19 chez les personnes immunodéprimées après une série primaire de 1 ou 2 doses.

Retour à la référence de la note de bas de page a

Note de bas de tableau 3 (b)

Un intervalle de huit semaines entre la première et la deuxième dose de vaccin contre la COVID-19 est plus efficace et procure une réponse plus durable que l’intervalle autorisé. Des données probantes émergentes indiquent que des intervalles plus longs entre la première et la deuxième dose de vaccins contre la COVID-19 entraînent une réponse immunitaire plus robuste et durable et une efficacité réelle accrue. Voir ci-dessous l’intervalle optimal entre la première et la deuxième dose pour les vaccins contre la COVID-19 à deux doses. Le CCNI continuera de surveiller les données probantes et à mettre de jour cet intervalle si nécessaire.

Retour à la référence de la note de bas de page b

Note de bas de tableau 3 (c)

La base de cet intervalle minimum est que la conception per-protocole de l'essai clinique du vaccin contre la COVID-19 de Pfizer-BioNTech était de 19-23 jours.

Retour à la référence de la note de bas de page c

Note de bas de tableau 3 (d)

La base de cet intervalle minimum est que la majorité des participants à l'essai clinique du vaccin contre la COVID-19 de Moderna ont reçu la seconde dose 21 à 42 jours après la première, conformément à la fenêtre prédéfinie

Retour à la référence de la note de bas de page d

Pour les calendriers de vaccination mixtes contre la COVID-19, l'intervalle minimal entre les doses devrait être fondé sur l'intervalle minimal du produit utilisé pour la première dose (p.ex., le vaccin contre la COVID-19 de Pfizer-BioNTech devrait être offert au moins 28 jours après le vaccin contre la COVID-19 d'AstraZeneca). Les recommandations sur les intervalles prolongés s'appliquent aux calendriers de vaccination mixtes.

Il a été montré que les personnes immunodéprimées dont le système immunitaire est affaibli en raison d'une maladie ou d'un traitement ont une réponse immunitaire plus faible aux vaccins contre la COVID-19 que dans la population générale. Des études récentes démontrent que les personnes qui sont modérément à sévèrement immunodéprimées et qui n'ont pas répondu ou qui ont eu une réponse immunitaire réduite après la vaccination contre la COVID-19 peuvent avoir une réponse immunitaire accrue après une troisième dose d'un vaccin à ARNm contre la COVID-19. Par conséquent, le CCNI recommande que les personnes modérément à sévèrement immunodéprimées appartenant aux groupes d'âge autorisés qui ont déjà complété la série de vaccins autorisés contre la COVID-19 se voient proposer une dose supplémentaire d'un vaccin autorisé contre la COVID-19 à ARNm. Voir la Réponse rapide du Comité consultatif du CCNI : Dose supplémentaire du vaccin contre la COVID-19 chez les personnes immunodéprimées suivant une série primaire de 1 ou 2 doses.

Voir le chapitre Calendrier d'administration des vaccins du GCI, Partie 1 - Information clé sur l'immunisation pour de plus amples renseignements.

Intervalles optimal entre la première et la deuxième dose pour les vaccins contre la COVID-19 à deux doses

Les intervalles autorisés entre la première et la deuxième dose des vaccins contre la COVID-19 à deux doses actuellement disponibles ont été déterminés sur la base de l’intervalle choisi par le fabricant pour les essais cliniques initiaux. Toutefois, le suivi dans les essais cliniques sur les vaccins contre la COVID-19 a été de courte durée et on ignore la durée de la protection après une seule dose ou les deux lorsque les vaccins ont été autorisés pour la première fois. Étant donné la nécessité d’optimiser l’approvisionnement en vaccins et d’immuniser le plus grand nombre de personnes le plus rapidement possible, et conformément aux principes de l’immunologie qui indiquent qu’un intervalle plus long entre les doses d’amorçage et de rappel d’un vaccin entraîne une réponse meilleure et plus durable, et étayé par des données probantes préliminaires de l’efficacité réelle de la première dose et une modélisation de la population effectuée par l’ASPC, le CCNI a initialement recommandé de porter à jusqu’à 16 semaines l’intervalle avant l’administration de la deuxième dose d’un vaccin contre la COVID-19 (voir la déclaration du comité consultatif du CCNI à l’adresse : Allongement des intervalles entre les doses des vaccins contre la COVID-19 pour optimiser les campagnes de vaccination précoces et la protection des populations au Canada dans le contexte d’un approvisionnement limité en vaccins [archivé] pour un résumé des données probantes).

À la suite des autorisations initiales des vaccins contre la COVID-19, des données sont devenues disponibles qui suggèrent que la protection peut être améliorée si l’Intervalle entre les première et deuxième doses est prolongé au-delà des intervalles recommandés par le fabricant d’origine. Ces données comprennent l’immunogénicité et l’efficacité réelle d’une première dose Note de bas de page 27 Note de bas de page 28 Note de bas de page 29 Note de bas de page 30 Note de bas de page 31 Note de bas de page 32, les données sur l’affaiblissement de l’immunité ou de l’efficacité réelle de la première dose avant la réception de la deuxième dose Note de bas de page 27 Note de bas de page 28 et les données sur l’immunogénicité et l’efficacité réelle après la deuxième dose après un intervalle différé Note de bas de page 33 Note de bas de page 34 Note de bas de page 35 Note de bas de page 36 Note de bas de page 37 Note de bas de page 38 Note de bas de page 39 Note de bas de page 40 Note de bas de page 41. Dans l’ensemble, l’intervalle entre les doses 1 et 2 des vaccins contre la COVID-19 actuels qui semble offrir une protection optimale tout en minimisant le temps de risque d’infection en raison d’une seule dose est de 8 semaines pour les vaccins à ARNm Note de bas de page 35 Note de bas de page 42 et d’au moins 8 semaines pour le vaccin Vaxzevria d’AstraZeneca Note de bas de page 33. Ces intervalles optimaux peuvent changer au fur et à mesure que s’accumulent les données probantes sur la durée de la protection.

Le choix d’utiliser un intervalle plus long pour optimiser la protection devrait être fait en tenant compte de la transmission locale du SRAS-CoV-2 et du degré de risque individuel d’exposition, comme dans le cas des soins de santé de première ligne ou d’autres professions à risque élevé, et si une deuxième dose est nécessaire pour une protection plus précoce, comme pour se protéger contre un variant émergeant Note de bas de page 29 Note de bas de page 30 Note de bas de page 31 Note de bas de page 32. Le Canada a généralement observé une très bonne protection durable contre la maladie sévère entre la première et la deuxième dose pendant les intervalles prolongés et autorisés.

En général, il n’est pas nécessaire de recommencer une série de vaccins interrompue (intervalle plus grand que celui recommandé par les fabricants), l’allongement des intervalles entre les doses ne diminuant pas la concentration finale d’anticorps pour la plupart des produits à doses multiples. Pour de nombreux autres vaccins à doses multiples administrés à l’âge adulte en utilisant d’autres technologies vaccinales, la première dose confère la plus grande partie de la protection à court terme, les doses supplémentaires étant principalement destinées à prolonger la protection à plus long terme

Le CCNI continuera à surveiller les données probantes et à mettre à jour ses recommandations si nécessaire.

Doses de rappel et revaccination

Le CCNI a déterminé qu’il y a un besoin immédiat de recommander l’administration d’une dose de rappel du vaccin contre la COVID-19 aux résidents des ÉSLD et aux personnes âgées vivant dans d’autres milieux de vie collectifs, car ils présentent un risque accru d’infection et de maladie sévère, et en raison de signes indiquant que la protection pourrait ne pas persister aussi longtemps chez ces personnes que dans d’autres populations au Canada. Sur la base de considérations éthiques, des tendances récentes de l’épidémiologie de la COVID-19 et de l’accumulation de données probantes sur la diminution de l’immunogénicité et de l’efficacité réelle du vaccin contre la COVID-19 au fil du temps (résumées dans la réponse rapide du CCNI : Dose de rappel du vaccin contre la COVID-19 chez les résidents des établissements de soins de longue durée (ÉSLD) et les personnes âgées vivant dans d’autres milieux de vie collectifs), le CCNI recommande ce qui suit :

Pour tous les résidents des ÉSLD et les personnes âgées vivant dans d’autres milieux de vie collectifs qui ont reçu une série primaire de vaccins contre la COVID-19 (avec un calendrier homologue ou hétérologue utilisant des vaccins à ARNm ou à vecteur viral) :

Vaccin à ARNm contre la COVID-19

Une dose de rappel d’un vaccin à ARNm autorisé contre la COVID-19 devrait être proposée à un intervalle recommandé d’au moins six mois après la fin de la série primaire. Le consentement éclairé pour une dose de rappel devrait comprendre une discussion sur les risques et les avantages connus et inconnus, notamment le statut d’utilisation non indiquée de la recommandation du CCNI.

(Forte recommandation du CCNI)

Le vaccin contre la COVID-19 d’AstraZeneca/COVISHIELD

Une dose de rappel d’un vaccin à vecteur viral autorisé ne devrait être envisagée que lorsque les autres vaccins autorisés contre la COVID-19 sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de thrombocytopénie thrombotique immunitaire induite par le vaccin (TTIV), ainsi que le besoin de demander des soins médicaux immédiats en cas d’apparition de symptômes.

(Recommandation discrétionnaire du CCNI)

Compte tenu de la pandémie de COVID-19 en cours et de l’émergence de VP contre lesquels l’efficacité réelle du vaccin pourrait être diminuée, des doses supplémentaires de vaccin pourraient être nécessaires dans d’autres populations.

Le CCNI continuera à surveiller les données probantes et à mettre à jour ses recommandations si nécessaire.

Interchangeabilité

Interchangeabilité des vaccins autorisés contre la COVID-19 dans une série de vaccins lorsque la première dose est comme suit:

Vaccin à ARNm contre la COVID-19

Le CCNI recommande que, s'il est facilement disponible*, le même produit vaccinal à ARNm contre la COVID-19 soit proposé pour la dose suivante d'une série de vaccins commencée avec un vaccin à ARNm contre la COVID-19. Toutefois, lorsque le même vaccin à ARNm contre la COVID-19 n'est pas facilement disponible*, ou est inconnu, un autre vaccin à ARNm contre la COVID-19 recommandé pour une utilisation dans ce groupe d'âge peut être considéré comme étant interchangeable et devrait être proposé pour compléter la série vaccinale. La dose précédente devrait être comptée et la série n'a pas besoin d'être recommencée.

(Forte recommandation du CCNI)

* facilement disponible = facile d'accès au moment de la vaccination sans délai ni gaspillage de vaccin

Vaccin d'AstraZeneca/COVISHIELD contre la COVID-19

Le CCNI recommande que, même si un vaccin contre la COVID-19 d'AstraZeneca/COVISHIELD ou un produit vaccinal à ARNm contre la COVID-19 peut être proposé pour la dose suivante d'une série de vaccins commencée avec un vaccin contre la COVID-19 d'AstraZeneca/COVISHIELD, un produit d'ARNm contre la COVID-19 est privilégié comme dose ultérieure, en raison de données probantes émergentes, y compris la possibilité d'une meilleure réponse immunitaire et l'innocuité des calendriers hétérologues. Quel que soit le produit proposé, une série complète de deux doses est importante pour la protection; la dose précédente devrait être comptée et la série n'a pas besoin d'être recommencée. Les personnes qui reçoivent deux doses du vaccin d'AstraZeneca/COVISHIELD sont considérées comme étant protégées et n'ont pas besoin d'un autre vaccin.

(Recommandation discrétionnaire du CCNI)

Aucune donnée n'existe actuellement sur l'interchangeabilité des vaccins à ARNm contre la COVID-19. Toutefois, il n'y a aucune raison de croire que l'achèvement d'une série de vaccins à ARNm avec un autre produit à ARNm autorisé entraînera des problèmes d'innocuité supplémentaires ou une déficience de protection.

Des données probantes émergentes indiquent que les calendriers mixtes de vaccins à vecteur viral et à ARNm contre la COVID-19 avec des intervalles de dosage entre 4 et 12 semaines ont des profils d'innocuité acceptables qui peuvent être associés à une réactogénicité systémique accrue à court terme, qui est potentiellement augmentée avec des intervalles plus courts entre les vaccins. Les données probantes actuelles indiquent également que les réponses immunitaires humorales et cellulaires (y compris les réponses contre les VP) après la première dose du vaccin d'AstraZeneca augmentent après l'administration du vaccin de Pfizer-BioNTech comme deuxième dose avec un intervalle de 8 à 12 semainesNote de bas de page 43, et sont équivalentes ou supérieures aux réponses immunitaires suivant un calendrier homologue à deux doses du vaccin d'AstraZeneca ou de Pfizer.

En raison du risque de TTIV associé à la deuxième dose du vaccin d'AstraZeneca/COVISHIELD, proposer un autre produit ayant un profil d'innocuité plus acceptable et un profil d'immunogénicité comparable attendu, tout en permettant aux personnes de faire un choix éclairé est éthiquement justifiable. Cela devrait entraîner une accessibilité et une acceptabilité accrues pour les personnes à qui on a initialement proposé une première dose du vaccin d'AstraZeneca/COVISHIELD, y compris celles qui sont les plus à risque de contracter la COVID-19. Compte tenu du risque de la TTIV associé au vaccin de Janssen, il ne devrait pas être proposé aux personnes ayant reçu une première dose du vaccin d'AstraZeneca/COVISHIELD et préférant recevoir un autre produit pour leur deuxième dose. Pour de plus amples détails sur la TTIV, voir Thrombose avec thrombocytopénie suivant l'administration de vaccins à vecteur viral contre la COVID-19.

Pour les calendriers de vaccination mixtes contre la COVID-19, l'intervalle minimal entre les doses devrait être fondé sur l'intervalle minimal du produit utilisé pour la première dose (p.ex., le vaccin contre la COVID-19 de Pfizer-BioNTech devrait être offert au moins 28 jours après le vaccin contre la COVID-19 d'AstraZeneca). Les recommandations sur les intervalles prolongés s'appliquent aux calendriers de vaccination mixtes. Voir le Tableau 3 pour de plus amples renseignements sur les intervalles recommandés pour les vaccins contre la COVID-19 autorisés.

Les recommandations concernant l'interchangeabilité des vaccins contre la COVID-19 sont conformes aux orientations actuelles du CCNI sur l'interchangeabilité des vaccins utilisés pour la même indication et contenant des antigènes comparables. Conformément aux principes de base de vaccinologie Note de bas de page 44, on s'attend à ce que la combinaison de différents vaccins contre la COVID-19 qui induisent une réponse immunitaire contre la protéine de spicule du SRAS-CoV-2 conduira à une réponse immunitaire robuste. Tous les vaccins contre la COVID-19 actuellement autorisés au Canada utilisent la protéine de spicule du virus SRA-CoV-2 comme antigène. La protéine de spicule produite par les vaccins à ARNm (Pfizer-BioNTech, Moderna) et de Janssen est stabilisée dans la conformation de préfusion tandis que le vaccin d'AstraZeneca produit une protéine de spicule de type sauvage dans diverses conformations, y compris la préfusion.

De très rares cas de myocardite (inflammation du muscle cardiaque) et de péricardite (inflammation de la muqueuse autour du cœur) suivant l'administration de vaccins à ARNm contre la COVID-19 ont été signalés au Canada et à l'échelle internationale, le plus souvent chez les adolescents et les jeunes adultes de moins de 30 ans, plus souvent chez les hommes que chez les femmes et plus souvent après la deuxième dose d'une série homologue de deux doses comparativement à la première dose. La majorité des cas sont bénins et les personnes récupèrent rapidement. Pour de plus amples renseignements sur la myocardite/péricardite, voir Myocardite ou péricardite suivant l'administration d'un vaccin à ARNm contre la COVID-19.

La surveillance active de l'efficacité réelle et l'innocuité d'un calendrier mixte sont importantes, et un enregistrement précis des vaccins reçus sera essentiel. Le CCNI continuera à surveiller les données probantes et à mettre à jour ses recommandations si nécessaire. Pour de plus amples renseignements sur les données probantes relatives aux calendriers de vaccination mixtes contre la COVID-19, voir la Réponse rapide du CCNI : Interchangeabilité des vaccins autorisés contre la COVID-19 (archivée).

Conseils après la vaccination

Le CCNI recommande de ne pas systématiquement utiliser d'analgésiques ou d'antipyrétiques prophylactiques oraux (p. ex., l'acétaminophène ou l'ibuprofène) avant ou au moment de la vaccination, mais leur utilisation ne constitue pas une contre-indication à la vaccination. Ces médicaments peuvent être envisagés pour la gestion des ÉI (p. ex., la douleur ou la fièvre, respectivement), s'ils surviennent après la vaccination.

Des analgésiques et des antipyrétiques ont été utilisés dans les essais sur les vaccins contre la COVID-19 pour la gestion de la douleur ou de la fièvre après la vaccination. Il n'existe actuellement aucune donnée probante sur le bienfait de l'administration d'analgésiques oraux pour la prévention de la douleur causée par l'injection du vaccin ou des réactions systémiques.

Tous les patients devraient recevoir l'instruction de se faire soigner s'ils présentent des signes ou des symptômes de réaction allergique après la fin de leur période d'observation et s'ils ont quitté la clinique ou le centre de vaccination.

Toute personne vaccinée qui présente des symptômes compatibles avec la COVID-19 devrait subir un test de dépistage du virus du SRAS-CoV-2 pour documenter la survenue de l'infection, particulièrement face à l'émergence des VP. Le séquençage génétique devrait être fortement pris en compte pour les personnes infectées par le SRAS-CoV-2 après la vaccination avec une ou deux doses d'un vaccin contre la COVID-19.

Toute personne recevant un vaccin à vecteur viral contre la COVID-19 devrait être informée du récent signalement de l'ÉI reconnu lié au STT, et être avisée de consulter immédiatement un médecin si elle développe des symptômes dans les 42 jours suivant la vaccination)Note de bas de page 45. Il faut être particulièrement attentif aux symptômes suivants : essoufflement, douleur à la poitrine, œdème des jambes, douleur abdominale persistante, symptômes neurologiques incluant l'apparition soudaine de maux de tête ou de vision trouble aggravants sévères ou persistants, ecchymose à l'épiderme (ailleurs qu'au site de l'injection) ou pétéchies. De plus, les professionnels de la santé devraient être au courant de la TTIV, notamment le diagnostic et le traitement (voir les orientations nationales de Thrombose Canada [en anglais seulement]).

Voir le chapitre Méthodes d'administration des vaccins dans le GCI, Partie 1 - Information clé sur l'immunisation pour de plus amples renseignements sur la période avant et après la vaccination.

Dépistage sérologique

Aucun test sérologique n'est nécessaire avant ou après l'immunisation par le vaccin contre la COVID-19.

Conditions d'entreposage

Vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19

Flacons congelés avant utilisation

Le vaccin contre la COVID-19 de Pfizer-BioNTech peut être conservé à de très basses températures des -90 °C à -60 °C et à l'abri de la lumière, dans l'emballage d'origine, jusqu'au moment de l'utilisation.

Voir les directives de reglaçage (accessible à Pfizer-BioNTech COVID-19 Vaccine, en anglais seulement) pour les instructions concernant l'utilisation du contenant thermique d'origine du fabricant pour l'entreposage temporaire.

Les flacons peuvent également être entreposés entre -25 °C et -15 °C pendant deux semaines au maximum. Les flacons doivent être conservés congelés et à l'abri de la lumière, dans les cartons d'origine, jusqu'au moment de leur utilisation. Les flacons entreposés entre -25 °C et -15 °C pendant un maximum de 2 (deux) semaines peuvent être remis une fois dans les conditions d'entreposage recommandées de -90 °C à -60 °C. La durée totale cumulée d'entreposage des flacons entre -25 °C et -15 °C devrait faire l'objet d'un suivi et ne devrait pas dépasser 2 (deux) semaines.

Flacons décongelés, non percés (avant dilution)

Le vaccin contre la COVID-19 de Pfizer-BioNTech peut être décongelé et conservé entre +2 °C et +8 °C pendant (1) un mois au maximum ou à température ambiante (jusqu'à +25 °C) pendant 2 heures au maximum. Pendant l'entreposage, réduisez au minimum l'exposition à la lumière ambiante et évitez l'exposition à la lumière directe du soleil et aux rayons ultraviolets. Les flacons décongelés peuvent être manipulés à la lumière ambiante.

Ne recongelez pas les flacons décongelés.

Flacons décongelés, percés (après dilution)

Le vaccin contre la COVID-19 de Pfizer-BioNTech doit être entreposé entre +2 °C et +25 °C et utilisé dans les 6 heures suivant la dilution. Pendant l'entreposage, réduisez au minimum l'exposition à la lumière ambiante et évitez l'exposition à la lumière directe du soleil et aux rayons ultraviolets. Après la dilution, les flacons de vaccin peuvent être manipulés à la lumière ambiante.

Vaccin Spikevax de Moderna contre la COVID-19

Flacons congelés avant utilisation

Le vaccin contre la COVID-19 de Moderna devrait être conservé à des températures de -25 ºC à - 15 ºC et à l'abri de la lumière dans son emballage d'origine. Ne pas le stocker sur de la glace sèche ou à une température inférieure à -40 ºC.

Flacons décongelés, non percés

S'il n'est pas percé, le vaccin contre la COVID-19 de Moderna peut être décongelé et conservé à une température comprise entre +2 °C et +8 °C pendant 30 jours au maximum, ou à une température comprise entre +8 °C et +25 ºC pendant 24 heures au maximum.

Ne recongelez pas les flacons décongelés.

Flacons décongelés, percés

Le vaccin contre la COVID-19 de Moderna peut être entreposé entre +2 ºC et +25 ºC doit être éliminé après les 24 heures suivant la dilution.

Vaccin Vaxzevria d'AstraZeneca contre la COVID-19

Flacon multidose non ouvert

Le vaccin d'AstraZeneca peut être conservé entre +2 °C et +8 °C et protégé de la lumière dans son emballage d'origine. Ne pas congeler.

Flacon multidose ouvert

Après la première ouverture, la stabilité chimique et physique en cours d'utilisation a été démontrée à partir du moment où le flacon est perforé jusqu'au moment de l'administration, pendant un maximum de 6 heures à température ambiante (jusqu'à +30 °C) ou pendant 48 heures dans un réfrigérateur (+2 °C à +8 °C).

Le flacon peut être réfrigéré à nouveau, mais la durée de conservation cumulée à température ambiante ne doit pas dépasser 6 heures, et la durée de conservation cumulée totale ne doit pas dépasser 48 heures. Après ce délai, le flacon doit être jeté.

Vaccin contre la COVID-19 de Janssen

Flacon multidose non ouvert

Le vaccin de Janssen peut être conservé entre 2 ºC et 8 ºC et il est protégé de la lumière dans son emballage d'origine. Ne pas congeler.

Flacon multidose percé

Après le prélèvement de la première dose, le flacon/seringue rempli(e) peut être conservé(e) à 2 °C jusqu'à 8 °C pendant 6 heures au plus ou à température ambiante (25 °C au maximum) pendant 3 heures au plus, après la première perforation du flacon. Jeter si le vaccin n'est pas utilisé dans ce délai.

Pour de plus amples renseignements, consultez le dépliant du produit ou l'information contenue dans la monographie de produit disponible dans la Base de données sur les produits pharmaceutiques de Santé Canada. Voir le chapitre Manipulation et entreposage des agents immunisants du GCI, Partie 1 - Information clé sur l'immunisation pour de plus amples renseignements généraux.

Administration concomitante d'autres vaccins

Le CCNI recommande que les vaccins contre la COVID-19 puissent être administrés en même temps ou à tout moment avant ou après d'autres vaccins*. (Recommandation discrétionnaire du CCNI)

* y compris les vaccins vivants, non vivants, avec ou sans adjuvant

Depuis que chaque vaccin contre la COVID-19 a été autorisé au Canada, les données probantes sur l'efficacité potentielle/réelle, l'immunogénicité et l'innocuité de ces vaccins se sont accumulées. Compte tenu des nombreuses données et de  l'expérience acquises sur l'administration concomitante d’autres vaccins pour les vaccinations systématiques, le CCNI a conclu qu'il  n'est plus nécessaire d’adopter une approche de précaution consistant à séparer le moment de l’administration des vaccins contre la COVID-19 et d’autres vaccins, et recommande que les vaccins contre la COVID-19 puissent être administrés en même temps (c’est-à-dire le même jour) ou n’importe quand avant ou après, que les autres vaccins (qu’ils soient vivants, non vivants, avec ou sans adjuvant). L'administration concomitante de vaccin contre la COVID-19 avec d’autres vaccins facilitera les programmes de vaccination contre la grippe pendant les mois l'automne et en hiver, et d'autres programmes de vaccination systématique qui ont pu être retardés en raison de la pandémie de COVID-19.

Le consentement éclairé devrait inclure une discussion sur les avantages et les risques compte tenu des données limitées disponibles sur l'administration de vaccins contre la COVID-19 en même temps que d'autres vaccins, ou peu avant ou après. Des études visant à évaluer l'innocuité et l’immunogénicité  de l'administration concomitante des vaccins contre la COVID-19 avec d'autres vaccins sont en cours.

On ne sait pas actuellement si la réactogénicité des vaccins contre la COVID-19 est augmentée avec l'administration concomitante d'autres vaccins. Bien qu'aucun problème d'innocuité spécifique n'ait été identifié pour divers schémas posologiques d'administration concomitante pouvant survenir, il existe un potentiel de réactogénicité accrue avec l'administration concomitante de vaccins contre la COVID-19 avec d'autres vaccins, en particulier ceux connus pour être plus réactogènes, tels que les vaccins avec adjuvant plus récents.

Si plusieurs types de vaccins sont administrés lors d'une même visite, ils devraient être administrés à différents sites d'injection à l'aide de matériel d'injection distinct.

Le CCNI continuera à surveiller les données probantes et à mettre à jour les recommandations si nécessaire.

Voir le chapitre Calendrier d'administration des vaccins du GCI, Partie 1 - Information clé sur l'immunisation pour de plus amples renseignements sur l'administration simultanée de vaccins.

Innocuité des vaccins et effets secondaires suivant l'immunisation (ESSI)

En raison des limites dans le nombre de participants et de la durée du suivi dans les essais cliniques sur la COVID-19, les données probantes à moyen et long termes sur l'innocuité des vaccins sont limitées. Toutefois, la pharmacovigilance des vaccins autorisés est en cours et les signalements en matière d'innocuité dans le monde entier sont repérés et communiqués globalement. Les essais cliniques des vaccins contre la COVID-19 autorisés excluaient les personnes ayant des antécédents de réactions indésirables sévères associés à un vaccin ou de réaction allergique sévère (p. ex., anaphylaxie) à l'un ou l'autre des composants du vaccin. Toutefois, des études sont en cours.

La section suivante présente les principales données sur l'innocuité et sur les ESSI des vaccins contre la COVID-19 autorisés. Pour plus de détails concernant la conception des essais, y compris la population étudiée et la durée du suivi, et l'innocuité des vaccins dont l'utilisation est autorisée et disponible au Canada, voir les résumés des données probantes figurant à l'Annexe A (pour le vaccin contre la COVID-19 de Pfizer-BioNTech), à l'Annexe B (pour le vaccin contre la COVID-19 de Moderna), à l'Annexe C (pour le vaccin contre la COVID-19 d'AstraZeneca) et à l'Annexe D (pour le vaccin contre la COVID-19 de Janssen). Voir l'Annexe E pour un résumé de la fréquence des ESSI pour les différents produits de vaccination contre la COVID-19.

Voir la Partie 2 - Innocuité des vaccins du GCI pour consulter les définitions des ESSI et des renseignements supplémentaires d'ordre général.

Évènements indésirables courants et très courants

Les ÉI courants sont définis comme étant ceux qui se produisent chez 1 % à moins de 10 % des personnes vaccinées; les ÉI très courants se produisent chez 10 % ou plus des personnes vaccinées. Veuillez consulter l'Annexe E pour un résumé des ÉIs identifiés dans les versions d'essais cliniques des vaccins contre la COVID-19 autorisés et disponibles.

Réactions locales

La douleur au point d'injection est très courante après l'administration des vaccins contre la COVID-19 actuellement autorisés. Plus de 40 % des sujets vaccinés ont ressenti une douleur au point d'injection. Les rougeurs et les gonflements sont courants ou très courants après l'administration. Un gonflement axillaire localisé et une sensibilité étaient des ÉI sollicités dans le cadre de l'essai clinique du vaccin contre la COVID-19 de Moderna et étaient très fréquents après l'administration de ce vaccin. Les ÉI localisés sont généralement légers ou modérés et se résorbent dans les quelques jours suivant la vaccination. Pour les vaccins à ARNm contre la COVID-19 autorisés, la douleur au point d'injection était légèrement plus fréquente dans les groupes d'âge autorisés plus jeunes, y compris les adolescents de 12 à 15 ans (vaccin contre la COVID-19 de de Pfizer-BioNTech) et de 12 à 17 ans (vaccin contre la COVID-19 de Moderna), par rapport aux adultes plus âgés. Pour le vaccin contre la COVID-19 d'AstraZeneca, les réactions locales ont été plus légères et moins fréquentes après la deuxième dose de vaccin que la première dans tous les groupes d'âge. Des fréquences semblables de réactions locales ont été signalées dans l'ensemble des groupes d'âge après l'administration du vaccin de Janssen.

Réactions systémiques

La fatigue, les maux de tête, les douleurs musculaires, les frissons et les douleurs articulaires sont tous très courants après l'administration d'un des vaccins contre la COVID-19 actuellement autorisés. La fièvre était très courante après l'administration de la deuxième dose des vaccins à ARNm contre la COVID-19 et courante après toute dose de vaccins à vecteur viral. Plus du quart des sujets vaccinés ont ressenti des maux de tête ou de la fatigue après avoir reçu l'une ou l'autre dose. Les ÉI systémiques sont généralement d'intensité légère ou modérée et se résorbent dans les quelques jours suivant la vaccination. Pour les vaccins à ARNm contre la COVID-19, les réactions systémiques sont plus fréquentes après la deuxième dose de vaccin et dans les groupes d'âge autorisés plus jeunes, y compris les adolescents de 12 à 15 ans (vaccin contre la COVID-19 de Pfizer-BioNTech). Pour le vaccin contre la COVID-19 d'AstraZeneca, les réactions systémiques sont plus légères et moins fréquentes après la deuxième dose de vaccin comparativement à celles de la première dans tous les groupes d'âge. Les fréquences de réactions systémiques qui ont été signalées après l'administration du vaccin de Janssen étaient semblables d'un groupe d'âge à l'autre.

Évènements indésirables suivant la deuxième dose contre la COVID-19 chez les personnes antérieurement infectées par le SRAS-CoV-2

Il existe des données probantes sur l'innocuité des doses de rappel, à partir d'études observationnelles Note de bas de page 46 et cliniques Note de bas de page 47 Note de bas de page 48 Note de bas de page 49. La fréquence des ÉI systémiques sollicités et non sollicités chez les personnes antérieurement infectées par le SRAS-CoV-2 était légèrement plus élevée par rapport à la population qui n'avait pas contracté le SRAS-CoV-2, principalement chez les adultes plus jeunes. Toutefois, aucune augmentation de la fréquence des ÉI plus sévères n'a été constatée dans cette population. Deux études observationnelles comprenaient moins de 100 patients ayant des symptômes persistants d'infections antérieures du SRAS-CoV-2 (COVID de longue durée). Dans ce sous-groupe, l'administration d'un vaccin à ARNm ou à vecteur viral contre la COVID-19 n'était pas associée à une aggravation des symptômes de COVID-19 de longue durée ni à une réactogénicité accrue après la vaccination.

Évènements indésirables peu fréquents, rares et très rares

Des ÉI peu fréquents se produisent chez 0,1 % à moins de 1 % des personnes vaccinés. Des ÉI rares et très rares se produisent chez 0,01 % à moins de 0,1 %, respectivement, et chez moins de 0,01 % des sujets vaccinés. La probabilité de détection d'effets secondaires très rares dans les essais cliniques est faible, compte tenu de la taille de la population des essais cliniques et de la durée du suivi; par conséquent, une pharmacovigilance continue est essentielle.

À ce jour, les données disponibles n'indiquent pas que la vaccination des individus n'ayant jamais été infectés par le SRAS-CoV-2 par les vaccins contre la COVID-19 autorisés provoquera une aggravation ou une modification de la maladie en cas d'infection ultérieure par le SRAS-CoV-2 (p. ex., maladie aggravée par le vaccin); toutefois, des études supplémentaires sont nécessaires.

La lymphadénopathie était un évènement sollicité dans les essais cliniques de Moderna mais elle ne l'était pas dans les autres essais de vaccins contre la COVID-19 autorisés (voir l'Annexe E). Elle a rarement été signalée après l'administration des vaccins contre la COVID-19 de Pfizer-BioNTech, d'AstraZeneca et de Janssen.

Aucun autre ÉI sollicité rare ou très rare n'a été signalé à ce jour parmi les participants vaccinés pendant les essais cliniques.

Thrombose et thrombocytopénie suivant l'administration des vaccins à vecteur viral contre la COVID-19

De très rares cas de graves caillots sanguins (à des sites inhabituels comme la thrombose des sinus veineux cérébraux (CVST), la thrombose veineuse splanchnique et la thrombose artérielle) associés à la thrombocytopénie ont été signalés globalement après l'administration des vaccins à vecteur viral contre la COVID-19. La terminologie de ce syndrome a évolué depuis que le signalement en matière d'innocuité a été détecté. Le Système canadien de surveillance des effets secondaires suivant l'immunisation (SCSESSI), emploie la définition de cas pour le syndrome de thrombose avec thrombocytopénie (STT)Note de bas de page 50 afin de détecter ces évènements rares au Canada. Le cas dont le test aux anticorps anti-PF4 (anticorps dirigés contre les complexes du facteur plaquettaire 4-polyanionique) est positif représentent un sous- groupe des événements STT et sont désignés en médecine cliniquement sous le nom de thrombocytopénie immunitaire prothrombotique induite par le vaccin (TIPIV) ou de thrombocytopénie thrombotique immunitaire induite par le vaccin (TTIV).

Des déclarations de cas et des séries de cas à l'échelle internationale ont signalé que les cas dont le test aux anticorps anti-PF4 est positif pourraient être associés de manière causale aux vaccins à vecteur viralNote de bas de page 51 Note de bas de page 52 Note de bas de page 53 Note de bas de page 54 Note de bas de page 55 Note de bas de page 2. Des données probantes sur l'association entre le STT suivant l'immunisation et l'administration des vaccins à vecteur viral contre la COVID-19 sont en évolution. Toutefois, de multiples systèmes à l'échelle internationale ont des données précoces qui pointent systématiquement vers une association entre les vaccins à vecteur adénovirus COVID-19 et le STT, y compris aux É.-U., au R.-U. et en Europe. Le mécanisme exact par lequel les vaccins à vecteur viral contre la COVID-19 peuvent déclencher ce syndrome est encore en cours d'investigation mais ces vaccins à vecteur viral semblent déclencher une présentation semblable à la thrombose spontanée induite par l'héparine / thrombose auto-immune induite par l'héparine, où les anticorps dirigés contre les complexes du facteur plaquettaire 4 (PF4) polyanionique suscitent l'activation des plaquettes, ce qui cause une thrombose et une thrombocytopénieNote de bas de page 51. Les caillots associés à la TTIV peuvent être agressifs et difficiles à traiterNote de bas de page 56. Voir les orientations de Thrombose Canada sur la prise en charge clinique de la TTIV (en anglais seulement). Ils ne peuvent être gérés de la même façon que les caillots liés aux contraceptifs, à l'immobilité ou aux vols à longue distance, et ont un mécanisme d'action biologique complètement différent.

Les cas de TTIV se produisent généralement entre 4 et 28 jours après l'administration d'un vaccin à vecteur viral contre la COVID-19, mais les patients devraient être suivis jusqu'à 42 joursNote de bas de page 57 suivant la vaccination. La fréquence de la TTIV est estimée à 1 cas par 26 000 et à 1 cas par 100 000 personnes ayant reçu une première dose du vaccin contre la COVID-19 d'AstraZeneca/COVISHIELD. Au 1 juin 2021, l'ASPC a estimé que le taux de TTIV au Canada était de 1 sur 73 000 doses administrées. Toutefois, au fur et à mesure que les recherches se poursuivent, ce taux pourrait s'élever à 1 par 50 000 personnes. Pour des mises à jour sur le nombre de cas de STT et de TTIV au Canada, voir la section sur « les ÉIG et les ÉI non graves signalés » dans la Déclaration des effets secondaires signalés après la vaccination contre la COVID-19 au Canada. La fréquence de la TTIV après l'administration d'une deuxième dose d'un vaccin d'AstraZeneca serait actuellement d'environ 1 par 520 000 personnes vaccinées avec une deuxième dose, sur la base des données de surveillance sur l'innocuité des vaccins au R.-U., mais la situation continue d'évoluerNote de bas de page 2. Le taux de fatalité des cas de TTIV varie également entre les pays et se situe entre 20 et 50 %. De nombreux cas ont été constatés avec une morbidité à long terme grave, y compris des dommages neurologiques. Des signalements de cas de TTIV après l'administration du vaccin de Janssen émergent actuellement des É.-U. En date du 8 septembre 2021, 46 cas ont été confirmés après l'administration de plus de 14,5 millions de doses du vaccin de Janssen aux É.-U., et d'autres font l'objet d'une enquêteNote de bas de page 58. Pour de plus amples renseignements, voir l'Annexe C, l'Annexe D, l'Annexe F et la réponse rapide du CNNI : Utilisation recommandée du vaccin contre la COVID-19 d'AstraZeneca chez les jeunes adultes.

Myocardite ou péricardite suivant l'administration d'un vaccin à ARNm contre la COVID-19

De rares cas de myocardite (inflammation du muscle cardiaque) et de péricardite (inflammation de la muqueuse autour du cœur) suivant l'administration de vaccins à ARNm contre la COVID-19 Note de bas de page 59 ont été signalés au Canada et à l'échelle internationale, notamment, en IsraëlNote de bas de page 39, aux É.-U, Note de bas de page 61 en AustralieNote de bas de page 55 et en EuropeNote de bas de page 2 Note de bas de page 62 Note de bas de page 63.

Les symptômes de myocardite/péricardite peuvent comprendre l'essoufflement, une douleur thoracique ou la sensation d'un rythme cardiaque rapide ou anormal. Les symptômes peuvent s'accompagnés de résultats anormaux (par exemple, électrocardiogramme, taux élevé de troponines sériques, échocardiogramme).

Des cas internationaux sont régulièrement signalés :

Bien que le suivi soit en cours, les données disponibles indiquent que la majorité des personnes touchées ont bien répondu au traitement conservateur et ont tendance à se rétablir rapidement.

Les données de surveillance du Système canadien de surveillance des effets secondaires suivant l’immunisation (SCSESSI) combinées à celles de la base de données de Canada Vigilance (BDCV) indiquent un nombre plus élevé de cas de myocardite/péricardite après l’administration de vaccins à ARNm contre la COVID-19 dans des groupes d’âge plus jeunes (principalement après la deuxième dose) que ce à quoi l’on s’attendrait normalement Note de bas de page 4. Les analyses préliminaires suggèrent un taux non ajusté plus élevé de cas de myocardite/péricardite signalés après l’administration du vaccin de Moderna par rapport à celui de Pfizer-BioNTech, mais l’analyse se poursuit.

Les données de surveillance passive sur l’innocuité des vaccins de l’Ontario suggèrent également une différence propre au produit dans le risque de myocardite/péricardite après l’administration des vaccins à ARNm, en particulier après la deuxième dose Note de bas de page 64. Le taux de myocardite/péricardite propre au produit après la deuxième dose était significativement plus élevé pour le vaccin de Moderna que pour celui de

Pfizer-BioNTech chez les hommes de 18 à 24 ans. Des analyses supplémentaires sont en cours.

De la même façon, des taux non ajustés plus élevés de cas de myocardite ou de péricardite ont été signalés après l’administration du vaccin de Moderna par rapport à celui de Pfizer-BioNTech dans d’autres pays dont la Suisse Note de bas de page 63 et le Royaume-Uni Note de bas de page 2. Une analyse réalisée aux É-U. chez des personnes âgées de 12 à 39 ans a montré que le taux de myocardite ou de péricardite confirmée par un graphique était plus de deux fois supérieur après l’administration de la deuxième dose du vaccin de Moderna par rapport à celui de Pfizer-BioNTech, mais les taux signalés n’étaient pas statistiquement significativement différents et les enquêtes se poursuivent Note de bas de page 65.

Les enquêtes sur les mécanismes d’action possibles qui pourraient expliquer l’association entre la myocardite ou la péricardite et les vaccins à ARNm, la détermination des facteurs de risque, y compris les antécédents de myocardite, et l’incidence potentielle de l’intervalle entre les doses de vaccin se poursuivent toutes au Canada et à l’étranger Note de bas de page 62 Note de bas de page 65 Note de bas de page 66 Note de bas de page 67.

Il existe de nombreuses causes potentielles de myocardite et de péricardite, y compris des causes infectieuses et non infectieuses, et la sévérité de la maladie peut être variable. La myocardite peut également survenir comme complication chez les personnes infectées par le SRAS-CoV-2. Une étude rétrospective récente menée aux É.-U. a révélé que les taux de myocardite après une infection confirmée par la COVID-19 pouvaient atteindre jusqu’à 450 cas par million d’infections chez les jeunes hommes âgés de 12 à 17 ans Note de bas de page 68.

Dans le cadre des efforts continus en matière d'innocuité des vaccins contre la COVID-19, l'ASPC et SC surveillent de près la myocardite et la péricardite grâce à des systèmes canadiens de surveillance de l'innocuité passive et active et à la collaboration avec les autorités sanitaires provinciales et territoriales canadiennes, les fabricants et les organismes de réglementation internationaux.

Le CCNI continue à examiner les renseignements au fur et à mesure qu'ils deviennent disponibles et fera les démarches appropriées si nécessaire.

Voir le rapport hebdomadaire sur les ESSI de l'ASPC pour de plus amples renseignements sur le nombre de cas signalés au Canada. Voir également la Déclaration des effets secondaires suivant l'immunisation (ESSI) au Canada et la définition de cas de la myocardite/péricardite récemment élaborée par la Brighton Collaboration pour de plus amples renseignements sur la préparation et la soumission des déclarations d'ESSI.

Syndrome de fuite capillaire après l'administration du vaccin Vaxzevria d'AstraZeneca contre la COVID-19

De très rares cas de SFC ont été signalés après l'administration du vaccin contre la COVID-19 d'AstraZenecaNote de bas de page 2 Note de bas de page 3 Note de bas de page 62. Le SFC est une maladie grave très rare qui provoque une fuite de liquide des petits vaisseaux sanguins (capillaires), entraînant un gonflement principalement dans les bras et les jambes, une pression artérielle basse, un épaississement du sang et de faibles taux sanguins d'albumine (une protéine sanguine importante). Les symptômes sont souvent associés à une sensation de faiblesse (attribuable à une pression artérielle basse).

Au Canada, au 10 septembre 2021, deux cas de SFC avait été confirméNote de bas de page 69 parmi plus de 2 750 000 doses de vaccins d'AstraZeneca/COVISHIELD administrées. Au 27 mai 2021, six cas de SFC chez les personnes ayant reçu le vaccin contre la COVID-19 d'AstraZeneca avaient été examinés par le comité d'évaluation des risques en matière de pharmacovigilance (PRAC) de l'Agence européenne des médicaments (EMA) parmi 78 millions de doses du vaccin contre la COVID-19 d'AstraZeneca administrées au Royaume-Uni (R.-U.) et dans l'Espace économique européen/Union européenne (EEE/UE). Trois des personnes touchées avaient des antécédents de SFC et une est décédée par la suite. En date du 21 juin 2021, trois cas de SFC chez des personnes ayant reçu le vaccin contre la COVID-19 de Janssen avaient été examinés par le Comité d’évaluation des risques en pharmacovigilance de l’EMA parmi plus de 18 millions de doses de vaccin contre la COVID-19 de Janssen administrées dans le monde. L’une des personnes touchées avait des antécédents de SFC et deux sont décédées par la suite Note de bas de page 70. Après l’achèvement de ces examens, le Comité d’évaluation des risques en pharmacovigilance de l’EMA a conclu que les personnes ayant des antécédents de SFC ne devraient pas être immunisées avec les vaccins contre la COVID-19 d’AstraZeneca ou de Janssen.

L'ASPC et SC surveillent de près le SFC en ce qui concerne le vaccin d'AstraZeneca. SC travaille en étroite collaboration avec les fabricants pour s'assurer que l'étiquetage reflète les renseignements pertinents.

Les cas de SFC après la vaccination contre la COVID-19 au Canada devraient être signalés pour faciliter la surveillance de l'innocuité des vaccins. Voir la Déclaration des effets secondaires suivant l'immunisation (ESSI) au Canada pour de plus amples renseignements sur la façon de remplir et de soumettre les déclarations d'ESSI.

Voir la Section IV.10 Contre-indications et précautions pour de plus amples directives sur le SFC comme une contre-indication au vaccin contre la COVID-19 d'AstraZeneca/COVISHIELD.

Syndrome de Guillain-Barré après l'administration des vaccins autorisés contre la COVID-19

Le SGB est un trouble neurologique à médiation immunitaire rare mais potentiellement grave qui entraîne une douleur ou un engourdissement, une faiblesse musculaire et une paralysie dans les cas sévères. La plupart des gens se rétablissent complètement du SGB, mais certains ont des déficits ou des symptômes résiduels et des cas mortels rares peuvent survenir. Le SGB peut résulter de différentes causes, y compris des infections, et survient plus souvent chez les hommes et les personnes âgées de 50 ans ou plus. Des cas ont été rarement rapportés après l'administration de certains vaccins. À ce jour, aucun risque accru de SGB n'a été identifié après l'administration des vaccins à ARNm autorisés contre la COVID-19 (de Pfizer-BioNTech et de Moderna)Note de bas de page 5 Note de bas de page 6 Note de bas de page 71. Les investigations ont identifié un risque accru de SGB après l'administration des vaccins à vecteur viral autorisés contre la COVID-19 (d'AstraZeneca/COVISHIELD et de Janssen)Note de bas de page 4 Note de bas de page 5 Note de bas de page 6 Note de bas de page 7 Note de bas de page 8. Au Canada, le nombre de cas de SGB après l'administration du vaccin d'AstraZeneca/COVISHIELD est plus élevé que ce à quoi on pourrait normalement s'attendre, compte tenu des taux dans la population générale. Jusqu'au 10 septembre 2021 inclusivement, l'ASPC avait reçu 30 signalements de SGB parmi plus de 2 750 000 doses de vaccins d'AstraZeneca/COVISHIELD administrés (taux estimé à 1,08 cas pour 100 000 doses). Les symptômes sont apparus dans les 6 heures à 25 jours suivant la vaccination et l'âge médian était de 55 ans (intervalle de 40 à 77 ans) dont 22 (73 %) étaient des hommes. Aux É.-U., le signalement d'ÉI suggère un risque accru de SGB au cours des 42 jours suivant l'administration du vaccin contre la COVID-19 de Janssen (note : le vaccin d'AstraZeneca/COVISHIELD n'a pas été utilisé aux É.-U.). Au 15 septembre 2021, 201 cas préliminaires de SGB avaient été signalés dans le système américain de déclaration des événements indésirables du vaccin (VAERS) parmi plus de 14.7 millions de doses du vaccin de Janssen administrées (taux estimé à 1,37 cas pour 100 000 doses)Note de bas de page 58. Ces cas ont été largement rapportés environ 2 semaines après la vaccination et principalement chez les hommes, dont plusieurs avaient 50 ans et plus.

Le risque de récidive du SGB après la vaccination contre la COVID-19 chez les personnes ayant des antécédents de GBS semble être très rareNote de bas de page 72. Seuls deux cas ont été décrits dans la littérature : un suivant le vaccin de Pfizer-BioNTech et l'autre suivant un vaccin à vecteur viral (produit inconnu). Une association causale entre ces récidives et la vaccination contre la COVID-19 n'a pas été établie. Les deux cas se rétablissaient au moment du signalement.

Dans le cadre des efforts continus en matière d'innocuité des vaccins contre la COVID-19, l'ASPC et SC surveillent de près les cas de SGB au moyen de systèmes de surveillance de l'innocuité canadiens passifs et actifs et d'une collaboration avec les autorités sanitaires provinciales et territoriales canadiennes, les fabricants et les organismes de réglementation internationaux. SC a inclus des renseignements sur le SGB dans les monographies de produits des vaccins d'AstraZeneca/COVISHIELD et de Janssen contre la COVID-19.

Le CCNI continue d'examiner les renseignements au fur et à mesure qu'ils seront disponibles et prendra les mesures appropriées si nécessaire.

Voir le rapport hebdomadaire des ESSI de l'ASPC pour de plus amples renseignements sur le nombre de cas de SGB signalés au Canada.

Voir la section Déclaration des effets secondaires suivant l'immunisation (ESSI) au Canada et la définition de cas du SGB de la Brighton Collaboration pour obtenir de plus amples renseignements sur l'établissement et la présentation des rapports sur les ESSI.

Réactions allergiques immédiates sévères (p. ex., anaphylaxie) après l’administration des vaccins autorisés contre la COVID-19

De très rares cas de réactions allergiques immédiates sévères (p. ex., anaphylaxie) à la suite de l’administration des vaccins à ARNm autorisés contre la COVID-19 ont été signalés dans les pays du monde entier, l’incidence étant estimée entre 2,0 et 7,9 cas par million de doses de vaccin administrées Note de bas de page 61 Note de bas de page 73 Note de bas de page 74 Note de bas de page 75 Note de bas de page 76. Les personnes ont tendance à se rétablir rapidement et aucun décès ni aucune morbidité à long terme n’a été observé dans le cadre de ces réactions allergiques immédiates sévères. En général, la majorité des réactions après la vaccination se produisent dans les 30 minutes suivant la vaccination, bien que des réactions puissent survenir après ce point Note de bas de page 77. De la même façon, la majorité des réactions à un vaccin contre la COVID-19 se sont produites dans les 15 minutes (68 %) à 30 minutes (86 %) suivant la vaccination Note de bas de page 76. Elles ont été signalées plus fréquemment chez les femmes que chez les hommes et plus souvent chez les personnes ayant déjà souffert d’allergies Note de bas de page 61 Note de bas de page 73 Note de bas de page 74 Note de bas de page 75 Note de bas de page 76. Toutefois, d’autres études sur les facteurs de risque potentiels sont nécessaires étant donné que la proportion globale de femmes ayant reçu les vaccins contre la COVID-19 et la proportion de personnes souffrant d’allergies antérieures ayant reçu les vaccins contre la COVID-19 sans réactions allergiques immédiates sévères n’ont pas été signalées régulièrement. Les données au Canada sont en train d’émerger et les données de surveillance suggèrent des schémas semblables à ceux observés dans d’autres pays Note de bas de page 69. Jusqu’au 1er octobre 2021 inclusivement; par rapport aux taux suivant l’administration des vaccins à ARNm autorisés contre la COVID-19 (5,3 cas par million de doses de vaccin administrées), des taux d’anaphylaxie plus faibles ont été observés après l’administration des vaccins à vecteur viral autorisés contre la COVID-19 (4,7 cas par million de doses de vaccin administrées).

Des études ont montré que les personnes présentant une réaction allergique immédiate sévère après l’administration d’une dose précédente de vaccin à ARNm peuvent être revaccinées avec le même vaccin ou un autre vaccin à ARNm contre la COVID-19 à la suite d’une évaluation appropriée Note de bas de page 78 Note de bas de page 79 Note de bas de page 80 Note de bas de page 81. Dans ces études, la revaccination a été sûre et bien tolérée, la plupart des réactions étant nulles ou légères après une nouvelle vaccination lorsqu’elle est fournie dans un environnement contrôlé. De nouvelles données suggèrent également que la plupart des réactions allergiques immédiates sévères signalées après l’administration de vaccins à ARNm contre la COVID-19 ne sont probablement pas médiées par des immunoglobulines E (IgE) et présentent donc un faible risque de récurrence après l’administration de futures doses de vaccin Note de bas de page 81 Note de bas de page 82. Voir la section Contre-indications et précautions ci-dessous pour de plus amples renseignements sur la revaccination des patients qui ont présenté une réaction allergique immédiate sévère à la suite de l’administration d’une dose antérieure de vaccin contre la COVID-19.

L’ASPC et SC surveillent de près l’anaphylaxie au moyen de systèmes canadiens de surveillance passive et active de la sécurité et en collaboration avec les autorités sanitaires provinciales et territoriales, les fabricants et les organismes de réglementation internationaux. Voir le rapport hebdomadaire des ESSI de l’ASPC pour obtenir des renseignements sur le nombre de cas d’anaphylaxie signalés au Canada. SC a inclus des renseignements sur l’anaphylaxie et l’hypersensibilité dans les monographies de produits des vaccins autorisés contre la COVID-19.

Le CCNI continue à examiner les renseignements au fur et à mesure qu’ils sont disponibles et prendra les mesures appropriées si nécessaire.

Voir Anaphylaxie et autres réactions aiguës après la vaccination dans la Partie 2 – La sécurité des vaccins du GCI pour de plus amples renseignements sur la gestion de l’anaphylaxie après la vaccination.

Conseils pour la déclaration des effets secondaire suivant l’immunisation

Les vaccinateurs sont priés de déclarer les ESSI par l'intermédiaire des unités de santé publique locales et de respecter les exigences de déclaration des ESSI propres à leur province ou territoire. En général, toute évènement indésirable grave (ÉIG) (défini comme entraînant une hospitalisation, une invalidité permanente ou un décès) ou inattendu qui est temporellement lié à la vaccination devrait être signalé.

En plus des exigences provinciales ou territoriales en matière de déclaration, la Brighton Collaboration a élaboré une liste d'ÉI d'importance particulière qui présentent un grand intérêt et qui devrait être déclarés; voir le site Web Brighton Collaboration: COVID-19 (en anglais seulement) pour consulter la liste comprenant les définitions.

Il pourrait y avoir d'autres ESSI très rares qui n'ont pas été détectés dans le cadre des essais cliniques jusqu'à présent.

Voir la Section Effets secondaires suivant l'immunisation du GCI, Partie 2 - Sécurité des vaccins pour de plus amples renseignements sur les définitions, l'établissement de rapports, les enquêtes et la gestion, ainsi que sur les évaluations de causalité des ESSI.

Pour de plus amples renseignements sur la réalisation et la soumission de la déclaration d’ESSI, voir le site Déclaration de manifestations cliniques inhabituelles à la suite d'une immunisation au Canada.

Voir le rapport hebdomadaire de l'ASPC sur les effets secondaires suivant l'immunisation contre la COVID-19 au Canada.

Populations spéciales

Les populations suivantes ont été exclues des essais cliniques sur les vaccins contre la COVID-19 ou y ont été inclues en petit nombre. Toutefois, les données en conditions réelles sur l'utilisation des vaccins contre la COVID-19 dans ces populations s'accumulent. Le CCNI continuera à surveiller les données probantes et à mettre à jour les recommandations si nécessaire.

Personnes antérieurement infectées par le SRAS-CoV-2

Dans des études portant sur la réponse immunitaire de personnes antérieurement infectées par le SRAS-CoV-2, il a été démontré que les anticorps liants et neutralisants persistent au moins 6 mois après l'infectionNote de bas de page 83, seule une petite proportion de personnes étant réinfectées pendant une période pouvant aller jusqu'à 10 moisNote de bas de page 84. Le suivi de cohortes de personnes antérieurement infectées a rapporté des niveaux élevés de protection contre la réinfection et étaient plus susceptibles d'être asymptomatiques (~ 50 %) que les cas de primo-infection (19 %). Le risque de réinfection attribuable aux VP est incertain. Des données probantes limitées évaluant l'activité neutralisante contre les VP suggèrent que cette activité est conservée contre le variant B.1.1.7 (alpha); de ce fait, le risque de réinfection est similaire à celui de la souche originale du SRAS-CoV-2. Il semble y avoir une réduction de l'activité neutralisante contre les variants B.1.351 (bêta), P.1 (gamma) et B.1.617.2 (delta) par rapport à la souche d'origine, et le risque de réinfection peut être plus élevéNote de bas de page 85.

Des données probantes sur l'innocuité de la vaccination contre la COVID-19 chez les personnes antérieurement infectées par le SRAs-CoV-2 sont disponibles à partir d'études observationnellesNote de bas de page 46 Note de bas de page 86 Note de bas de page 87et cliniquesNote de bas de page 47Note de bas de page 48 Note de bas de page 49. La fréquence des ÉI systémiques sollicités et non sollicités après l'administration de la première dose ou de la deuxième dose chez les personnes antérieurement infectées par le SRAS-CoV-2 était légèrement plus élevée par rapport à celle de la population naïve du SRAS-CoV-2. Toutefois, aucune augmentation de la fréquence des ÉI plus sévères n'a été observée dans cette population. Deux études observationnelles ont inclus moins de 100 patients présentant des symptômes persistants d'infections antérieures à la COVID-19 (longue COVID). Dans ce sous-groupe, la réception de la vaccination à ARNm ou à vecteur viral contre la COVID-19 n'était pas associée à une aggravation des symptômes de la COVID de longue durée ou à une réactogénicité accrue après la vaccination.

Un certain nombre de grandes études observationnelles ont comparé l'incidence de la réinfection chez les personnes précédemment infectées, avec ou sans infection antérieure, à l'incidence de l'infection chez celles sans infection préalableNote de bas de page 88 Note de bas de page 89 Note de bas de page 90. Une cohorte rétrospective de 52 238 employés du système de santé (5 % avec une infection antérieure) aux É.-U. a révélé qu'après 5 mois de suivi, aucun cas de réinfection n'avait été identifié (Shrestha et al.). L'incidence cumulée de l'infection par le SRAS-CoV-2 parmi les employés non vaccinés antérieurement infectés ne différait pas de celle des employés déjà infectés et entièrement vaccinés ou de celle des employés antérieurement non infectés et entièrement vaccinés (63 % de la population totale à l'étude ont reçu le vaccin de Moderna et 37 % ont reçu le vaccin de Pfizer-BioNTech)Note de bas de page 88.

Une étude observationnelle prospective portant sur l'ensemble de la population israélienne adulte (≥16 ans) a fourni des estimations de la protection contre les infections ultérieures, l'hospitalisation et les maladies sévères chez des personnes non vaccinées antérieurement infectées sur 3 mois de suivi lorsque le variant B.1.1.7 (alpha) était le plus répandu Note de bas de page 90. Dans cette population non vaccinée, les estimations de la protection attribuable à une infection antérieure par le SRAS-CoV-2 étaient de 95 % contre une infection ultérieure, de 94 % contre une hospitalisation et de 96 % contre une maladie sévère par rapport aux personnes non vaccinées sans infection antérieure. Ces estimations de protection étaient comparables à celles fournies par deux doses du vaccin de Pfizer-BioNTech dans la cohorte vaccinée antérieurement non infectéeNote de bas de page 90.

Dans une cohorte prospective de 23 324 membres du personnel travaillant dans les hôpitaux du National Health Service au R.-U. (35 % avec une infection antérieure), après un suivi d'environ deux mois, les personnes non vaccinées antérieurement infectées avaient une protection de 90 % contre l'infection par rapport aux personnes non vaccinées sans infection antérieureNote de bas de page 89. Bien qu'il n'y ait pas eu suffisamment de données pour évaluer l'efficacité réelle du vaccin chez les personnes antérieurement infectées, les estimations de la protection chez les personnes vaccinées sans infection préalable étaient de 72 % après la première dose et de 86 % après la deuxième doseNote de bas de page 89.

Ces études observationnelles suggèrent qu'une infection antérieure par le SRAS-CoV-2 induit une bonne protection contre une infection ultérieure et que l'effet protecteur peut être comparable à la vaccination à ARNm complète contre la COVID-19 chez les personnes sans infection préalable. Toutefois, on ne sait pas si la durée de la protection générée par une infection antérieure est similaire à celle provoquée par la vaccination à ARNm contre la COVID-19. La durée de la protection offerte par la vaccination reste également incertaine à l'heure actuelle.

Dans les études dans lesquelles on a signalé des réponses immunitaires après la vaccination chez des personnes ayant déjà été infectées par le SRAS-CoV-2Note de bas de page 91 Note de bas de page 47 Note de bas de page 92 Note de bas de page 93 Note de bas de page 94 Note de bas de page 95 Note de bas de page 86, les titres d'anticorps anti-spicule et neutralisants après la première dose étaient plus élevés que ceux après la première dose chez les personnes naïves du SRAS-CoV-2, et comparables à ceux observés après la deuxième dose chez les personnes naïves du SRAS-CoV-2. Ces tendances ont été observées à la fois chez celles qui avaient déjà eu des infections symptomatiques ou asymptomatiques; dans certaines études, les réponses en anticorps après la première dose étaient légèrement plus élevées chez les personnes ayant déjà eu une infection symptomatique par rapport aux personnes ayant déjà eu une infection asymptomatique. Dans certaines études portant sur des personnes antérieurement infectées, les réponses immunitaires n'ont pas augmenté après la deuxième dose et sont demeurées similaires à celles observées après la première dose. Des données limitées sur les réponses immunitaires cellulaires étaient disponibles. Deux études ont rapporté une augmentation des réponses des lymphocytes T chez les personnes antérieurement infectées par rapport aux personnes naïves après la première dose, mais n'ont observé aucune différence dans les réponses des lymphocytes T entre les deux cohortes après la deuxième dose. Toutefois, en l'absence d'un corrélat de protection établi, il n'est pas possible de déterminer l'importance des différences dans les réponses immunitaires humorales et cellulaires chez les personnes vaccinées antérieurement infectés par rapport aux personnes vaccinées naïves du SRAS-CoV-2 en ce qui concerne le niveau et la durabilité de la protection contre la réinfection ou les infections post-vaccinales.

Personnes immunodéprimées en raison d'une maladie ou d'un traitement

Bien que les données probantes soient limitées, les études observationnelles montrent une réduction de l'efficacité réelle du vaccin contre l'infection par le SRAS-CoV-2 et la COVID-19 chez les adultes immunodéprimés par rapport à la population générale (en fonction de l'utilisation des vaccins selon les calendriers des fabricants). L'impact de l'immunodépression sur la séroconversion après la vaccination varie en fonction des conditions spécifiques et/ou du traitement immunosuppresseur. Toutes les populations immunodéprimées n'ont pas été étudiées en détail. Certaines études ont montré que l'immunogénicité est considérablement diminuée chez certains adultes immunodéprimés par rapport aux receveurs de vaccins en bonne santé. Cela comprenait notamment les personnes atteintes d'affections malignes (solides et hématologiques), les receveurs de greffes d'organes solides et celles présentant un déficit immunitaire primaire. Étant donné l'absence d'un corrélat immunologique défini de la protection contre l'infection par le SRAS-CoV-2, la signification clinique de cette différence dans la séroconversion et son impact sur l'efficacité réelle du vaccin ne sont pas connus.

Le profil d'innocuité des vaccins à ARNm dans les études observationnelles du monde réel chez les adultes immunodéprimés est comparable à ce qui a été observé dans la population générale, sans signalement en matière d'innocuité inattendu ou grave à ce jour, y compris aucune aggravation d'une maladie auto-immune attribuée au vaccin. Les données sur l'innocuité dans ces populations après l'administration d'un vaccin à vecteur viral ne sont pas disponibles.

Résumé des données probantes sur une dose supplémentaire de vaccin contre la COVID-19 à la suite d'une série de 2 doses

Il n'existe actuellement aucune donnée sur l'efficacité potentielle ou l'efficacité réelle d'une dose supplémentaire d'un vaccin contre la COVID-19 à la suite d'une série primaire de 1 ou 2 doses chez des personnes immunodéprimées. Les données probantes émergentes indiquent que les réponses immunitaires humorales augmentent après l'administration d'une troisième dose de vaccins à ARNm contre la COVID-19 chez des adultes immunodéprimés, bien que le degré d'augmentation varie selon le type de maladie ou de traitement immunosuppresseur. Dans la majorité des études, les trois doses étaient des vaccins à ARNm. Dans certaines études, bien que l'augmentation de la proportion de ceux qui se sont séroconvertis ait été faible, les titres médians d'anticorps ont augmenté après la troisième dose par rapport à la deuxième dose. Il y avait une hétérogénéité significative entre les études en raison des différences dans les populations étudiées. Compte tenu de la taille limitée des études disponibles à ce jour et de l'absence d'un corrélat immunologique défini de la protection, il existe des limites à l'interprétation de la signification de ces résultats.

Les données probantes émergentes sur l'innocuité d'une dose supplémentaire chez les adultes immunodéprimés indiquent que la réactogénicité d'une troisième dose du vaccin contre la COVID-19 était similaire à celle des doses précédentes. Dans la majorité des études, la troisième dose était un vaccin à ARNm. Aucune aggravation de la maladie sous-jacente n'a été signalée après l'immunisation, mais quelques cas de maladie du greffon par rapport à l'hôte ou de rejet d'organe ont été signalés. Aucun ÉIG n'a été jugé comme étant associé au vaccin. En raison de la petite taille de ces études et des délais de suivi limités, l'impact de doses supplémentaires sur les ÉI rares dans ces populations est inconnu.

Le risque de myocardite et/ou de péricardite après la réception d'un vaccin à ARNm contre la COVID-19 est actuellement rapporté plus souvent après la deuxième dose par rapport aux premières doses. Le risque de myocardite et/ou de péricardite associé à une dose supplémentaire d'un vaccin à ARNm, y compris lorsqu'il est administré à des personnes immunodéprimées, est inconnu à l'heure actuelle. Le CCNI continue de surveiller les données probantes et mettra à jour les recommandations au fur et à mesure que les renseignements seront disponibles.

Voir la Réponse rapide du CCNI : Dose supplémentaire du vaccin contre la COVID-19 chez les personnes immunodéprimées suivant une série primaire de 1 ou 2 doses pour consulter un résumé plus détaillé des données probantes sur les doses supplémentaires dans cette population.

Personnes ayant une maladie auto-immune

Les données émergentes sur l'innocuité à partir d'études observationnelles chez les personnes ayant une maladie auto-immune indiquent que la fréquence et la sévérité des ÉI dans cette population sont comparables à celles des personnes qui ne souffrent pas de maladie auto-immune et à ce qui a été reporté dans les essais cliniquesNote de bas de page 96 Note de bas de page 97 Note de bas de page 98 Note de bas de page 99 Note de bas de page 100 Note de bas de page 101 Note de bas de page 102. L'apparition d'une nouvelle maladie auto-immune ou l'exacerbation de la maladie après l'administration des vaccins à ARNm contre la COVID-19 était rare ou comparable à l'incidence de fond de ces évènements dans la population générale, Des données sur l'innocuité au sein de cette population après l'administration d'un vaccin à vecteur viral ne sont pas disponibles.

L'efficacité potentielle et l'efficacité réelle des vaccins contre la COVID-19 chez les personnes ayant une maladie auto-immune sont inconnues mais les données sur l'immunogénicité émergent. Des données étaient disponibles à partir d'études observationnelles dans lesquelles les participants ont reçu des vaccins à ARNm contre la COVID-19 ou des vaccins contre la COVID-19 d'AstraZenecaNote de bas de page 103 Note de bas de page 98 Note de bas de page 104 Note de bas de page 100 Note de bas de page 105 Note de bas de page 101. Les réponses immunitaires étaient plus faibles seulement chez les participants qui recevaient également un traitement immunosuppresseur. Vu le nombre limité de participants et le manque de corrélat de protection immunologique contre une infection par le SRAS-CoV-2, il y a des limites à interpréter l'importance de ces résultats.

Personnes enceintes ou allaitantes

Des données probantes sur l'innocuité et l'immunogénicité des vaccins contre la COVID-19 chez les personnes enceintes et allaitantes émergent. Les études précliniques sur l'innocuité des vaccins contre la COVID-19 à partir d'études de toxicité sur le développement et la reproduction des animaux n'ont pas identifié de préoccupations concernant la reproduction femelle, le développement fœtal/embryonnaire ou le développement postnatal après l'administration du vaccin contre la COVID-19 de Moderna avant ou pendant la grossesseNote de bas de page 106. Un rapport présenté à l'EMA n'a aussi indiqué aucun ÉI en ce qui concerne la fertilité, la grossesse, le développement embryonnaire/fœtal ou le développement postnatal (jusqu'au jour 21) dans le cadre d'études sur des rats ayant une dose complète du vaccin contre la COVID-19 de Pfizer-BioNTechNote de bas de page 107. Une revue par la Food and Drug Administration (FDA) sur une étude chez les lapins ayant reçu le vaccin contre la COVID-19 de Janssen à deux fois la dose humaine avant ou pendant la gestation ont également conclu qu'il n'y avait aucun ÉI lié à la reproduction femelle, au développement fœtal/embryonnaire ou au développement postnatalNote de bas de page 108. AstraZeneca a mené une étude DART (Developmental and Reproductive Toxicity) chez des souris femelles ayant reçu le vaccin avant ou pendant la gestation et n'a trouvé aucun effet indésirable sur de la reproduction fertilité femelle, le développement embryofœtal ou le développement postnatal chez les sourisNote de bas de page 109.

Une analyse des données recueillies à partir des registres de vaccination contre la COVID-19 à l'échelle internationale à ce jour n'a pas révélé de signalement en matière d'innocuité maternelle ou néonatale et des analyses préliminaires de plus de 35 000 personnes enceintes aux É.-U. qui ont reçu un vaccin à ARNm contre la COVID-19 n'a pas indiqué de signalement évident en matière d'innocuitéNote de bas de page 110. Dans une petite étude de cohorte, l'ARNm des vaccins contre la COVID-19 étaient indétectables dans le lait maternel 4-48 heures après la vaccinationNote de bas de page 111.

Les données probantes émergentes suggèrent que la vaccination à ARNm contre la COVID-19 pendant la grossesse est aussi immunogène et donne lieu à des titres d'anticorps comparables à ceux des personnes qui ne sont pas enceintesNote de bas de page 112 Note de bas de page 113 Note de bas de page 114. La réponse humorale IgG maternelle aux vaccins à ARNm contre la COVID-19 passe du placenta au fœtus, entraînant ainsi un titre d'anticorps important et potentiellement protecteur à la circulation sanguine néonatale une semaine suivant l'administration de la deuxième dose Note de bas de page 115 Note de bas de page 112 Note de bas de page 116 Note de bas de page 117. Des études observationnelles montrent systématiquement que les anti-S IgG et IgA sont présents dans le lait maternel au moins pendant 6 semaines après l'administration des vaccins à ARNm auprès des personnes enceintes ou allaitantesNote de bas de page 118 Note de bas de page 119 Note de bas de page 120 Note de bas de page 121.

Contre-indications et précautions

De très rares cas de réactions allergiques immédiates sévères (p. ex., anaphylaxie) ont été signalées après l'immunisation par des vaccins à ARNm contre la COVID-19. Des études récentes ont montré que la plupart des personnes qui ont eu ces réactions après une dose précédente de vaccin à ARNm peuvent être revaccinées en toute sécurité avec le même vaccin ou un autre vaccin à ARNm contre la COVID-19 Note de bas de page 78 Note de bas de page 79 Note de bas de page 80 Note de bas de page 81. La revaccination dans un milieu contrôlé était sûre et bien tolérée, présentant principalement des réactions nulles ou légères (voir les précautions ci-dessous). Des données probantes émergentes suggèrent également que bon nombre de ces réactions allergiques immédiates sévères après l’administration de vaccins à ARNm contre la COVID-19 ne sont probablement pas médiées par des IgE et présentent donc un faible risque de récurrence après l’administration de futures doses de vaccin Note de bas de page 81 Note de bas de page 82.

Le Tableau 4 énumère les ingrédients non médicinaux potentiels des vaccins contre la COVID-19 autorisés qui ont été associés à des réactions allergiques dans d'autres produits. Ces réactions se sont rarement produites et elles ont varié de légères réactions cutanées à l'anaphylaxie. L'anaphylaxie est une réaction allergique rare, sévère et potentiellement mortelle qui se manifeste généralement rapidement. Elle touche plusieurs systèmes organiques et peut progresser rapidement. Les symptômes et signes d'anaphylaxie peuvent inclure, sans s'y limiter, l'urticaire généralisée, une respiration sifflante, une enflure de la bouche, de la langue et de la gorge, des difficultés respiratoires, des vomissements, de la diarrhée, de l'hypotension, une diminution du niveau de conscience et un état de choc. Il est important de noter que d'autres réactions moins graves peuvent imiter des réactions allergiques (p. ex., la syncope vasovagale) et la vaccination n'est pas contre-indiquée dans ces cas.

Voir le site Anaphylaxie et autres réactions aiguës après la vaccination dans la Partie 2 du GCI. La sécurité des vaccins du GCI pour de plus amples renseignements sur la gestion de l'anaphylaxie après la vaccination.

Tableau 4. Ingrédients des vaccins contre la COVID-19 autorisés qui ont été associés à des réactions allergiques dans d'autres produits
Produit de vaccination (fabricant) Allergène potentiel inclus dans le vaccin ou son contenantNote de bas de page a Autres produits dans lesquels l'allergène peut être présentNote de bas de page a
Vaccin Comirnaty de Pfizer-BioNTech polyéthylèneglycol (PEG)Note de bas de page aNote de bas de page bNote de bas de page c Médicaments en vente libre (p. ex., sirop contre la toux, laxatifs) et médicaments sur ordonnance, produits de préparation intestinale médicale pour la coloscopie, produits de soins de la peau, produits de remplissage dermique, cosmétiques, solutions d'entretien des lentilles de contact, produits tels que le gel pour ultrasonsNote de bas de page d
Vaccin Spikevax de Moderna PEGNote de bas de page aNote de bas de page bNote de bas de page c Médicaments en vente libre (p. ex., sirop contre la toux, laxatifs) et médicaments sur ordonnance, produits de préparation intestinale médicale pour la coloscopie, produits de soins de la peau, produits de remplissage dermique, cosmétiques, solutions d'entretien des lentilles de contact, produits tels que le gel pour ultrasonsNote de bas de page d
Trométhamine
(trométamol ou Tris)
Composant dans les produits de contraste, les médicaments oraux et parentéraux Note de bas de page e
Vaccin Vaxzevria d'AstraZeneca Polysorbate 80Note de bas de page c Préparations médicales (p. ex., huiles vitaminées, comprimés et agents anticancéreux), cosmétiquesNote de bas de page dNote de bas de page f
Vaccin contre la COVID-19 de Janssen Polysorbate 80Note de bas de page c Préparations médicales (p. ex., huiles vitaminées, comprimés et agents anticancéreux), cosmétiquesNote de bas de page dNote de bas de page f
Note de bas de tableau 4 (a)

Les médicaments qui contiennent du PEG sont décrits dans Stone CA, et coll., DOI :10.1016/j.jaip. 2018.12.003.

Retour à la référence de la note de bas de page a

Note de bas de tableau 4 (b)

Une revue des réactions d'hypersensibilité de type immédiat au PEG est disponible dans Wenande et coll., DOI : 10.1111/cea.12760.

Retour à la référence de la note de bas de page b

Note de bas de tableau 4 (c)

Il existe un potentiel d'hypersensibilité croisée entre le PEG et les polysorbates.

Retour à la référence de la note de bas de page c

Note de bas de tableau 4 (d)

Le PEG peut également être présent dans les aliments ou les boissons, mais les réactions allergiques au PEG dans les aliments ou les boissons n'ont pas été documentées.

Retour à la référence de la note de bas de page d

Note de bas de tableau 4 (e)

Un cas d'anaphylaxie à la trométhamine a été décrit (Lukawska et coll., DOI : 10.1016/j.jaip.2018.08.035).

Retour à la référence de la note de bas de page e

Note de bas de tableau 4 (f)

Des cas d'anaphylaxie au polysorbate 80 ont été décrits (Badiu et coll., DOI : 10.1136/bcr.02.2012.5797, Palacios Castaño et coll., DOI : 10.18176/jiaci.0109).

Retour à la référence de la note de bas de page f

De rares cas de TTIV ont été signalés suivant l'administration des vaccins à vecteur viral contre la COVID-19. Des recherches sont en cours et les recommandations seront mises à jour au fur et à mesure que les données probantes seront disponibles. Pour de plus amples renseignements, voir l'Annexe C et l'Annexe D.

Contre-indications

En général, une allergie à un composant d’un vaccin spécifique ou à son contenant est considérée comme une contre-indication. Toutefois, pour plus de détails sur l’administration des vaccins contre la COVID-19 aux personnes allergiques à des composants des vaccins contre la COVID-19 ou de leur contenant, veuillez consulter la section Précautions à prendre. Pour obtenir une liste complète des composants de chaque vaccin contre la COVID-19 autorisé et de son contenant, veuillez consulter le dépliant du produit correspondant ou les renseignements contenus dans la monographie du produit disponible sur le site Base de données sur les produits pharmaceutiques de Santé Canada.

Thrombose et thrombocytopénie après la vaccination

Les patients ayant subi une thrombose artérielle ou veineuse avec une thrombocytopénie suivant l'administration du vaccin à vecteur viral contre la COVID-19 ne devrait pas recevoir une deuxième dose du vaccin à vecteur viral contre la COVID-19.

Syndrome de fuite capillaire

Par mesure de précaution à la suite des cas à l'échelle internationale qui ont été signalés, les personnes ayant des antécédents de SFC ne devraient pas recevoir le vaccin d'AstraZeneca/COVISHIELD ou de Janssen contre la COVID-19.

Précautions

Hypersensibilité et allergies

Réaction allergique immédiate sévère (p. ex., anaphylaxie) à un vaccin autorisé contre la COVID-19 ou à un excipient du vaccin

Chez les personnes ayant des antécédents de réaction allergique sévère et immédiate (≤ 4 heures après la vaccination) [p. ex., anaphylaxie] après une administration antérieure d’un vaccin à ARNm contre la COVID-19, la revaccination (c.-à-d., l’administration d’une dose subséquente dans la série lorsque cela est indiqué peut être proposée avec le même vaccin ou la même plateforme d’ARNm si une évaluation des risques estime que les avantages l’emportent sur les risques potentiels pour la personne et si un consentement éclairé est fourni. Le risque d’une réaction allergique immédiate sévère après une revaccination semble être faible et aucune morbidité à long terme n’a été associée à la revaccination.

Pour les personnes ayant des antécédents d’allergie à un vaccin à ARNm, la revaccination avec un vaccin à ARNm est préférable à un vaccin à vecteur viral en raison de la meilleure efficacité réelle ou immunogénicité des vaccins à ARNm et des effets indésirables possibles spécifiquement associés aux vaccins à vecteur viral (p. ex., la thrombocytopénie immunitaire thrombotique induite par le vaccin [VITT], le SFC et le SGB).

Chez les personnes ayant des antécédents de réaction allergique sévère et immédiate (≤ 4 heures après la vaccination) [p. ex., anaphylaxie] après une administration antérieure d’un vaccin à vecteur viral contre la COVID-19, une revaccination peut être proposée avec une plateforme d’ARNm si une évaluation des risques estime que les avantages l’emportent sur les risques potentiels pour la personne et si un consentement éclairé est fourni. En cas de revaccination, les personnes devraient être observées pendant au moins 30 minutes après la revaccination.

Chez les personnes présentant une allergie confirmée, sévère et immédiate (≤ 4 heures après l’exposition) à un composant d’un vaccin spécifique contre la COVID-19 ou à son contenant (p. ex., le PEG), il est recommandé de consulter un allergologue avant de recevoir le vaccin spécifique contre la COVID-19. Les personnes allergiques à la trométhamine (présente dans le produit de Moderna) devraient se voir proposer le vaccin de Pfizer-BioNTech qui ne contient pas cet excipient. Les personnes allergiques aux polysorbates (présents dans les vaccins à vecteur viral) devraient se voir proposer un vaccin à ARNm.

Réactions allergiques immédiates légères à modérées

Une revaccination peut être proposée avec le même vaccin ou la même plateforme (ARNm) chez les personnes présentant des réactions allergiques immédiates légères à modérées (définies comme étant limitées dans l’étendue des symptômes et l’implication des systèmes organiques ou même localisées au site d’administration) après une dose précédente de vaccins à ARNm contre la COVID-19 autorisés ou de l’un de ses composants. L’offre d’un vaccin à ARNm est privilégiée à celle d’un vaccin à vecteur viral (voir ci-dessus). Une évaluation par un médecin ou une infirmière ayant une expertise en matière de vaccination peut être justifiée avant cette nouvelle immunisation. Dans la plupart des cas, la réaction anaphylactique se manifeste dans les 30 minutes qui suivent l’administration du vaccin. Par conséquent, si l’on opte pour la vaccination, une période prolongée d’observation post-vaccinale d’au moins 30 minutes devrait être prévue pour les personnes susmentionnées

Autres allergies ou préoccupations liées aux allergies

Les personnes présentant une réaction allergique sévère avérée (p. ex., anaphylaxie) à un traitement injectable non lié à un composant des vaccins contre la COVID-19 autorisés (p. ex., vaccins ou traitements intramusculaires, intraveineux ou sous-cutanés) peuvent être vaccinées systématiquement et n'ont pas besoin d'être évaluées. Dans la plupart des cas, la réaction anaphylactique se manifeste dans les 30 minutes qui suivent l'administration du vaccin. Par conséquent, une période d'observation post-vaccinale prolongée de 30 minutes devrait être prévue pour les personnes susmentionnées.

Les personnes ayant des antécédents d'allergie non liés à un composant des vaccins contre la COVID-19 autorisés ou à une autre thérapie injectable (p. ex., aliments, médicaments, venin d'insecte ou allergènes environnementaux) peuvent recevoir les vaccins contre la COVID-19 sans aucune précaution particulière. Les personnes devraient faire l'objet d'une observation pendant au moins 15 minutes après la vaccination.

Les personnes soupçonnées de souffrir d'une allergie à un ingrédient du vaccin (c.-à-d. le PEG) qui n'a pas encore été prouvée peuvent être systématiquement vaccinées et n'ont pas besoin d'une évaluation spécifique concernant cette allergie suspectée. La majorité des cas d'anaphylaxie à un vaccin se déclenche dans les 30 minutes suivant l'administration du vaccin. Une période d'observation prolongée post-vaccination de 30 minutes devrait donc être prévue à cette fin.

Maladie aiguë

La vaccination des individus qui pourraient être actuellement infectés par le SRAS-CoV-2 ne devrait pas avoir d'effet néfaste sur la maladie. Toutefois, la vaccination devrait être retardée chez les individus symptomatiques atteints d'une infection par le SRAS-CoV-2 confirmée ou soupçonnée, ou chez ceux qui présentent des symptômes respiratoires, afin d'éviter d'attribuer toute complication découlant de l'infection par le SRAS-CoV-2 à des ESSI liés à la vaccination et de réduire au minimum le risque de transmission de la COVID-19 dans une clinique ou un centre de vaccination. Si des symptômes sont détectés chez une personne à son arrivée sur les lieux, il faudrait lui dire de suivre les mesures de santé publique locales en vigueur.

Par mesure de précaution et compte tenu de la nécessité de pouvoir surveiller les ÉI du vaccin contre la COVID-19 sans risque de confusion avec les symptômes de la COVID-19 ou d'autres maladies coexistantes, il faudrait attendre que tous les symptômes d'une maladie aiguë aient disparu avant d'administrer un vaccin contre la COVID-19 autorisé.

Hématologie

Chez les individus atteints d'un trouble hémorragique, celui-ci devrait être pris en charge avant l'immunisation afin de réduire au minimum le risque d'hémorragie. Les individus qui reçoivent une anticoagulation à long terme ne sont pas considérés comme étant exposés à un risque plus élevé de complications hémorragiques après une immunisation et peuvent être vaccinés de façon sécuritaire sans interrompre leur traitement par anticoagulants.

Thrombose et thrombocytopénie

Les personnes qui ont subi une CVST antérieure avec thrombocytopénie ou thrombocytopénie induite par l'héparine (TIH) ne devraient recevoir un vaccin à vecteur viral contre la COVID-19 que si les avantages potentiels l'emportent sur les risques potentiels. Un autre vaccin contre la COVID-19 devrait leur être offert.

Toute personne recevant un vaccin à vecteur viral contre la COVID-19 autorisé devrait être informée des risques liés à la TTIV, et être avisée de consulter immédiatement un médecin si elle développe des symptômes de TTIV. Les symptômes peuvent comprendre : l'essoufflement, la douleur à la poitrine, l'œdème des jambes ou douleurs aux jambes ou la douleur abdominale persistante après la vaccination. De plus, toute personne qui souffre de symptômes neurologiques après la vaccination, y compris l'apparition soudaine de maux de tête sévères, persistants ou aggravants, de vision trouble, de confusion ou de crise, ou qui souffre d'ecchymoses à l'épiderme ou de pétéchies inhabituelles ailleurs qu'au site d'injection quelques jours après la vaccination, devrait consulter immédiatement un médecin.

Toute personne recevant un vaccin à vecteur viral autorisé contre la COVID-19 (d'AstraZeneca/COVISHIELD ou de Janssen) devrait être informée des risques associés aux vaccins à vecteur viral (SGB, TTIV/STT et SFC) et être avisée de consulter un médecin si elle développe des signes et des symptômes évocateurs de ces conditions.

Myocardite et/ou péricardite

La surveillance de l'innocuité post-commercialisation des vaccins à ARNm contre la COVID-19 a révélé une fréquence accrue de myocardite et de péricardite à l'échelle internationale, signalées très rarement mais le plus souvent chez les adolescents et les jeunes adultes (de 12 à 30 ans), plus souvent chez les hommes que chez les femmes et plus souvent après la deuxième dose Note de bas de page 60 Note de bas de page 65. L'association de la myocardite et de la péricardite avec la vaccination à ARNm et un mécanisme pour l'inflammation restent à l'étude.

Par mesure de précaution, la deuxième dose de la série de vaccins à ARNm contre la COVID-19 devrait être reportée chez les personnes qui souffrent de myocardite ou de péricardite suivant la première dose d'un vaccin à ARNm contre la COVID-19 jusqu'à ce que de plus amples renseignements soient disponibles. Les personnes ayant des antécédents de myocardite non liée à la vaccination à ARNm contre la COVID-19 devraient consulter leur équipe clinique pour obtenir des considérations et des recommandations individuelles. Si le diagnostic est lointain et si elles ne sont plus suivies cliniquement pour des problèmes cardiaques, elles devraient recevoir le vaccin.

Toute personne recevant un vaccin à ARNm contre la COVID-19 autorisé devrait être informée du risque de myocardite (inflammation du muscle cardiaque) et de péricardite (inflammation de la muqueuse autour du cœur) et invitée à consulter un médecin si elle développe des symptômes, y compris douleur thoracique, essoufflement ou palpitations.

Les professionnels de la santé devraient tenir compte de la myocardite et/ou de la péricardite dans leur évaluation si des symptômes cliniquement compatibles (douleur thoracique, essoufflement, palpitations) sont présents chez le patient après la deuxième dose d'un vaccin à ARNm contre la COVID-19 mais ils doivent être étudiés, peu importe le moment entre la vaccination et l'apparition des symptômes. Les investigations incluent l'électrocardiogramme, les troponines sériques et l'échocardiogramme avec des résultats anormaux fréquents d'électrocardiogramme et des niveaux élevés de troponine. La consultation d'un cardiologue, d'un spécialiste des maladies infectieuses, d'un spécialiste en médecine interne et/ou d'un rhumatologue peut être souhaitable pour aider à cette évaluation, en particulier pour étudier les nombreuses causes potentielles de myocardite et/ou de péricardite. Les investigations peuvent comprendre des tests diagnostiques pour l'infection aiguë par la COVID-19 (p. ex., tests PCR), une infection antérieure par le SRAS-CoV-2 (p. ex., détection d'anticorps de nucléocapside du SRAS-CoV-2) et la prise en compte d'autres étiologies infectieuses ou non infectieuses potentielles, y compris des affections auto-immunes.

Toute personne recevant un vaccin autorisé à ARNm contre la COVID-19 (de Pfizer-BioNTech ou de Moderna) devrait être informée des risques associés aux vaccins à ARNm contre la COVID-19 (myocardite et anaphylaxie) et être avisée de consulter un médecin si elle développe des signes et des symptômes évocateurs de ces conditions.

Voir les Contre-indications et précautions du GCI, Partie 2 - Innocuité des vaccins pour de plus amples renseignements généraux.

Syndrome de Guillain-Barré

Le SGB est un trouble neurologique à médiation immunitaire rare mais potentiellement grave qui peut résulter de différentes causes, y compris des infections, et survient plus souvent chez les hommes et les personnes âgées de 50 ans ou plus.

Le SGB a été signalé très rarement après la vaccination contre la COVID-19Note de bas de page 72. La surveillance de l'innocuité post-commercialisation a permis d'identifier un risque accru de SGB après l'administration des vaccins à vecteur viral contre la COVID-19, mais non après celle des vaccins à ARNm contre la COVID-19Note de bas de page 4 Note de bas de page 5 Note de bas de page 6 Note de bas de page 7 Note de bas de page 8. À ce jour, la fréquence de récurrence du SGB chez les personnes ayant des antécédents de SGB n'a pas été estimée.

Les personnes ayant des antécédents de SGB devraient recevoir un vaccin à ARNm autorisé contre la COVID-19. Lorsque les vaccins à ARNm autorisés contre la COVID-19 sont contre-indiqués ou inaccessibles, les personnes peuvent recevoir un vaccin à vecteur viral autorisé contre la COVID-19 après avoir consulté leur fournisseur de soins de santé.

Si les avantages l'emportent sur les risques et qu'un consentement éclairé est fourni, les personnes qui ont développé un SGB après une dose antérieure d'un vaccin autorisé contre la COVID-19 peuvent recevoir un vaccin à ARNm contre la COVID-19 pour leur deuxième dose après consultation avec leur fournisseur de soins de santé.

Le CCNI surveille les données probantes et mettra à jour la recommandation si nécessaire.

Toute personne recevant un vaccin à vecteur viral autorisé contre la COVID-19 (d'AstraZeneca/COVISHIELD ou de Janssen) devrait être informée des risques associés aux vaccins à vecteur viral (SGB, TTIV/STT et SFC) et être avisée de consulter un médecin si elle développe des signes et des symptômes évocateurs de ces conditions. Les symptômes du SGB peuvent inclure :

Toute personne recevant un vaccin autorisé à ARNm contre la COVID-19 (de Pfizer-BioNTech ou de Moderna) devrait être informée des risques associés aux vaccins à ARNm contre la COVID-19 (myocardite/péricardite et anaphylaxie) et être avisée de consulter un médecin si elle développe des signes et des symptômes évocateurs de ces conditions.

Interactions médicamenteuses

Aucune étude sur les interactions médicamenteuses n'a été réalisée à ce jour.

Pour de plus amples renseignements sur les interactions potentielles avec des produits contenant des anticorps anti-SRAS-CoV-2, reportez-vous à la section Produits sanguins, immunoglobulines humaines et moment de l'immunisation, dans la présente déclaration.

Test cutané à la tuberculine ou test de libération d'interféron gamma (TLIG)

Il existe un risque théorique que les vaccins à ARNm ou à vecteur viral puissent affecter temporairement l'immunité à médiation cellulaire, entraînant des résultats faussement négatifs au test cutané à la tuberculine (TCT) ou au test de libération d'interféron gamma (TLIG). Si un TCT ou un TLIG est nécessaire, il devrait être réalisé avant la vaccination ou au moins 4 semaines après la réception du vaccin. Les vaccins contre la COVID-19 peuvent être administrés à tout moment après l'administration du TCT.

Dans les cas où une occasion de réaliser le TCT ou le TLIG pourrait être manquée, le test ne devrait pas être retardé, car il s'agit de considérations théoriques. Toutefois, il peut être prudent de refaire les tests (au moins 4 semaines après la vaccination) des personnes dont les résultats sont négatifs et pour lesquelles il existe une suspicion élevée d'infection tuberculeuse, afin d'éviter de manquer des cas en raison de résultats potentiellement faux négatifs.

Produits sanguins, immunoglobulines humaines et moment de l'immunisation

Le CCNI recommande que les vaccins contre la COVID-19 ne soient pas administrés simultanément avec des anticorps monoclonaux ou du plasma de convalescents.

À ce jour, il n'y a pas suffisamment de données probantes sur la réception concomitante d'un vaccin contre la COVID-19 et d'anticorps monoclonaux anti-SRAS-CoV-2 ou de plasma de convalescents aux fins de traitement ou de prévention. Par conséquent, le moment de l'administration et l'interférence potentielle entre ces deux produits est actuellement inconnu. L'administration rapprochée de ces produits peut entraîner une diminution de l'efficacité réelle d'un vaccin contre la COVID-19 ou des anticorps monoclonaux anti-SRAS-CoV-2, car les anticorps monoclonaux ont une grande affinité pour la protéine de spicule exprimée par les vaccins, ce qui peut entraver la production d'anticorps stimulée par le vaccin.

Dans un contexte de post-exposition, on devrait obtenir l'opinion d'experts cliniques pour la gestion au cas par cas de l'administration d'anticorps monoclonaux anti-SRAS-CoV-2 après la réception du vaccin contre la COVID-19, en prenant en considération le risque d'exposition et le risque de cas sévère de la COVID-19 chez l'individu.

À ce jour, il n'y a pas non plus suffisamment de données probantes sur la réception d'un vaccin contre la COVID-19 et d'anticorps monoclonaux quelconques ou de plasma de convalescents aux fins de traitement ou de prévention d'une maladie autre que la COVID-19. Par conséquent, le moment de l'administration et l'interférence potentielle entre ces deux produits sont actuellement inconnus, et on devrait consulter un spécialiste clinique au cas par cas.

Recommandations

À la suite de l'examen approfondi des données probantes disponibles résumées ci-dessus et de l'évaluation systématique des facteurs d'éthique, d'équité, de faisabilité et d'acceptabilité à prendre en considération à l'aide du cadre EEFANote de bas de page 10 résumé dans le document Orientations préliminaires sur les principales populations à immuniser en priorité contre la COVID-19 du CCNI, ce dernier formule les recommandations éclairées suivantes pour la prise de décision au niveau des programmes de santé publique concernant l'utilisation efficace et équitable des vaccins contre la COVID-19 autorisés au Canada.

Le CCNI continuera à surveiller de près les développements scientifiques liés à la COVID-19 et aux vaccins contre la COVID-19, ainsi que les activités de pharmacovigilance sur les vaccins en cours, et mettra à jour ses recommandations nécessaire.

Veuillez noter :

Voir le Tableau 6 pour des explications plus détaillées sur la force des recommandations du CCNI.

Recommandations sur les vaccins contre la COVID-19 autorisés

Ces recommandations s'appliquent uniquement aux vaccins contre la COVID-19 Ces recommandations s'appliquent uniquement aux vaccins contre la COVID-19 actuellement autorisés pour utilisation au Canada (vaccin contre la COVID-19 de Pfizer-BioNTech; vaccin contre la COVID-19 de Moderna; vaccin contre la COVID-19 d'AstraZeneca; vaccin contre la COVID-19 de Janssen). En tenant compte de ces recommandations et aux fins de la mise en œuvre de programmes financés par l'État, les provinces et territoires pourraient prendre en compte les facteurs programmatiques (p. ex., contextes logistiques et opérationnels, ressources) et l'épidémiologie locale (p. ex., transmission des VP du SRAS-CoV-2).

1. Le CCNI recommande de préférence de proposer une série complète de vaccin contre la COVID-19 aux personnes appartenant au groupe d'âge autorisé qui ne présentent pas de contre-indications au vaccin. (Forte recommandation du CCNI)

2. Le CCNI recommande qu'un vaccin à vecteur viral contre la COVID-19 soit proposé aux personnes appartenant au groupe d'âge autorisé et qui ne présentent pas de contre-indications au vaccin pour initier une série lorsque d'autres vaccins contre la COVID- 19 autorisés sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de la TTIV, ainsi que sur la nécessité de demander des soins médicaux immédiats en cas d'apparition de symptômes :

(Recommandation discrétionnaire du CCNI)

Voir le Tableau 5 pour un résumé des données probantes et des facteurs que les administrations devraient prendre en compte lors de la mise en œuvre des programmes de vaccination contre la COVID-19.

Sommaire des données probantes et justification :

Vaccins à ARNm contre la COVID-19

Le consentement éclairé pour les vaccins à ARNm contre la COVID-19 devrait inclure des renseignements sur les très rares cas de myocardite ou de péricardite dans la semaine suivant l'administration d'un vaccin à ARNm

Vaccin Vaxzevria d'AstraZeneca contre la COVID-19

Vaccin contre la COVID-19 de Janssen

Vaccins à ARNm contre la COVID-19 comparés aux vaccins à vecteur viral

Le CCNI a passé en revue la récente épidémiologie de la COVID-19 au Canada (y compris la circulation des variants), les caractéristiques des vaccins (dont l'efficacité potentielle, l'efficacité réelle, l'innocuité), les données probantes et les orientations internationales sur la TTIV, l'approvisionnement prévu en vaccins, l'évaluation de Santé Canada des vaccins contre la COVID-19, ainsi qu'une analyse complète des répercussions sur l'éthique, l'équité, la faisabilité et l'acceptabilitéNote de bas de page 10 de ses recommandations sur l'utilisation des vaccins contre la COVID-19 au Canada.

Le CCNI a conclu que les avantages des vaccins contre la COVID-19 à ARNm sûrs et hautement efficaces l'emportent sur les inconvénients possibles pour les populations admissibles. Par conséquent, le CCNI a fortement recommandé l'utilisation préférentielle des vaccins à ARNm contre la COVID-19 dans tous les groupes d'âge autorisés. Le CCNI met en garde qu'il existe une incertitude quant aux données probantes sur les avantages et les risques liés à l'utilisation des vaccins à vecteur viral contre la COVID-19 pour les populations admissibles au Canada en raison du risque d'un ÉI rare mais grave (thrombocytopénie thrombotique induite par le vaccin, TTIV); la disponibilité d'autres vaccins à ARNm sûrs et hautement efficaces; ainsi que certaines données probantes sur une protection moindre contre la transmission asymptomatique et les VP B.1.351 (béta) et B.1.617.2 (delta) avec le vaccin d'AstraZeneca. Par conséquent, le CCNI a fait une recommandation discrétionnaire sur l'utilisation de vaccins à vecteur viral contre la COVID-19.

Le CCNI avait auparavant fait une recommandation discrétionnaire sur l'utilisation de vaccins à vecteur viral contre la COVID-19 pour les personnes qui préfèrent un vaccin plus tôt que d'attendre un vaccin à ARNm, uniquement si certaines conditions étaient remplies (y compris une analyse avantages-risques, un consentement éclairé et un délai de réception important d'un vaccin à ARNm). Cette recommandation était fondée sur une analyse avantages-risques pour la santé publique utilisant les taux de TTIV signalés à ce moment-là (cette analyse est disponible dans les versions archivées de cette déclaration). Toutefois, avec l'augmentation des taux signalés de TTIV après l'administration des vaccins à vecteur viral et l'augmentation des approvisionnements en vaccins à ARNm au Canada, le CCNI recommande maintenant que les vaccins à vecteur viral ne soient offerts que si les vaccins à ARNm sont contre-indiqués ou inaccessibles.

Un sommaire des données probantes et justification pour la recommandation préférentielle du CCNI sur l'utilisation des vaccins à ARNm contre la COVID-19 dans le cadre de programmes destinés à la population et une recommandation discrétionnaire sur l'utilisation du vaccin à vecteur viral contre la COVID-19 pour les personnes lorsque d'autres vaccins contre la COVID-19 autorisés sont contre-indiqués ou inaccessibles figure ci-dessous :

Résidents des établissements de soins de longue durée (ÉSLD) et personnes âgées vivant dans d’autres milieux de vie collectifs

3. Pour tous les résidents des ÉSLD et les personnes âgées vivant dans d’autres milieux de vie collectifs qui ont reçu une série primaire de vaccins contre la COVID-19 (avec un calendrier homologue ou hétérologue utilisant des vaccins à ARNm ou à vecteur viral), le CCNI recommande de proposer une dose de rappel d’un vaccin à ARNm autorisé contre la COVID-19. Cette dose devrait être proposée à un intervalle recommandé d’au moins six mois après la fin de la série primaire. Le consentement éclairé pour une dose de rappel devrait comprendre une discussion sur les risques et les avantages connus et inconnus, notamment le statut d’utilisation non indiquée de la recommandation du CCNI. (Forte recommandation du CCNI)

3a. Une dose de rappel d’un vaccin à vecteur viral autorisé ne devrait être envisagée que lorsque les autres vaccins autorisés contre la COVID-19 sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de thrombocytopénie thrombotique immunitaire induite par le vaccin (TTIV), ainsi que le besoin de demander des soins médicaux immédiats en cas d’apparition de symptômes. (Recommandation discrétionnaire du CCNI)

Sommaire des données probantes et justification

Personnes ayant déjà eu une infection confirmée au SRAS-CoV2

4. Le CCNI recommande qu'une série complète de vaccins contre la COVID-19 puisse être proposée aux personnes appartenant au groupe d'âge autorisé qui ne présentent pas de contre-indications au vaccin et qui ont déjà eu une infection par le SRAS-CoV-2 confirmée par PCR. (Recommandation discrétionnaire du CCNI)

Sommaire des données probantes et justification :

Les populations suivantes ont été exclues des essais cliniques ou représentées par un moindre nombre de participants aux essais cliniques pivots originaux. Le CCNI a mis à jour des recommandations pour ces populations à mesure que des données probantes en conditions réelles (surtout avec la vaccination à ARNm) sont devenues disponibles. Les recommandations citées plus haut sur l'utilisation des vaccins à ARNm contre la COVID-19 (Recommandation n° 1) et sur l'utilisation des vaccins à vecteur viral contre la COVID-19 (Recommandation n° 2), s'appliquent également aux personnes qui sont immunodéprimées, qui souffrent d'une maladie auto-immune, qui sont enceintes ou qui allaitent. Toutefois, le CCNI recommande désormais que les personnes appartenant aux groupes d'âge autorisés qui sont modérément à sévèrement immunodéprimées se voient proposer une série primaire de trois doses d'un vaccin à ARNm autorisé (ou une dose supplémentaire d'un vaccin à ARNm si elles ont déjà reçu une dose du vaccin contre la COVID-19 de Janssen ou respecté un calendrier homologue ou mixte à 2 doses avec les autres vaccins contre la COVID-19 dont l'utilisation est autorisée au Canada). Des précisions sur le consentement éclairé dans ces recommandations et un résumé des données probantes et de la justification des recommandations dans ces populations sont inclus ci-dessous.

Personnes immunodéprimées

5. Le CCNI recommande de préférence de proposer une série complète de vaccins à ARNm contre la COVID-19 aux personnes appartenant au groupe d'âge autorisé qui sont immunodéprimées en raison d'une maladie ou d'un traitement. Pour les personnes qui sont modérément à sévèrement immunodéprimées appartenant au groupe d'âge autorisé et qui n'ont pas encore été immunisées, le CCNI recommande qu'une série primaire de trois doses d'un vaccin à ARNm autorisé soit proposée. Pour les personnes qui sont modérément à sévèrement immunodéprimées appartenant au groupe d'âge autorisé et qui ont déjà reçu une série de vaccins contre la COVID-19 à 1 ou 2 doses (avec un calendrier homologue ou hétérologue utilisant des vaccins à ARNm ou à vecteur viral), le CCNI recommande qu'une dose supplémentaire d'un vaccin à ARNm autorisé contre la COVID-19 soit proposée. (Forte recommandation du CCNI)

6. Le CCNI recommande qu'un vaccin à vecteur viral contre la COVID-19 soit proposé aux personnes appartenant au groupe d'âge autorisé qui sont immunodéprimées en raison d'une maladie ou d'un traitement pour initier une série lorsque d'autres vaccins contre la COVID-19 autorisés sont contre-indiqués ou inaccessibles. Le CCNI recommande que la dose supplémentaire pour les personnes modérément à sévèrement immunodéprimées ne soit un vaccin à vecteur viral que lorsque d'autres vaccins autorisés contre la COVID-19 sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de la TTIV, la nécessité de demander des soins médicaux immédiats en cas d'apparition de symptômes, les données probantes limitées sur l'utilisation des vaccins à vecteur viral contre la COVID-19 dans cette population et le manque de données probantes sur l'utilisation d'une dose supplémentaire de vaccins à vecteur viral contre la COVID-19 dans cette population. (Recommandation discrétionnaire du CCNI)

Sommaire des données probantes et justification :

Voir la Réponse rapide du CCNI : Dose supplémentaire du vaccin contre la COVID-19 chez les personnes immunodéprimées suivant une série primaire de 1 ou 2 doses pour consulter un résumé des données probantes et d'autres justifications de cette recommandation.

Pour consulter les définitions et pour obtenir de plus amples renseignements généraux, voir la Section Immunisation des sujets immunodéprimés du GCI, Partie 3 - Vaccination de populations particulières.

Personnes atteintes d'une maladie auto-immune

7. Le CCNI recommande de préférence de proposer une série complète de vaccins à ARNm contre la COVID-19 aux personnes appartenant au groupe d'âge autorisé qui sont atteintes d'une maladie auto-immune. Le consentement éclairé devrait inclure une discussion sur les données probantes émergentes concernant l'innocuité des vaccins à ARNm contre la COVID-19 dans ces populations. (Forte Recommandation du CCNI)

8. Le CCNI recommande qu'un vaccin à vecteur viral contre la COVID-19 soit proposé aux personnes appartenant au groupe d'âge autorisé présentant une maladie auto-immune pour initier une série lorsque d'autres vaccins contre la COVID-19 autorisés sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de la TTIV, la nécessité demander des soins médicaux immédiats en cas d'apparition de symptômes, ainsi que les données probantes limitées sur l'utilisation des vaccins à vecteur viral contre la COVID-19 dans cette population. (Recommandation discrétionnaire du CCNI)

Sommaire des données probantes et justification :

Pour plus d'informations générales sur les maladies auto-immunes, voir la Section Immunisation des personnes atteintes de maladies chroniques du GIC, Partie 3 - Vaccination de populations particulières.

Grossesse et allaitement

9. Le CCNI recommande de préférence de proposer une série complète de vaccins à ARNm contre la COVID-19 aux personnes enceintes ou allaitantes appartenant au groupe d'âge autorisé. Le consentement éclairé devrait inclure une discussion sur les données probantes émergentes concernant l'innocuité des vaccins à ARNm contre la COVID-19 dans ces populations. (Forte Recommandation du CCNI)

10. Le CCNI recommande qu'un vaccin à vecteur viral contre la COVID-19 soit proposé aux personnes enceintes ou allaitantes appartenant au groupe d'âge autorisé pour initier une série lorsque d'autres vaccins contre la COVID-19 autorisés sont contre-indiqués ou inaccessibles. Le consentement éclairé devrait inclure une discussion sur les risques et les symptômes de la TTIV, la nécessité de demander des soins médicaux immédiats en cas d'apparition de symptômes, ainsi que les données probantes limitées sur l'utilisation des vaccins à vecteur viral contre la COVID-19 dans ces populations. (Recommandation discrétionnaire du CCNI)

Sommaire des données probantes et justification :

Pour de plus amples des renseignements généraux, voir la Section Immunisation durant la grossesse et l'allaitement du GCI, Partie 3 - Vaccination de populations particulières.

Enfants et adolescents

11. Le CCNI recommande qu'une série complète d'un vaccin à ARNm contre la COVID-19 soit proposée aux adolescents de 12 à 17 ans sans contre-indications au vaccin. Le consentement éclairé devrait inclure une discussion sur les cas très rares de myocardite et/ou de péricardite après l'administration de vaccins à ARNm. (Forte recommandation du CCNI)

Sommaire des données probantes et justification :

Voir la Recommandation du CCNI sur l'utilisation des vaccins à ARNm contre la COVID-19 chez les adolescents de 12 à 17 ans pour consulter un résumé des données probantes et d'autres justifications de cette recommandation.

Le CCNI continue à recommander ce qui suit :

Le CCNI continue à recommander les éléments suivants pour guider la prise de décision éthique, comme indiqué dans le document Guide du CCNI sur les populations clés pour la vaccination précoce contre la COVID-19 :

Résumé des considérations pour les vaccins contre la COVID-19 dont l'utilisation est autorisée au Canada

À l'heure actuelle, quatre types de vaccins contre la COVID-19 sont autorisés au Canada pour la prévention de l'infection à COVID-19 symptomatique qui utilisent deux plateformes vaccinales distinctes. Les mérites des deux plateformes vaccinales sont résumés dans le Tableau 5 ci-dessous. Il faut faire preuve de prudence lors de la comparaison des vaccins en raison des différences dans les études menées pour chaque vaccine (p. ex., différents paramètres, différentes analyses, différentes périodes/différents pays et différentes souches en circulation).

Tableau 5. Considérations en matière de vaccination selon les types de vaccins contre la COVID-19 dont l'utilisation est approuvée au Canada
Facteur à prendre en considération Résumé des données probantes disponibles et des points à prendre en compte
Vaccins à ARNm contre la COVID-19 Vaccin à vecteur viral non réplicatif contre la COVID-19

Efficacité potentielle et efficacité réelle*

Efficacité potentielle contre les infections symptomatiques après une série complète

  • Le vaccin de Pfizer-BioNTech est efficace à 94 % =14 jours après la 2e dose chez les participants à l'étude de 16 ans et plus.
  • Les données suggèrent que le vaccin dePfizer/BioNTech est efficace à 95 % chez les participants de ≥65 ans et à 100 % chez les participants à l'étude de 12 à 15 ans, au même 7 jours suivant la 2e dose.
  • Des nouvelles données suggèrent que le vaccin contre la COVID-19 d'AstraZeneca est efficace à 32,9 % contre la maladie symptomatique en raison du B.1.167.2 après une dose, et à 59,8 % après deux doses.
  • Les données suggèrent que le vaccin de Moderna est efficace à 86 % chez les personnes ≥65 ans ≥14 jours suivant la 2e dose.

Efficacité potentielle contre les infections symptomatiques après une série complète

  • Le vaccin d'AstraZeneca DS/DS est efficace à 62 % chez les participants âgés de 18 à 64 ans.
  • Les données actuelles des essais cliniques dont insuffisantes pour déterminée l'efficacité potentielle du vaccin d'AstraZeneca chez les personnes ≥65 ans.
  • L'intervalle entre la première et la deuxième dose du vaccin d'AstraZeneca pourrait avoir une incidence sur l'efficacité du vaccin, l'efficacité étant moindre si l'intervalle est inférieur à 12 semaines.
  • Le vaccin de Janssen (1 dose) est efficace à 66,9 % et à 66,1 % contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique à ≥ 14 jours et ≥ 28 jours après la vaccination, respectivement.
  • Le vaccin de Janssen est efficace à 76,7 % et à 85,4 % contre l'infection à la COVID-19 symptomatique sévère/critique confirmée à ≥ 14 jours et ≥ 28 jours après la vaccination, respectivement.

Efficacité réelle contre la maladie symptomatique et l'hospitalisation

  • Les données d'observation chez les personnes âgées de plus de 65 ans ont montré une réduction du risque de maladie symptomatique et d'hospitalisation avec une dose du vaccin AstraZeneca.
  • Les données sur l'efficacité réelle du vaccin (dans le monde réel) contre la COVID-19 de Janssen indiquent une bonne protection contre l'infection par le SRAS-CoV2Note de bas de page 159.

Efficacité réelle contre la maladie sévère, l'hospitalisation et le décès attribuables aux vaccins à ARNm contre la COVID-19 (avec plus de données disponibles sur le vaccin de Pfizer-BioNTech que celui de Moderna)

  • Les données actuelles issues d'études en conditions réelles indiquent que les vaccins à ARNm contre la COVID-19 offrent une très bonne protection contre l'hospitalisation liée à la COVID-19 chez les adultes après la réponse à après la première dose, y compris dans les populations plus âgées (= 65 ans).
  • Les données issues d'études en conditions réelles montrent que les vaccins à ARNm contre la COVID-19 offrent une très bonne protection contre les décès attribuables à la COVID-19 chez les adultes après la réponse à la première dose.
  • Des données issues d'études en conditions réelles chez les adultes indiquent que les vaccins à ARNm contre la COVID-19 offrent une excellente protection contre la maladie sévère, y compris, l'hospitalisation et les décès liés à la COVID-19 après la réponse à la deuxième dose.
  • Les données sur l'efficacité réelle chez les adolescents ayant reçu l'un ou l'autre vaccin à ARNm contre la COVID-19 ne sont pas actuellement disponibles.

Efficacité potentielle contre les infections asymptomatiques

  • Une analyse préliminaire de données limitées provenant d'un essai en cours suggère que le vaccin contre la COVID-19 de Moderna pourrait être efficace dans la prévention des infections asymptomatiques. Toutefois, les données sont en cours de collecte et l'analyse finale n'est pas achevée.

Efficacité réelle contre les infections asymptomatiques

  • Les estimations de l'efficacité réelle du vaccin contre la COVID-19 de Pfizer-BioNTech contre l'infection par le SRAS-CoV-2 sans symptômes signalés étaient de modérées à élevées après la première dose (en fonction du temps écoulé depuis la vaccination) et élevées après la deuxième dose)Note de bas de page 18 Note de bas de page 25 chez les adultes. Des résultats similaires ont été signalés pour les vaccins à ARNm contre la COVID-19 en généralNote de bas de page 26.

Efficacité potentielle contre les infections asymptomatiques

  • Une analyse exploratoire ponctuelle de données limitées suggère que le vaccin d'AstraZeneca pourrait ne pas être efficace dans la prévention d'une infection asymptomatique.
  • Les analyses préliminaires des données limitées semblent indiquer que le vaccin contre la COVID-19 de Janssen a une efficacité potentielle estimée à 59,7 % contre l'infection par le SRAS-CoV-2 asymptomatique ou non détectée avec une apparition ≥ 28 jours après la vaccination.

Revaccination

  • On ne sait pas encore si des doses de rappel (p. ex., une vaccination annuelle) seront nécessaires pour assurer une protection à long terme contre la COVID-19 symptomatique, en particulier face à l'émergence de VP.
  • La revaccination des personnes ayant initialement reçu un vaccin à ARNm avec le même vaccin ou un autre vaccin à ARNm est actuellement à l'étude.
  • L'efficacité potentielle et l'innocuité de la revaccination des personnes ayant initialement reçu le vaccin à ARNm avec un vaccin contre la COVID-19 différent sont pour l'instant inconnues à l'heure actuelle mais font l'objet de recherches.

Revaccination

  • On ne sait pas encore si des doses de rappel (p. ex., une vaccination annuelle) seront nécessaires pour assurer une protection à long terme contre la COVID-19 symptomatique dans la population générale, en particulier avec l'émergence de VP.
  • La revaccination avec une dose de rappel des vaccins à vecteur viral peut réduire l'efficacité réelle en raison du développement possible d'une immunité contre le vecteur viral qui peut interférer avec la réponse immunitaire aux doses ultérieures. Toutefois, cette question est toujours à l'étude.
  • L'efficacité potentielle et l'innocuité de la revaccination des personnes ayant initialement reçu un vaccin à vecteur viral avec un vaccin contre la COVID-19 différent sont pour l'instant inconnues.

Immunogénicité

Réponse humorale

  • Les réponses humorales pour les deux vaccins à ARNm contre la COVID-19 dans les essais cliniques atteignent leur maximum après la deuxième dose, y compris l'obtention d'anticorps neutralisants. Cependant, comme on ne connaît pas de corrélat de protection, ces réponses humorales ne peuvent pas être interprétées comme correspondant à la protection vaccinale.
  • Les réponses humorales dans les essais cliniques ont connu des tendances similaires chez les personnes de 18 à 55 ans et chez les personnes de 65 à 85 ans.
  • Les réponses humorales des vaccins de Pfizer-BioNTech et de Moderna étaient similaires chez les adolescents par rapport aux jeunes adultes.
  • Dans des études observationnelles, les réponses humorales chez les sujets vaccinés séropositifs après l'administration de la première dose étaient comparables à celles observées chez les personnes n'ayant pas été infectées par le SRAS-CoV-2 après l'administration de la deuxième dose. Toutefois, puisque le corrélat de protection est inconnu, l'importance de ces conclusions quant au niveau de protection contre la réinfection est aussi inconnueNote de bas de page 91 Note de bas de page 47 Note de bas de page 92 Note de bas de page 93 Note de bas de page 94 Note de bas de page 95.
  • Des données probantes émergentes tirées d'études observationnelles indiquent que les réponses immunitaires humorales augmentent après l'administration d'une troisième dose de vaccin à ARNm contre la COVID-19 chez des adultes immunodéprimés, bien que le degré d'augmentation varie selon le type de maladie ou de traitement immunodépresseur. Comme un corrélat de protection n'est pas connu, l'importance de ces résultats en ce qui concerne l'efficacité réelle du vaccin contre l'infection ou les issues sévères liées à la COVID-19 est inconnue.

Réponse humorale

  • Les réponses humorales ont atteint leur maximum après une deuxième dose, y compris l'obtention d'anticorps neutralisants, chez les sujets vaccinés séronégatifs. Chez les sujets vaccinés séropositifs, les réponses humorales ont atteint leur maximum à la première dose et se sont maintenues ou ont diminué à la deuxième dose.
  • Pour le vaccin d'AstraZeneca, les réponses humorales étaient plus faibles chez les personnes de ≥65 ans que chez les personnes de 18 à 64 ans, d'après des données non publiées présentées au CCNI. Des résultats contradictoires ont été constatés pour les autres groupes d'âge d'après des données récemment publiéesNote de bas de page 160.
  • Dans le cas du vaccin Janssen, des réponses humorales, notamment des anticorps de liaison, des anticorps neutralisants et des anticorps ayant des fonctions effectrices Fc, ont été observées au jour 29 après une dose.
  • Pour ce qui est du vaccin de Janssen, des réponses immunitaires humorales un peu plus faibles ont été observées dans les cohortes d'âges plus élevés (> 65 ans) par rapport aux cohortes plus jeunes (de 18 à 55 ans).
  • Cependant, comme on ne connaît pas de corrélat de protection, ces réponses humorales ne peuvent pas être interprétées comme correspondant à la protection vaccinale.

Réponse cellulaire

  • Les deux vaccins à ARNm contre la COVID-19 ont induit une réponse immunitaire à médiation cellulaire une à deux semaines après l'administration de la deuxième dose.
  • On a constaté une augmentation de cette réponse immunitaire à médiation cellulaire chez les jeunes adultes comme chez les adultes plus âgés. Aucune donnée n'existe sur les réponses immunitaires cellulaires chez les adolescents de 12 à 15 ans.
  • Comme aucun corrélat immunologique de protection n'a été déterminé pour le SRAS-CoV-2, ces réponses cellulaires ne peuvent être interprétées comme correspondant à la protection vaccinale.

Réponse cellulaire

  • Le vaccin d'AstraZeneca a induit des réponses cellulaires à médiation cellulaire qui n'ont pas semblé augmenter après la deuxième dose.
  • Les réponses immunitaires à médiation cellulaire ne semblent pas différer entre les groupes d'âge.
  • Dans le cas du vaccin Janssen, les réponses immunitaires cellulaires ont été déclenchées après une dose du vaccin.
  • Comme aucun corrélat immunologique de protection n'a été déterminé pour le SRAS-CoV-2, ces réponses cellulaires ne peuvent être interprétées comme correspondant à la protection vaccinale.
Protection contre les variants, y compris les variants préoccupants

B.1.1.7 (alpha)

  • Les données suggèrent une efficacité réelle comparable des vaccins à ARNm contre la COVID-19 face aux maladies symptomatiques et sévères en raison du VP B.1.1.7 (alpha).

B.1.351 (béta)

  • Les données probantes émergentes suggèrent que les vaccins à ARNm contre la COVID-19 sont efficaces à 43 % contre les maladies symptomatiques en raison du VP B.1.351 (béta) après une dose et à 88 % après deux dosesNote de bas de page 24.

P.1 (gamma) et P.2 (zêta)

  • Il y a des données limitées sur l'efficacité potentielle et l'efficacité réelle des vaccins à ARNm contre le VP P.1 (gamma) et le VI P.2 (zêta).

B.1.617.2 (Delta)

  • Des données émergentes suggèrent que le vaccin contre la COVID-19 de Pfizer-BioNTech est efficace à 33,2% contre la maladie symptomatique en raison du B.1.617.2 (delta) après une dose, et à 87,9% après deux doses.Note de bas de page 30
  • Contre toute infection (symptomatique ou asymptomatique) attribuable au B.1.617.2 (delta), les données émergentes suggèrent que le vaccin de Pfizer-BioNTech est efficace à 30 % après une dose et à 79 % après deux dosesNote de bas de page 161.
  • Les données émergentes suggèrent que le vaccin de Pfizer-BioNTech est efficace à 94 % contre l'hospitalisation attribuable au B.1.617.2 (delta) après une dose et à 96 % après deux dosesNote de bas de page 162.

B.1.1.7 (alpha)

  • Les données suggèrent que le vaccin d'AstraZeneca a une efficacité potentielle de 70,4 % contre le VP B.1.1.7 (alpha) identifié pour la première ois au R.-U., contre 81,5 % contre les souches non B.1.1.7 (où les cas étaient principalement attribuables à B.1.177, une souche non VI/VP)Note de bas de page 163.

B.1.351 (béta)

  • Les données semblent indiquer que le vaccin d'AstraZeneca a une efficacité potentielle de 10,4 % contre le VP B.1.351 (béta) face à la maladie légère à modéréeNote de bas de page 164.
  • En Afrique du Sud, où le VP B.1.351 (béta) était la souche dominante (environ 95 % des échantillons préliminaires séquencés), le vaccin de Janssen était efficace à 64 % contre la COVID-19 modérée à sévère/critique au jour 29.

P.1 (gamma) et P.2 (zêta)

  • Il y a des données limitées sur l'efficacité potentielle et réelle des vaccins à vecteur viral contre les VP P.1 (gamma).
  • Au Brésil, où le P.2 (zêta) a été détecté dans environ 70 % des échantillons séquencés de cas de COVID-19, le vaccin de Janssen avait une efficacité potentielle de 68 % contre la COVID-19 modérée à sévère/critique au jour 29.

B.1.617.2 (delta)

  • Des données émergentes suggèrent que le vaccin contre la COVID-19 d'AstraZeneca est efficace à 32,9 % contre la maladie symptomatique en raison du B.1.617.2 (delta) après une dose, et à 59,8 % après deux doses.Note de bas de page 30
  • Contre toute infection (symptomatique ou asymptomatique) attribuable au B.1.617.2 (delta), les données émergentes suggèrent que le vaccin d'AstraZeneca est efficace à 18 % après une dose et à 60 % après deux dosesNote de bas de page 161.
  • Des données émergentes suggèrent que le vaccin d'AstraZeneca est efficace à 71 % contre l'hospitalisation attribuable au B.1.617.2 (delta) après une dose et à 92 % après deux dosesNote de bas de page 162.

Innocuité

Technologie

  • Les vaccins à ARNm utilisent une nouvelle technologie; (qui a été étudiée dans des vaccins expérimentaux); toutefois, tous les vaccins contre la COVID-19 sont soumis au même processus rigoureux d'examen et d'approbation que les vaccins systématiques.

Technologie

  • Les vaccins à vecteur viral utilisent une technologie relativement nouvelle; (le vaccin contre l'Ébola autorisé utilise cette technologie); toutefois, tous les vaccins contre la COVID-19 sont soumis au même processus rigoureux d'examen et d'approbation que les vaccins systématiques.

Signalement en matière d'innocuité

  • De rares réactions anaphylactiques ont été signalées après l'immunisation par des vaccins à ARNm COVID-19.
  • Pour les deux vaccins, on signale que certains ÉIG sollicités sont très fréquents (définis comme étant de 10 % ou plus) chez les personnes vaccinées; toutefois, ils sont légers ou modérés et transitoires et se résorbent en quelques jours. Il s'agit notamment de douleurs au site d'injection, de fatigue, de maux de tête, de douleurs musculaires, de frissons, de douleurs articulaires et de fièvre. Certains ÉI, dont la fièvre, sont plus fréquents après la deuxième dose.
  • Pour le vaccin contre la COVID-19 de Pfizer-BioNTech, comparativement aux personnes de 16 à 55 ans, les adolescents de 12 à 15 ans ont montré une fréquence accrue de maux de tête (jusqu'à 65 %), de frissons (jusqu'à 42 %) et de fièvre (jusqu'à 20 %). La lymphadénopathie liée à la vaccination chez les adolescents est survenue chez 0,6 % des sujets vaccinés (0,8 % connexe et non connexe) et aucun ÉI lié au vaccin ni aucun décès n'a été signalé.
  • Pour le vaccin de Moderna, chez les adolescents âgés de 12 à 17 ans, les événements systémiques étaient principalement de la fatigue, des maux de tête, des douleurs musculaires, des frissons, des douleurs articulaires, des nausées/vomissements et de la fièvre (par ordre de fréquence descendante), et se sont produits plus souvent après la deuxième dose. Les réactions indésirables sollicitées étaient généralement similaires entre les participants âgés de 12 à 15 ans et les participants âgés de 16 à 17 ans. La réactogénicité locale était plus élevée chez les adolescents que celle observée chez les adultes dans l'étude de Phase 3. Chez les adolescents, il n'y a eu aucun ÉIG lié au vaccin et aucun décès n'a été signalé.
  • Des cas de myocardite (inflammation du muscle cardiaque) et de péricardite (inflammation de la muqueuse autour du cœur) suivant l'administration de vaccins à ARNm contre la COVID-19 ont été signalés au Canada et à l'échelle internationale. Au Canada, nous constatons un nombre plus élevé de cas de myocardite et/ou de péricardite dans les groupes d'âge plus jeunes que ce à quoi on pourrait normalement s'attendre. Les données sur ce phénomène évoluent et les recherches sur l'association entre les vaccins contre la myocardite/péricardite et l'ARNm se poursuivent au Canada et à l'étranger. D'après les cas signalés à l'échelle internationale, les renseignements disponibles indiquent qu'ils surviennent généralement dans la semaine suivant la vaccination, le plus souvent chez les hommes et plus souvent chez les adolescents et les jeunes adultes. Les cas signalés après l'administration des vaccins à ARNm contre la COVID-19 ont généralement été bénins et ont été bien résolus grâce à un traitement médical.

Signalement en matière d'innocuité

  • Pour les deux vaccins, on a signalé que certains ÉI sollicités étaient très fréquents (définis comme étant de 10 % ou plus) chez les personnes vaccinées; toutefois, ils sont légers ou modérés et transitoires et se résorbent en quelques jours. Il s'agit notamment de douleurs au site d'injection, de la fatigue, de maux de tête, de douleurs musculaires, de frissons, de douleurs articulaires et de fièvre. Certains ÉI sont moins fréquents après la deuxième dose.
  • De rares cas de thrombose associés à la thrombocytopénie ont été signalés suivant l'administration du vaccin d'AstraZeneca. Le mécanisme d'action semble être similaire à une thrombocytopénie induite par l'héparine spontanée (appelée TTIV - thrombocytopénie thrombotique immunitaire induite par le vaccin). À l'échelle internationale, le taux de cet ÉI n'est pas encore confirmé, mais avait été le plus souvent estimé entre 1/26 000 et 1/100 000 personnes ayant reçu le vaccin d'AstraZeneca. Selon les données probantes disponibles au 1 juin 2021, l'ASPC a estimé le taux de TTIV au Canada est de 1 par 73 000 doses administrées. Toutefois, à mesure que les investigations se poursuivent, ce taux pourrait s'élever à 1 par 50 000. Le taux de létalité se situe généralement entre 20 et 50 %. Les autres facteurs prédisposant à la TTIV ne sont pas clairs.
  • Pour le vaccin de Janssen, dans l'essai clinique, un cas de CVST a été signalé parmi 21 895 sujets vaccinés. En date du 8 septembre 2021, 46 cas de STT ont été confirmés après l'administration d'au moins 14,5 millions de doses de Janssen aux É.-U. Des investigations sont en cours.
  • De très rares cas de SFC ont été signalés après l'administration du vaccin contre la COVID-19 d'AstraZeneca. Certains patients affectés ont reçu un diagnostic antérieur de SFC qui constitue une affection grave et potentiellement mortelle caractérisée par des épisodes aigus d'œdème des membres, d'hypotension, d'hémoconcentration et d'hypoalbuminémie. Les personnes ayant des antécédents de SFC ne devraient pas recevoir le vaccin contre la COVID-19 d'AstraZeneca/COVISHIELD.
  • De très rares cas de SGB ont été signalés après l'administration des vaccins à vecteur viral contre la COVID-19. Le risque de récidive du SGB après la vaccination contre la COVID-19 chez les personnes ayant des antécédents de SGB est inconnu. Par mesure de précaution, les personnes ayant des antécédents de SGB devraient recevoir un vaccin à ARNm.
Éthique et équité
  • Les vaccins à ARNm ont une grande efficacité à court terme dans tous les groupes d'âge autorisés et le Canada prévoit d'avoir suffisamment de doses de vaccins à ARNm pour chaque personne au Canada en 2021.
  • Les vaccins les plus efficaces peuvent être dirigés vers les personnes les plus susceptibles de contracter une maladie sévère et d'être exposées afin de limiter l'aggravation des inégalités existantes.
  • L'incidence de ne pas offrir un vaccin moins efficace plus tôt aux populations qui devront attendre pour recevoir un vaccin à ARNm dans les zones de de transmission et d'infection à haut risque sur la confiance, la justice et le risque de faire plus de mal que de bien devrait être prise en compte.
  • Offrir un vaccin contre la COVID-19 à ceux qui devraient autrement attendre pour en recevoir un pourrait renforcer l'équité.
  • Si la protection contre la COVID-19 ne peut être augmentée pour les personnes qui ont reçu un vaccin moins efficace en premier, des inégalités importantes pourraient être créées pour les personnes qui reçoivent un vaccin à vecteur viral par rapport aux vaccins à ARNm, dépendamment des groupes de populations qui ont reçu le vaccin à vecteur viral.
  • Les vaccins à vecteur viral peuvent offrir une option aux personnes allergiques aux ingrédients du vaccin à ARNm ou de ses contenants. L'incidence de l'offre d'un vaccin moins efficace plus tôt à certaines populations sur la confiance, la justice et le risque de faire plus de mal que de bien devrait être prise en compte.

Faisabilité

Calendrier de vaccination

  • Les deux vaccins à ARNm sont autorisés en deux doses. Le CCNI recommande une série primaire de trois doses pour les personnes modérément à sévèrement immunodéprimées.
  • Les vaccins à ARNm ont un calendrier autorisé de 21 (pour le vaccin de Pfizer) ou de 28 jours (pour le vaccin de Moderna) entre la première et la deuxième dose. Toutefois, un intervalle de huit semaines entre les doses offre une protection plus optimale selon les données probantes actuelle. Le CCNI recommande actuellement un intervalle prolongé jusqu'à 4 mois entre les première et deuxième doses des vaccins contre la COVID-19 pour tous les groupes d'âge autorisés.

Calendrier de vaccination

  • Le vaccin d'AstraZeneca est autorisé en deux doses. Le CCNI recommande une dose supplémentaire d'un vaccin à ARNm pour les personnes modérément à sévèrement immunodéprimées. L'intervalle entre la première et la deuxième dose du vaccin d'AstraZeneca semble avoir une incidence sur l'efficacité du vaccin, l'efficacité étant moindre si l'intervalle est inférieur à 12 semaines. Le CCNI recommande actuellement un intervalle prolongé jusqu'à 4 mois entre les première et deuxième doses des vaccins contre la COVID-19 pour tous les groupes d'âge autorisés.
  • L'utilisation du vaccin de Janssen est autorisée en une seule dose, ce qui peut faire accroître la faisabilité de l'achèvement d'une série de vaccins. Le CCNI recommande une dose supplémentaire d'un vaccin à ARNm pour les personnes modérément à sévèrement immunodéprimées.
  • Les sujets vaccinés doivent être informés du signalement en matière d'innocuité de la TTIV et des symptômes à surveiller après la vaccination.

Exigences en matière d'entreposage

  • Les vaccins à ARNm ont des exigences plus strictes en matière de transport et d'entreposage, puisqu'ils nécessitent des chaînes du froid congelées ou ultracongelées. Des efforts importants ont été entrepris pour traiter des complexités logistiques.
  • Les exigences en matière d'entreposage de ces vaccins augmentent la complexité logistique de l'offre de ces vaccins en divers lieux afin d'en accroître l'accès pour diverses populations.

Exigences en matière d'entreposage

  • Les vaccins à vecteur viral sont plus faciles à transporter, à entreposer et à manipuler que les vaccins à ARNm et, par conséquent, pourrait être plus facile à utiliser pour une distribution plus large par l'intermédiaire des pharmacies et des fournisseurs de soins de santé primaires.
  • Les vaccins à vecteur viral doivent être entreposé et transporté à une température comprise entre +2 et +8 °C, ce qui nécessite l'utilisation d'une infrastructure de chaîne du froid standard largement disponible dans les provinces et territoires.
  • Les exigences en matière d'entreposage de ced vaccins pourraient accroître l'accès au vaccin pour diverses populations.

Acceptabilité

  • Il est possible que les individus favorisent les vaccins à ARNm, car leur efficacité avérée est plus grande.
  • Des cas de COVID-19 moindres sont prévus à la suite d'une vaccination avec un vaccin à haute efficacité. Les cas relativement faibles après la vaccination pourraient avoir une incidence positive sur l'acceptabilité des vaccins contre la COVID-19 et des vaccins en général.
  • Il est possible que des personnes favorisent les vaccins à vecteur viral s'ils offrent une possibilité de recevoir plus tôt un vaccin contre la COVID-19 et s'ils sont plus faciles d'accès sur des lieux convenables en raison de la facilité de transport, d'entreposage et de manipulation.
  • Un nombre accru de cas de COVID-19 est prévu à la suite d'une vaccination avec un vaccin qui a une efficacité moindre. Les cas relativement élevés après la vaccination pourraient avoir une incidence négative sur l'acceptabilité par le public des vaccins contre la COVID-19 et des vaccins en général.
  • Le vaccin Janssen est administré en une seule dose. Cela pourrait accroître l'acceptabilité de la vaccination.
  • Des cas récents de TTIV signalés après l'administration des vaccins à vecteur viral ont influé sur leur acceptabilité.

Les inquiétudes concernant l'innocuité et l'efficacité réelle des vaccins sont les deux raisons les plus souvent citées pour justifier le refus d'un vaccinNote de bas de page 165

  • Dans une enquête menée auprès des Canadiens entre le 9 et le 16 février 2021Note de bas de page 166 les résultats suivants ont été rapportés :
    • De ceux qui ont indiqué ne pas encore avoir été vaccinés (n=1954), un plus grand nombre de répondants étaient « d'accord » ou « tout à fait d'accord » avec les énoncés affirmant une intention d'obtenir un « vaccin sûr » (69 %) et un « vaccin efficace » (67 %) depuis la quatrième vague (fin mai-début juin).
    • Lorsque l'on a demandé aux répondants qui étaient disposés à se faire vacciner ou neutres à l'égard de la vaccination ce qui était le plus important dans le choix d'un vaccin contre la COVID-19 (n=1595), 46 % ont choisi « Recevoir le vaccin le plus efficace », 15 % ont choisi « Recevoir n'importe quel vaccin dès que possible » et 12 % ont choisi « Recevoir le vaccin pour lequel le moins d'effets secondaires ont été signalés ». Le nombre de doses et le type de technologie vaccinale n'étaient pas des facteurs importants, et 14 % des répondants ont indiqué qu'ils n'avaient aucune préférence pour un vaccin contre la COVID-19 en particulier.
    • Pour ceux qui attendront pour se faire vacciner même une fois le vaccin disponible : 80 % attendront afin de s'assurer de l'innocuité du vaccin, 64 % attendront afin de s'assurer de l'efficacité réelle du vaccin (n=691)Note de bas de page 167.
    • Dans un sondage mené du 4 au 13 décembre 2020Note de bas de page 168 auprès des prestataires de soins de santé, les facteurs les plus importants qui ont été signalés comme influant sur la décision de se faire vacciner étaient l'innocuité du vaccin (95,5 %), suivie de l'efficacité réelle du vaccin (86,7 %) (n = 14 336)

Priorités en matière de recherche

La COVID-19 et les vaccins connexes sont nouveaux; il existe donc de nombreux domaines dans lesquels des recherches s'imposent. Les recherches visant à répondre aux questions en suspens suivantes (non classées par ordre d'importance) en s'appuyant sur des données à court et à long terme, lorsqu'elles sont disponibles, sont encouragées :

Nouvelles priorités de recherche

Efficacité potentielle, efficacité réelle, immunogénicité et innocuité

  1. Quelles sont l'efficacité réelle pour la population (contre l'infection/la transmission, l'hospitalisation et la mort) et la durabilité de protection à moyen et long terme d'une dose unique ou d'une série complète de chaque vaccin contre la COVID-19 approuvé au Canada?
  2. Quelles sont l'utilité, l'efficacité potentielle, l’efficacité réelle, l'immunogénicité et l'innocuité des vaccins contre la COVID-19 dans divers groupes de population (p. ex. les adultes d'âge avancé, les personnes atteintes d'affections à haut risque, y compris les personnes atteintes d'affections auto-immunes et les receveurs de greffes, et les individus socialement ou professionnellement vulnérables, les personnes enceintes ou qui allaitent, les enfants/adolescents, les personnes fragiles)? Une troisième dose de rappel du vaccin ou une dose plus élevée de vaccin est-elle nécessaire pour obtenir une réponse immunitaire appropriée chez les personnes?
  3. Quelles sont l'efficacité potentielle, l'efficacité réelle, l'immunogénicité et l'innocuité des vaccins contre la COVID-19 chez les personnes qui ont déjà été atteintes d'une infection par le SRAS-CoV-2 confirmée en laboratoire?
    1. Y a-t-il une différence perceptible entre les personnes séronégatives et séropositives dans l'un des paramètres ci-dessus?
    2. Une exposition antérieure au SRAS-CoV-2 a-t-elle une incidence sur l'utilité, l'efficacité potentielle, l'efficacité réelle, l'immunogénicité ou l'innocuité des vaccins contre la COVID-19?
    3. Un vaccin à dose unique peut-il être aussi efficace et sûr chez les personnes atteintes antérieurement d'une forme avérée de COVID-19?
    4. Y a-t-il des signaux de sécurité émergents associés à l'immunisation contre la COVID-19 que la compréhension actuelle du profil d'innocuité de vaccins similaires ne permet pas d'anticiper?
    5. La vaccination d'individus avec ou sans infection antérieure par le SRAS-CoV-2 risque-t-elle de provoquer une aggravation ou une modification de la maladie lors d'une infection ultérieure par le SRAS-CoV-2 ou d'autres coronavirus endémiques?
  4. Quelles sont l'efficacité potentielle, l'efficacité réelle, l'immunogénicité et l'innocuité des vaccins contre la COVID-19 (y compris les rappels potentiels) contre les variants préoccupants du SRAS-CoV-2?
  5. Quelle est l’efficacité potentielle et l’efficacité réelle des doses de rappel chez les résidents d’ÉSLD et les personnes âgées vivant dans des milieux de vie collectifs (et dans d’autres populations clés et dans la population générale), notamment contre : l’infection symptomatique, la maladie sévère, la transmissibilité, les épidémies, les hospitalisations et le décès?
  6. Quels sont les risques associés à une dose de rappel plus tôt que nécessaire?
  7. Des ÉI particuliers ayant été associés à la série primaire (p. ex., myocardite/péricardite) seront-ils aussi associés aux doses supplémentaires/de rappel?
  8. Quel est le corrélat de la protection contre le SRAS-CoV-2? En quoi les réponses immunitaires attribuables à une infection naturelle sont-elles similaires ou différentes de celles qui sont provoquées par les vaccins contre la COVID-19? L’infection naturelle par le SRAS-CoV-2 (symptomatique ou asymptomatique) est-elle associée à une protection contre une réinfection ou une forme sévère de la maladie?
  9. D’autres données probantes immunologiques sont nécessaires dans les domaines suivants afin d’éclairer les prévisions de l’efficacité :
    1. Comment les réponses immunitaires évoluent-elles dans le temps? Quelle est la durabilité des réponses immunitaires contre le SRAS-CoV-2 à long terme? Quelle est l’incidence de la dose ou de l’intervalle de vaccination sur la durabilité?
    2. Quelles sont les réponses immunitaires les plus importantes pour la protection contre l’infection (immunité adaptative ou innée), la maladie sévère ou la transmissibilité? Quel est le rôle de l’immunité humorale par rapport à l’immunité cellulaire dans la prévention de l’échappement des variants viraux au système immunitaire? Quelle est l’ampleur minimale de la réponse anticorps nécessaire à la protection?
    3. Les anticorps de classe immunoglobuline (IgA/IgG/IgM) protègent-ils contre le SRAS-CoV-2, et quel est le corrélat de protection?
  10. Quel niveau de couverture vaccinale contre la COVID-19 est nécessaire pour atteindre les différentes étapes de santé publique, notamment : une couverture permettant de réduire la charge du système de santé à un niveau gérable, l’obtention d’une immunité communautaire pour protéger les personnes non vaccinées et la suppression des contrôles liés aux mesures de santé publique? Quelles sont les caractéristiques du vaccin qui jouent le rôle le plus important concernant ces étapes (c’est-à-dire efficacité, durabilité, adoption)?
  11. Quel est le niveau de fond des réponses canadiennes spécifiques aux vecteurs vaccinaux (c’est-à-dire anti-AdCh)? Ces réponses sont-elles plus élevées dans certains groupes? Ces réponses vont-elles nuire à l’efficacité du vaccin chez ces groupes hautement séropositifs? Quelle est la durée de l’immunité anti-interférences des vecteurs après l’administration de vaccins à vecteurs viraux?
  12. Comment les variants viraux influeront-ils sur l’utilité, l’efficacité potentielle, l’efficacité réelle, l’immunogénicité et l’innocuité d’un vaccin en ce qui concerne la mort, la maladie sévère, la maladie symptomatique, la maladie asymptomatique, l’infectiosité et la transmission? Quel est l’effet de l’utilisation de vaccins de rappel contenant des antigènes hétérologues et quel est le moment optimal pour la vaccination de rappel?
  13. Certains composants de vaccins contre la COVID-19 risquent-ils fortement de provoquer une réaction anaphylactique?
  14. Quelle est l’incidence des ESSI rares et graves après l’administration des vaccins contre la COVID-19?
    1. Quelle est la fréquence de la thrombose et de la thrombocytopénie, y compris les CVST et les CID (coagulation intravasculaire disséminée) suivant la vaccination contre la COVID-19 et après l’infection par le SRAS-CoV-2? Quel est l’élément déclencheur du développement de cet ÉI à la suite d’une vaccination et que peut-on faire pour atténuer son développement?
    2. Quel est le mécanisme biologique exact par lequel les vaccins à vecteur viral peuvent déclencher un TTIV? La TTIV est-elle un effet de classe des vaccins à vecteur adénoviral ou existe-il des mécanismes distincts qui sont spécifiques au produit (p. ex., en raison des doses différentes ou de l’importance de la réponse immunitaire selon la nature des vaccins)?
    3. De quelle façon l’âge, le sexe ou autres caractéristiques du patient (p. ex., grossesse, comportements favorables à la santé) affectent-ils la fréquence de la TTIV et de ses complications?
  15. Y a-t-il une association entre les vaccins contre la myocardite/péricardite et l’ARNm contre la COVID-19? Si oui, quel est le mécanisme biologique par lequel les vaccins à ARNm peuvent déclencher une myocardite/péricardite? Comment l’âge, le sexe, d’autres caractéristiques du patient ou le calendrier de vaccination affectent-il l’incidence de la myocardite/péricardite après l’administration des vaccins contre la COVID-19?
  16. Les antécédents d’infection par un coronavirus endémique ont-ils un impact sur l’évolution de la maladie du SRAS-CoV-2? Existe-t-il une protection croisée ou une interférence des anticorps ou de l’exposition aux coronavirus saisonniers humains en cas d’exposition au SRAS-CoV-2 ou de vaccination contre le SRAS-CoV2?
  17. Y a-t-il des interactions négatives entre la vaccination contre la COVID-19 et d’autres médicaments? Quel est l’intervalle recommandé entre les vaccins contre la COVID-19 et les anticorps prophylactiques ou thérapeutiques anti-SRAS-CoV-2 ou le plasma de convalescents?
  18. La vaccination a-t-elle une incidence sur la transmissibilité du SRAS-CoV-2 chez les personnes atteintes d’une infection asymptomatique?
  19. Quel est le rôle de l’atténuation saisonnière du SRAS-CoV-2?
  20. Quelle est l’incidence de la vaccination sur la variation de la transmission au niveau individuel (p. ex., les superpropagateurs)?
  21. Quelle est l’épidémiologie des VP du SRAS-CoV-2 dans le temps et dans le pays et ses régions? Quelles sont la transmissibilité et la virulence (y compris les hospitalisations et les décès) des VP du SRAS-CoV-2?
  22. Quelles sont les caractéristiques épidémiologiques de la survenue de l’infection (p. ex., caractéristiques des personnes vaccinées, VP)?

Administration des vaccins

  1. Quel est le produit, la dose de vaccin, l’intervalle entre les doses, l’intervalle entre la série primaire et la dose supplémentaire/de rappel optimaux, et le besoin potentiel (et la fréquence) de doses de rappel futures pour les résidents des ÉSLD et les personnes âgées vivant dans des milieux de vie collectifs (et d’autres populations clés et la population générale) afin d’assurer une protection contre le SRAS-CoV-2 et les VP?
  2. Quelles sont l'efficacité potentielle, l'efficacité réelle, l'immunogénicité et l'innocuité d'un calendrier de doses mixtes ou d'une série de doses de rappel mixtes?
  3. Quels sont les intervalles minimum maximum et optimal entre les doses d'un vaccin contre la COVID-19 comprenant un calendrier à deux doses qui continuent à assurer une protection contre la maladie?
  4. D'autres vaccins (p. ex. le bacille de Calmette-Guérin) protègent-ils contre la COVID-19 par des effets non ciblés?
  5. Les vaccins contre la COVID-19 peuvent-ils être administrés simultanément avec d'autres vaccins qui ne sont pas contre la COVID-19? Quel est l'intervalle minimum entre l'administration d'un vaccin contre la COVID-19 et d'autres vaccins non-COVID-19 (vaccins vivants ou inactivés)? Quels sont les résultats immunologiques et cliniques si les vaccins contre la COVID-19 étaient administrés simultanément avec d'autres vaccins non-COVID-19?
  6. Quel est l'intervalle minimum requis pour l'administration du vaccin après l'administration de plasma de convalescents ou d'anticorps monoclonaux neutralisant la protéine de spicule du SRAS-CoV-2?

Priorités de recherche permanentes

Infection par la COVID-19 et maladie

  1. Quel est le profil épidémiologique de la COVID-19 (p. ex. la période de transmissibilité, tous les groupes à risque)?
    1. Quelle est la répartition de la maladie et le spectre de la maladie clinique pour la COVID-19, y compris la morbidité et le risque en fonction de l'âge, du sexe et d'autres variables démographiques associées à un risque accru?
    2. Quelles sont les dynamiques de transmission de la COVID-19, y compris le degré de transmission asymptomatique, le rôle des enfants dans la transmission, la transmissibilité verticale, le début et la durée de l'excrétion virale et de la période de transmissibilité, les effets des conditions météorologiques changeantes et les tendances au fil du temps?
    3. Quels sont les taux de co-infection par la COVID-19 avec d'autres agents pathogènes des voies respiratoires, et quels sont les effets sur la pathogénie et les résultats cliniques?
  2. Le vaccin contre la COVID-19 peut-il être utilisé pour protéger les contacts familiaux d'un cas? La vaccination contre la COVID-19 diminue-t-elle l'infectiosité et la maladie clinique chez les individus qui ont déjà contracté l'infection? La vaccination contre la COVID-19 est-elle utile pour interrompre la transmission?

Éthique, équité, faisabilité et acceptabilité

  1. Quelle est l'acceptabilité (a) du ou des vaccins contre la COVID-19 et (b) d'autres vaccins financés par des fonds publics au fil du temps et dans différents contextes épidémiologiques parmi les principales populations, les populations marginalisées, les fournisseurs et les décideurs à l'échelle du pays?
    1. Quels facteurs influent sur l'acceptabilité de la vaccination contre la COVID-19 dans ces groupes?
    2. Quels facteurs influent sur l'acceptabilité de la vaccination en général?
    3. Comment l'acceptabilité des principales populations prioritaires à immuniser en premier par le ou les vaccins contre la COVID-19 évoluera-t-elle dans différents contextes épidémiologiques dans tout le pays?
    4. Quelles stratégies peuvent améliorer l'acceptabilité d'un vaccin contre la COVID-19 dans ces groupes?
  2. Comment les décisions relatives à l'attribution des vaccins peuvent-elles être communiquées aux personnes et aux communautés afin de maintenir la confiance dans les autorités de santé publique?
  3. Quelles stratégies de vaccination contre la COVID-19 ou stratégies de mise en œuvre peuvent réduire les inégalités en matière de santé dans des populations auxquelles le programme de vaccination s'adresse directement, et dans des populations auxquelles le programme de vaccination ne s'adresse pas, mais qui en sont encore affectées (p. ex., la maladie, les effets indirects comme pour les soignants ou les effets externes comme l'immunité communautaire)?
  4. Un autre vaccin contre la COVID-19 peut-il être utilisé pour compléter une série primaire ou pour faire office de dose de rappel? Comment les voyageurs de retour au pays sont-ils pris en charge s'ils ont commencé, mais n'ont pas terminé une série de vaccin contre la COVID-19 à l'étranger?

Qualité de vie liée à la santé et bien-être

  1. Quels sont la qualité de vie liée à la santé ou le bien-être des patients atteints de la COVID-19 et des soignants au fil du temps (p. ex. services publics de santé, résultats déclarés par les patients, mesures des expériences déclarées par les patients)?
  2. Quel est l'impact de la vaccination contre la COVID-19 sur la qualité de vie liée à la santé ou sur le bien-être des individus?

Questions liées à la surveillance

La collecte de données, l'analyse, l'interprétation et la diffusion opportune continues et systématiques sont fondamentales pour planifier, mettre en œuvre, évaluer et prendre des décisions fondées sur des données probantes. Pour appuyer de tels efforts, le CCNI encourage l'amélioration de la surveillance dans les domaines suivants :

1. Épidémiologie

2. Travaux de laboratoire (p. ex., caractérisation des souches)

3. Vaccin (couverture, efficacité, innocuité)

Tableau 6. Force des recommandations du CCNI
Force de la recommandation du CCNI
Fondée sur des facteurs qui ne se limitent pas à la force des données probantes (p. ex. besoin en santé publique)
Forte Facultative
Libellé « devrait/ne devrait pas être réalisée » « peut/peut ne pas être réalisée »
Justifications Les avantages connus/attendus l'emportent sur les inconvénients connus/attendus (« devrait »);
ou les inconvénients connus/attendus l'emportent sur les avantages connus/attendus (« ne devrait pas »).
Les avantages connus/attendus sont à peu près équivalents aux inconvénients connus/attendus ou les données probantes n'indiquent pas avec certitude les avantages et les inconvénients.
Conséquence Une recommandation forte s'applique à la plupart des populations/personnes et devrait être suivie à moins qu'il n'existe une justification claire et convaincante d'utiliser une autre approche. Une recommandation facultative peut être offerte ou non pour certaines populations/personnes dans certaines circonstances. D'autres approches peuvent être acceptables.

Liste des abréviations

Ad26
Adénovirus humain modifié de type 26
AdCh
Adénovirus du chimpanzé
ARCHE
Alberta Research Center for Health Evidence
ASPC
Agence de la santé publique du Canada
ARNm
Acide ribonucléique messager
CCI
Comité canadien sur l'immunisation
CCNI
Comité consultatif national de l'immunisation
COVID-19
Maladie à coronavirus 2019
CSO
Classes de système d'organe
CVST
Thrombose des sinus veineux cérébraux
DART
Developmental and Reproductive Toxicity
DS
Dose standard
ÉÉFA
Éthique, équité, faisabilité et acceptabilité
ÉI
Événement indésirable
ÉIG
Évènements indésirables graves
ÉI sévère
Évènement indésirable sévère
EMA
Agence européenne des médicaments
ESSI
Effet secondaire suivant l'immunisation
É.-U.
États-Unis
ÉSLD
Établissement de soins de longue durée
FDA
Food and Drug Administration, États-Unis
GCI
Guide canadien d'immunisation
GRADE
Grading of Recommendations Assessment, Development and Evaluation
IC
Intervalle de confiance
Ig
Immunoglobuline
IM
Intramusculaire
MenACWY
Vaccin méningococcique quadrivalent
OCDE
Organisation de coopération et de développement économiques
OMS
Organisation mondiale de la Santé
PCR
Réaction en chaîne de la polymérase
PF4
Facteur plaquettaire 4
R.-U.
Royaume-Uni
SC
Santé Canada
SFC
Syndrome de fuite capillaire
SGB
Syndrome de Guillain-Barré
SII
Serum Institute of India
SRAS-CoV-2
Coronavirus responsable du syndrome respiratoire aigu sévère 2
TCT
Test cutané à la tuberculine
TIPIV
Thrombocytopénie immunitaires prothrombotique induite par le vaccin
TLIG
Test de libération de l'interféron gamma
TTIV
Thrombocytopénie thrombotique immunitaire induite par le vaccin
STT
Syndrome de thrombose avec thrombocytopénie
VIH
Virus de l'immunodéficience humaine
VI
Variant d'intérêt
VP
Variant préoccupant
USI
Unité de soins intensifs

Remerciements

La présente déclaration a été préparée par : SJ Ismail, K Young, MC Tunis, A Killikelly, R Stirling, O Baclic, J Zafack, M Salvadori, N Forbes, L Coward, C Jensen, R Krishnan, NK Abraham, Y-E Chung, B Warshawsky, E Wong, K Farrah, R Pless, A Nam, C Quach, S Deeks et C Quach au nom du Groupe de travail sur les vaccins contre les maladies infectieuses à haut risque du CCNI et a été approuvée par le CCNI.

Le CCNI remercie vivement les personnes suivantes pour leur contribution : C Quach, C Mauviel, K Ramotar, N St-Pierre, S Pierre, E Tice, A Sinilaite, MW Yeung, L Whitmore, J Shurgold, J Vachon, J Macri, J Mielczarek, R Goddard, B Sader, M Patel et A House, ainsi que Alberta Research Centre for Health Evidence et le Groupe consultatif en matière d'éthique en santé publique de l'ASPC.

CCNI

Membres : S Deeks (présidente), R Harrison (vice-présidente), J Bettinger, P De Wals, E Dubé, V Dubey, K Hildebrand, K Klein, J Papenburg, C Rotstein, B Sander, S Smith et S Wilson.

Ancien membre : C Quach (présidente)

Représentants de liaison : L M. Bucci (Association canadienne de santé publique), E Castillo (Société des obstétriciens et gynécologues du Canada), A Cohn (Centers for Disease Control and Prevention, É-U), L Dupuis (Association des infirmières et infirmiers du Canada), J Emili (Collège des médecins de famille du Canada), D Fell (Association canadienne pour la recherche et l'évaluation en immunisation), M Lavoie (Conseil des médecins hygiénistes en chef), D Moore (Société canadienne de pédiatrie), M Naus (Comité canadien sur l'immunisation) et A Pham-Huy (Association pour la microbiologie médicale et l'infectiologie Canada).

Représentants d'office : A Noble (Direction des produits de santé commercialisés, SC), E Henry (Centre de l'immunisation et des maladies respiratoires infectieuses [CIMRI], ASPC), M Lacroix (Groupe consultatif en matière d'éthique en santé publique, ASPC), S Ogunnaike-Cooke (CIMRI, ASPC), C Lourenco (Direction des médicaments biologiques et radiopharmaceutiques, SC), G Poliquin (Laboratoire national de microbiologie, ASPC), V Beswick-Escanlar (Défense nationale et Forces armées canadiennes) et T Wong (Direction générale de la santé des Premières nations et des Inuits, Services autochtones Canada)

Groupe de travail du CCNI sur les vaccins contre les maladies infectieuses à haut risque

Membres : S Deeks (présidente), R Harrison (vice-présidente), Y-G Bui, K Dooling, K Hildebrand, M Miller, M Murti, J Papenburg, R Pless, S Ramanathan, N Stall et S Vaughan.

Participants à l'ASPC : NK Abraham, E Abrams, K Farrah, N Forbes, SJ Ismail, C Jensen, R Krishnan, A Killikelly, A Nam, M Patel, K Ramotar, A Sinilaite, N St-Pierre, E Tice, MC Tunis, MW Yeung, et K Young.

Annexe A : Résumé des données probantes concernant le vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19

L'étude C4591001 est l'essai pivot de Phases 1/2/3 pour le vaccin contre la COVID-19 de Pfizer-BioNTech. Des données probantes sur l'immunogénicité sont disponibles pour les adultes de 18 à 55 ans et de 65 à 85 ans. Des données probantes sur l'innocuité et l'efficacité du vaccin sont disponibles pour les adultes de 16 ans et plus. Les études n'ont pas inclus de participants provenant d'établissements de soins de longue durée. Les Phases 2/3 de l'essai ont porté sur environ 44 000 participants randomisés (1:1) qui ont reçu soit le vaccin, soit un placebo. Les données présentées ci-dessous sont destinées à une analyse provisoire. Par conséquent, la durée du suivi n'est pas uniforme, mais était inférieure à quatre mois après la deuxième dose (maximum de 14 semaines) pour tous les participants.

Des données probantes provenant des essais de Phases 2/3 en cours (participants de 16 ans et plus Note de bas de page 169 et chez les adolescents de 12 à 15 ans Note de bas de page 170 ont été publiées en décembre 2020 et en mai 2021, respectivement, après avoir été examinées par le CCNI. Les données probantes tirées de la surveillance et des études post-commercialisation se trouvent dans le corps de la présente déclaration.

Efficacité

Complications graves liées à la COVID-19

Il n'existe pas de données sur l'efficacité concernant les hospitalisations et les décès en particulier, mais il existe des données sur l'efficacité contre les complications graves liées à la COVID-19, définies comme la OVID-19 confirmée en laboratoire présentant l'une des caractéristiques supplémentaires suivantes : signes cliniques au repos indicateurs d'une maladie systémique grave; insuffisance respiratoire; signes de choc; dysfonctionnement rénal, hépatique ou neurologique aigu important; admission à l'USI ou décèsNote de bas de page 171.

Il peut y avoir un effet protecteur contre les complications graves liées à la COVID-19 lorsqu'un individu reçoit au moins une dose de vaccin (efficacité globale du vaccin de 88,9 %, IC à 95 % : de 20,1 à 99,7 %), sur la base d'un cas répertorié dans le groupe recevant le vaccin (N = 21 669) et de neuf cas dans le groupe placebo (N = 21 686). L'efficacité du vaccin contre la COVID-19 grave a également été examinée après administration de la deuxième dose (à partir de 7 jours et 14 jours après la deuxième dose), mais le nombre d'évènements signalés était insuffisant (une complication grave dans le groupe recevant le vaccin et trois dans le groupe placebo pour chaque complication) pour déterminer si le vaccin était utile pour réduire les complications graves avec une précision quelconque (c.-à-d. que les estimations ponctuelles qui en découlaient étaient associées à de larges intervalles de confiance, dont zéro).

Chez les adolescents de 12 à 15 ans, l'efficacité potentielle du vaccin n'a pas pu être évaluée contre des complications sévères, car aucun cas de COVID-19 sévère n'avait été confirmé à la date d'analyse des données sur l'efficacité potentielle. De plus, aucun décès n'a été identifié chez les participants adolescents à l'étude pendant l'essai clinique Note de bas de page 170.

COVID-19 symptomatique

Chez les adultes de 16 ans et plus

L'efficacité estimée du vaccin au moins 7 jours après la deuxième dose était de 94,6 % (IC à 95 % : de 89,9 à 97,3 %), 9 cas symptomatiques de COVID-19 ayant été confirmés, selon la définition du protocole de l'essaiNote de bas de page 169 parmi les sujets qui ont reçu le vaccin (N = 19 965) par rapport à 169 cas parmi les sujets qui ont reçu le placebo (N = 20 172). L'efficacité du vaccin au moins 14 jours après la deuxième dose dans cette population était comparable (94,4 %, IC à 95 % : de 89,1 à 97,3 %). Les résultats étaient similaires lorsqu'on a estimé l'efficacité expressément chez les individus sans aucun signe d'infection antérieure par le SRAS-CoV-2 à 95,0 % (IC à 95 % : de 90,3 % à 97,6 %), 8 cas ayant été confirmés parmi les sujets qui ont reçu le vaccin (N = 18 198) par rapport à 162 cas parmi les sujets qui ont reçu le placebo (N = 18 325).

Lorsque les participants à l'étude sans évidence d'infection antérieure par le SRAS-CoV-2 ont été stratifiés par âge, l'efficacité du vaccin contre la COVID-19 à partir de sept jours après la deuxième dose se situait entre 93,7 % (plus de 55 ans) et 95,6 % (de 16 à 55 ans). Chez les personnes de 65 ans et plus, le taux d'efficacité du vaccin s'est établi à 94,7 % (IC à 95 % : 66,7 à 99,9 %), tandis que l'efficacité observée du vaccin chez les participants de 75 ans et plus a été de 100 % comparativement au placebo, mais avec de grands intervalles de confiance [y compris zéro] attribuable au nombre insuffisant d'effets signalés (0 contre 5 cas; IC à 95 % : -13,1 à 100,0 %). L'efficacité estimée d'un vaccin contre la COVID-19 confirmée sept jours après la deuxième dose était supérieure à 91 % (entre 91,7 % et 100,0 %) dans tous les sous-groupes stratifiés par état « à risque » (p. ex. présence d'une ou plusieurs comorbidités). L'efficacité estimée du vaccin contre la COVID-19 confirmée dans les sept jours suivant la deuxième dose était supérieure à 89 % pour toutes les races (de 89,3 % à 100 %) et à 94 % pour toutes les ethnies incluses dans la sous-analyse (de 94,4 % à 95,4 %).

Après la première dose mais avant l'administration de la deuxième dose, 39 cas de COVID-19 ont été signalés dans le groupe du vaccin (n = 21 669), comparativement à 82 dans le groupe placebo (n = 21 686), pour une efficacité globale du vaccin estimée à 52,4 % (IC à 95 % : 29,5 à 68,4 %). Si on limite l'analyse aux cas identifiés seulement dans la période comprise entre le 15e jour après la première dose et avant la deuxième dose, l'efficacité estimée du vaccin passe à 92,3 % (IC à 95 % : 69 à 98 %).

Tableau 7. Efficacité du vaccin de Pfizer-BioNTech contre la première apparition de la COVID-19 symptomatique après la première dose mais avant la deuxième dose chez les participants de 16 ans et plusFootnote a
Période d'intérêt Évènements dans le groupe du vaccin
(N=21 669)
Évènements dans le groupe placebo
(N=21 686)
Estimation de l'efficacité du vaccin
(IC à 95 %)
Après la première dose et avant la deuxième 39 82 52,4 % (29,5 à 68,4 %)
Plus de 14 jours après la première dose et avant la deuxièmeFootnote b 2 27 92,3 % (69 à 98 %)
Note de bas de tableau 7 (a)

Dans la population d'efficacité totale disponible, composée de participants à l'étude randomisée qui ont reçu au moins une dose de l'étude d'intervention (vaccin ou placebo).

Retour à la référence de la note de bas de page a

Note de bas de tableau 7 (b)

Comité sur l'immunisation du Québec. Stratégie de vaccination contre la COVID-19 : report de la 2e dose en contexte de pénurie. Institut national de Santé publique du Québec, 18 décembre 2020.

Retour à la référence de la note de bas de page b

Chez les adolescents de 12 à 15 ans

Chez les participants à l'étude sans preuve préalable d'une infection par le SRAS-CoV-2, aucun cas de COVID-19 n'a été confirmé au moins 7 jours suivant la deuxième dose chez les vaccinés (n = 1 005) par rapport aux 16 cas du groupe placebo (n = 978) avec une efficacité potentielle estimée du vaccin contre la COVID-19 confirmée à 100 % (IC à 95 % : 75,3 à 100 %)Note de bas de page 170.

Après la première dose mais avant l'administration de la deuxième dose, trois (3) cas de COVID-19 ont été identifiés dans le groupe vacciné (n = 1 131) par rapport à 12 cas dans le groupe placebo (n = 1 129) avec une efficacité potentielle estimée globale du vaccin chez les adolescents de 12 à 15 ans de 75 % (IC à 95 % : 7,4 à 95,5 %. Si l'analyse avait été limitée aux cas identifiésseulement dans la période de 11 jours ou plus après la première dose mais avant la deuxième dose, l'efficacité estimée du vaccin a augmenté à 100 % (IC à 95 % : 41,4 à 100 %)Note de bas de page 114.

Tableau 8. Efficacité du vaccin de Pfizer-BioNTech contre la première apparition de la COVID-19 symptomatique après la première dose mais avant la deuxième dose chez les adolescents de 12 à 15 ansFootnote a
Période d'intérêt Évènements
dans le groupe
vacciné
(N = 1 131)
Évènements
dans le groupe
placebo
(N = 1 129)
Estimation de l'efficacité
du vaccin
(IC à 95 %)
Après la première dose
mais avant la deuxième
dose
3 12 75 % (7,4 to 95,5 %)
≥11 jours après la
première dose mais
avant la deuxième
dose
0 8 100 % (41,4 to 100 %)
Note de bas de tableau 8 (a)

Dans la population d'efficacité totale disponible, composée de participants à l'étude randomisée qui ont reçu au moins une dose de l'intervention d'étude (vaccin ou placebo)

Retour à la référence de la note de bas de page a

Aucune analyse n'étudiait expressément l'efficacité chez les individus qui manifestent des signes d'infection antérieure par le SRAS-CoV-2.

Infection asymptomatique et transmission

Il n'existe pas de données sur l'efficacité pour ces résultats à l'heure actuelle.

Immunogénicité

Réponses immunitaires humorales

Les anticorps de liaison et de neutralisation du SRAS-CoV-2 induits par ce vaccin ont tous deux présenté des tendances similaires dans les deux groupes d'âge étudiés (N = 195). Des réponses immunitaires maximales ont été observées le 28e jour, soit 7 jours après la deuxième dose. Des anticorps de liaison et de neutralisation ont été induits par une dose de vaccin et stimulés par la seconde dose de vaccin. La réponse immunitaire déclenchée par une dose représentait 10 % à 20 % de la réponse immunitaire maximale. Jusqu'au 35e jour, les adultes plus âgés (de 65-85 ans) avaient une réponse immunitaire plus faible que les jeunes adultes (de 18-55 ans). Après le pic du 28e jour, les réponses immunitaires ont diminué jusqu'au point d'évaluation final du 52e jour, soit 30 jours après la deuxième dose chez les jeunes adultes, alors qu'aucune diminution n'a été observée chez les adultes plus âgés. À tous les moments et dans tous les groupes d'âge, les réponses immunitaires étaient plus élevées que chez les individus qui ont reçu le placebo.

Réponses immunitaires cellulaires

Les réponses immunitaires cellulaires ont été évaluées dans les groupes d'âge adulte (de 18 à 55 ans et de 65 à 85 ans). Les lymphocytes T CD4+ et CD8+ spécifiques au SRAS-CoV-2 ont été induits par le vaccin, comme le montre l'augmentation du pourcentage de ces cellules dans la population du 1er jour au 28e jour. Des augmentations ont été observées tant chez les jeunes adultes (18-55 ans) que chez les adultes plus âgés (de 65-85 ans). La caractérisation de ces cellules indique une réponse immunitaire cellulaire biaisée de type Th-1. Les points intermédiaires n'ont pas été décrits.

Innocuité des vaccins et effets secondaires suivant l'immunisation

Les données probantes sur l'innocuité chez les particiipants de 16 ans et plus sont basées sur des analyses provisoires de 37 586 participants dont le suivi médian était de deux mois (plage : moins de 2 semaines à moins de 14 semaines) après la deuxième dose. Environ 19 000 participants ont fait l'objet d'au moins deux mois de suivi, dont environ 9 500 ont reçu le vaccin. Les participantes qui ont reçu par inadvertance le vaccin (n = 12) ou le placebo (n = 11) pendant leur grossesse font l'objet d'un suivi. Les données probantes sur l'innocuité chez les
participants adolescents de 12 à 15 ans sont fondées sur des analyses intermédiaires de 2 260 participants. Approximativement 1 300 participants ont eu au moins deux (2) mois de suivi après la deuxième dose, dont 660 dans ce groupe vacciné.

Réactions locales

Chez les participants ayant reçu le vaccin, la fréquence des réactions locales était similaire après la première dose et après la deuxième dose. La douleur au point d'injection était très courante (de 66,1 % à 83,1 %, selon l'âge et selon que l'on administrait la première ou la deuxième dose). La plupart des réactions locales chez les participants ayant reçu le vaccin étaient d'intensité légère ou modérée; des réactions graves ont été déclarées par ≤0,6 % des participants. Aucune réaction locale de Stade 4 n'a été déclarée. Dans les deux groupes d'âge, l'apparition médiane des réactions locales après l'une ou l'autre des doses était de zéro à deux jours après la vaccination, et leur durée médiane était d'un à deux jours.

Réactions systémiques

Les évènements systémiques ont généralement augmenté en fréquence et en gravité chez les participants qui ont reçu le vaccin par rapport à ceux qui ont reçu le placebo, et dans le groupe d'âge plus jeune (16-55 ans) par rapport au groupe d'âge plus âgé (≥56 ans), la fréquence et la gravité augmentant avec le nombre de doses (la deuxième dose c. la première dose). La fatigue (de 34,1 % à 59,4 %), les maux de tête (de 25,2 % à 51,7 %) et les douleurs musculaires (de 13,9 % à 37,3 %) étaient très courants dans tous les groupes d'âge et respectivement après la première et la deuxième dose. La fièvre était courante après la première dose (3,7 % des individus de 16 à 55 ans, 1,4 % des individus de plus de 55 ans), mais était très courante après la deuxième dose (15,8 % des individus de 16 à 55 ans, 10,9 % des individus > 55 ans). Les douleurs articulaires étaient très courantes ou courantes dans tous les groupes d'âge (de 11,0 % à 21,9 % des individus de 16 à 55 ans, de 8,6 % à 18,9 % des individus > 55 ans). La diarrhée a été très fréquente ou fréquente dans les deux groupes d'âge (10,0 à 11,0 % chez les 16 à 55 ans et 8,0 % chez les 55 ans et plus), mais les taux ont été comparables à ceux observés dans le groupe placebo et n'ont pas semblé varier entre la dose 1 et la dose 2.

Les événements systémiques étaient plus fréquents chez les adolescents comparativement aux adultes. Dans le groupe des adolescents, la fatigue (60,1 % à 66,0 %), les maux de tête (55,3 % à 64,5 %), les frissons (27,6 % à 41,5 %), les douleurs musculaires (24,1 % à 32,4 %) et la fièvre (10,1 % à 19,6 %) étaient très courants après la première dose et la deuxième dose, respectivement. Les douleurs articulaires étaient courantes après la première dose (9,7 %) et très courantes après la deuxième dose (15,8 %). Les vomissements (2,8 % à 2,6 %) et la diarrhée (8,0 % à 5,9 %) étaient courants après la première dose et la deuxième dose, respectivement.

Chez les adolescents et les adultes, le jour médian d'apparition de la plupart des évènements systémiques après l'une ou l'autre dose de vaccin était d'un à trois jours après la vaccination, avec une durée médiane d'un jour, à l'exception de la fatigue et des frissons avec des durées médianes d'un ou de deux jours. La majorité des évènements systémiques étaient de gravité légère ou modérée.

Dans l'ensemble, la fréquence de tout évènement grave systémique après la première dose était de 0,9 % ou moins chez les personnes de 16 ans et plus. Après la deuxième dose, les évènements graves systémiques ont affiché des fréquences de moins de 2 %, à l'exception de la fatigue (3,8 %) et des maux de tête (2,0 %). La proportion de participants qui ont fait une forte fièvre (plus de 38,9 °C à 40,0 °C) a augmenté entre la première dose (0,2 %) et la deuxième dose (0,8 %). Une fièvre de Stade 4 (plus de 40,0 °C) a été signalée chez deux participants dans le groupe vacciné et chez deux participants dans le groupe placebo. Chez les adolescents de 12 à 15 ans, la fréquence des évènements systémiques sévères était de 3,5 % ou moins. Une fièvre de Stade 4 (40,4 °C) a été signalée chez un (1) participant du groupe vacciné.

Évènements indésirables graves ou sévères

Parmi les participants adultes de 16 ans et plus vacciné 1,1 % et 0,1 % d'entre eux ont ressenti au moins un ÉI sévère et un ÉI mettant la vie en danger, respectivement, par rapport à 0,7 % et à 0,1 % des participants du groupe placebo. Parmi les ÉI non sollicités non graves, il y avait un déséquilibre numérique de quatre cas de paralysie de Bell dans le groupe vacciné par rapport à aucun cas dans le groupe placébo. Ces cas de paralysie de Bell sont survenus 3, 9, 37 et 48 jours suivant la vaccination. Parmi les adolescents de 12 à 15 ans dans le groupe vacciné, 0,8 % et 0,1 % des participants ont ressenti au moins un ÉI sévère et un ÉI mettant la vie en danger, par rapport à 0,3 % et 0,1 % des participants au groupe placebo. Chez les adolescents, aucune différence cliniquement significative dans les ÉI par catégorie n'a été observée selon l'âge, le sexe ou la race/l'ethnicité.

Les proportions de participants ayant déclaré au moins un ÉIG étaient similaires dans le groupe vacciné (0,5 %) et dans le groupe placebo (0,4 %). Trois des ÉIG dans le groupe vacciné et aucun dans le groupe placebo ont été évalués par le chercheur comme étant liés à l'intervention de l'étude : 1 ÉIG de blessure à l'épaule liée à l'administration du vaccin, 1 ÉIG d'arythmie ventriculaire et 1 ÉIG de lymphadénopathie. Aucune différence cliniquement significative dans les ÉIG n'a été observée selon l'âge, le sexe ou la race/l'ethnicité. Après l'une ou l'autre des doses de vaccin, aucun participant n'a déclaré de réaction allergique immédiate au vaccin.

Autres évènements indésirables graves

Lymphadénopathie

La lymphadénopathie n'était pas un ÉI sollicité sur demande. Parmi les participants (n = 37 586) qui ont été suivis pendant une période de <2 semaines à <14 semaines après la deuxième dose, des effets indésirables de lymphadénopathie ont été signalés chez 0,3 % (n = 64) des participants (0,5 % [n = 54] dans le groupe d'âge le plus jeune et 0,1 % [n = 10] dans le groupe d'âge le plus âgé) du groupe vacciné et chez 6 participants (0,0 %) du groupe placebo. Parmi les EI de lymphadénopathie dans le groupe vacciné, la majorité (47 sur 64) des EI a été jugée par le chercheur comme étant liée au vaccin. La plupart des cas de lymphadénopathie ont été déclarés dans les deux à quatre jours suivant la vaccination. La durée moyenne de ces évènements était d'environ 10 jours, 11 évènements étant persistants à la date limite des données.

Appendicite

Parmi les participants qui ont été suivis de <2 semaines à <14 semaines après la deuxième dose, on comptait un total de 12 participants atteints d'appendicite, dont 8 dans le groupe vacciné. Six de ces huit cas sont survenus chez des adultes plus jeunes et deux chez des adultes plus âgés. Aucun des cas n'a été évalué comme étant lié au vaccin par les chercheurs. Le taux dans les deux groupes d'âge n'a pas été estimé plus élevé que prévu par rapport aux taux d'incidence de référence.

Décès

Six décès ont été signalés chez les partcipants adultes (de 16 ans et plus) en date du 14 novembre 2020, date limite pour la réception des données aux fins de l'analyse intérimaire. Y sont compris deux participants du groupe vacciné et quatre du groupe placebo. Aucun de ces décès dans le groupe vacciné n'a été évalué comme étant lié au vaccin contre la COVID-19. Aucun décès n'a été signalé chez les adolescents de 12 à 15 ans.

Annexe B : Résumé des données probantes concernant le vaccin Spikevax de Moderna contre la COVID-19

Des essais pivots de Phases 1, 2 et 3 sont en cours pour le vaccin contre la COVID-19 de Moderna. Des données probantes sur l'efficacité, l'immunogénicité et l'innocuité sont disponibles pour les adultes ≥ 18 ans. Les études n'ont pas inclus de participants provenant d'établissements de soins de longue durée. La Phase 3 de l'essai a porté sur 30 413 participants randomisés (1:1) qui ont reçu soit le vaccin (2 doses de 100 mcg), soit un placebo. Les données présentées ci-dessous sont destinées à une analyse provisoire. Par conséquent, la durée du suivi n'est pas uniforme, mais était une durée médiane de deux mois après la deuxième dose (maximum de 14 semaines) pour tous les participants. Les données probantes tirées de la surveillance et des études post-commercialisation se trouvent dans le corps de la présente déclaration.

Les données probantes sur l'essai de Phase 2/3 en cours (participants âgés de 12 à 17 ans) ont été publiées le 11 août 2021Note de bas de page 172 après l'examen des données probantes par le CCNI. Les données probantes issues de la surveillance et des études post-commercialisation se trouvent dans le corps principal de cette déclaration.

Efficacité

Complications graves attribuables à la COVID-19

Il n'existe pas de données sur l'efficacité concernant les hospitalisations et les décès en particulier, mais il existe des données sur l'efficacité contre les complications graves liées à la COVID-19, au sens donné à ce terme dans le protocole d'essaiNote de bas de page 173.

L'efficacité du vaccin contre la COVID-19 de Moderna pour protéger contre les cas graves de COVID-19 survenant au moins 14 jours après la deuxième injection a été constatée chez 28 207 participants adultes à l'étude (14 073 participants dans le groupe placebo et 14 134 participants dans le groupe du vaccin contre la COVID-19 de Moderna). Il y a eu 30 cas graves confirmés de COVID-19 dans le groupe placebo contre 0 cas chez les participants ayant reçu le vaccin ARNm-1273, pour une efficacité vaccinale estimée à 100,0 % (IC à 95 % : non évaluable à 100,0 %).

COVID-19 symptomatique

Le principal résultat de l'efficacité de l'étude a porté sur l'efficacité du vaccin contre la COVID-19 de Moderna pour protéger contre la COVID-19 confirmée à partir de 14 jours après la deuxième dose chez les participants à l'étude âgés de 18 ans ou plus sans preuve préalable d'une infection par le SRAS-CoV-2 au départ. Cette analyse a porté sur 28 207 participants à l'étude (14 073 participants dans le groupe placebo et 14 134 participants dans le groupe du vaccin contre la COVID-19 de Moderna), avec une durée médiane de suivi après avoir reçu la deuxième injection de 63 jours. Il y a eu 185 cas confirmés de COVID-19Note de bas de page 174 survenant au moins 14 jours après la deuxième injection chez les participants ayant reçu le placebo, contre 11 cas chez les participants ayant reçu le vaccin contre la COVID-19 de Moderna, pour une efficacité vaccinale estimée à 94,1 % (intervalle de confiance [IC] à 95 % : de 89,3 à 96,8 %).

Une analyse de sous-groupe du principal résultat intermédiaire de l'efficacité a été réalisée dans trois groupes d'âge : de 18 à < 65 ans (10,521 participants dans le groupe placebo et 10,551 participants dans le groupe du vaccin contre la COVID-19 de Moderna), ≥ 65 ans (3 552 participants dans le groupe placebo et 3,583 participants dans le groupe du vaccin contre la COVID-19 de Moderna), et un autre sous-groupe de participants à l'étude ≥ 75 ans (688 participants dans le groupe placebo et 630 participants dans le groupe du vaccin contre la COVID-19 de Moderna).

Chez les participants à l'étude âgés de 18 à < 65 ans, il y a eu 156 cas confirmés de COVID-19 survenus au moins 14 jours après la deuxième injection chez les participants ayant reçu le placebo, contre 7 cas chez les participants ayant reçu le vaccin ARNm-1273, pour une efficacité vaccinale estimée de 95,6 % (IC à 95 % : de 90,6 à 97,9 %). Le taux d'incidence correspondant pour 1 000 personnes-années (durée totale du risque dans chaque groupe de traitement) était de 64,63 dans le groupe placebo et de 2,88 dans le groupe du vaccin contre la COVID-19 de Moderna. Chez les participants à l'étude ≥ 65 ans, il y a eu 29 cas confirmés de COVID-19 chez les participants ayant reçu le placebo contre 4 cas chez les participants ayant reçu le vaccin contre la COVID-19 de Moderna, ce qui correspond à une estimation ponctuelle un peu plus faible de l'efficacité du vaccin, soit 86,4 % (IC à 95 % : de 61,4 à 95,2 %). Le taux d'incidence correspondant pour 1 000 personnes-années était de 33,73 dans le groupe placebo et de 4,60 dans le groupe du vaccin contre la COVID-19 de Moderna. Dans le sous-groupe de participants à l'étude ≥ 75 ans, il y a eu 7 cas confirmés de COVID-19 parmi les participants ayant reçu le placebo contre 0 cas parmi les participants ayant reçu le vaccin contre la COVID-19 de Moderna, pour une efficacité correspondante du vaccin de 100,0 % (IC à 95 % : non évaluable à 100,0 %), mais cela doit être interprété avec prudence, car peu d'évènements ont été relevés dans ce groupe d'âge.

L'efficacité du vaccin contre la COVID-19 de Moderna pour protéger contre les cas confirmés de COVID-19 survenant au moins 14 jours après la deuxième injection a également été évaluée chez les participants les plus exposés au risque de complications graves liées à la COVID-19. Chez les participants à l'étude âgés de 18 à < 65 ans et à risque de complications graves liées à la COVID-19 (2 118 participants dans le groupe placebo et 2 155 participants dans le groupe du vaccin contre la COVID-19 de Moderna), il y avait 35 cas confirmés de COVID-19 dans le groupe placebo comparé à 2 cas parmi les participants ayant reçu le vaccin contre la COVID-19 de Moderna, pour une efficacité vaccinale estimée à 94,4 % (IC à 95 % : de 76,9 à 98,7 %). Chez les participants à l'étude âgés de 18 à < 65 ans, mais sans risque de complications graves dues à la COVID-19 (8 403 participants dans le groupe placebo et 8 396 participants dans le groupe du vaccin contre la COVID-19 de Moderna), l'efficacité du vaccin estimée était de 95,9 % (IC à 95 % : de 90,0 à 98,3 %) sur la base de 121 cas confirmés de COVID-19 dans le groupe placebo et de 5 cas parmi les participants ayant reçu le vaccin contre la COVID-19 de Moderna. Les estimations de l'efficacité du vaccin ont également été calculées pour certaines pathologies comorbides individuelles; toutefois, au 7 novembre 2020, le nombre d'évènements relevés dans ces sous-groupes (n = 0 à 11) était trop faible pour permettre une analyse significative.

Une analyse secondaire de l'efficacité du vaccin pour protéger contre la première apparition de COVID-19 confirmée commençant 14 jours après la deuxième dose, indépendamment d'une infection antérieure par le SRAS-CoV-2, telle que déterminée par le titre sérologique, a porté sur l'ensemble de l'analyse (participants à l'étude assignés au hasard ayant reçu au moins une injection). Il y avait 30 351 participants à l'étude âgés de 18 ans ou plus (15 170 participants dans le groupe placebo et 15 181 participants dans le groupe du vaccin contre la COVID-19 de Moderna). Il y a eu 187 cas confirmés de COVID-19 chez les personnes ayant reçu le placebo, contre 12 cas chez les personnes ayant reçu le vaccin contre la COVID-19 de Moderna, pour une efficacité vaccinale estimée à 93,6 % (IC à 95 % : de 88,6 à 96,5 %). Cependant, une petite proportion des participants à l'étude (n = 679/29 148; 2,3 %) avaient un état sérologique positif pour le SRAS-CoV-2 au départ.

Chez les participants qui n'avaient reçu qu'une dose du vaccin au moment de l'analyse des données (groupe placebo : n = 1 079; groupe du vaccin : n = 996), l'efficacité du vaccin se chiffrait à 80,2 % (IC à 95 % : 55,2 à 92,5 %). Lorsqu'on limite l'analyse aux 14 jours et plus suivant l'administration de la première dose, le taux d'efficacité augmente à 92,1 % (IC à 95 % : 68,8 à 99,1 %). Toutefois, il y a des données limitées sur l'efficacité d'une seule dose, plus de 28 jours après la vaccination.

Tableau 9. Efficacité du vaccin de Moderna contre la première apparition de la COVID-19 symptomatique après la première doseFootnote a
Période d'intérêt Évènements dans le groupe du vaccin
(N=996)
Évènements dans le groupe placebo
(N=1 079)
Estimation de l'efficacité du vaccin
(IC à 95 %)
Après la première dose 7 39 80,2 % (55,2 à 92,5 %)
Plus de 14 jours après la première dose 2 28 92,1 % (68,8 à 99,1 %)
Note de bas de tableau 9 (a)

Dans la population en intention de traiter modifiée, composée de participants à l'étude randomisée qui n'avaient reçu qu'une seule dose de l'intervention qui leur avait été attribuée (vaccin ou placebo) au moment de l'analyse.

Retour à la référence de la note de bas de page a

Infection asymptomatique et transmission

Des écouvillonnages du nasopharynx pour le virus SRAS-CoV-2 ont été collectés chez tous les participants à des intervalles déterminés avant la première dose et avant la deuxième dose. Quatorze participants du groupe vacciné qui étaient séronégatifs avant l'administration de la première dose présentaient une infection asymptomatique au second point temporel, comparativement à 38 participants dans le groupe placebo. Il n'existe aucune donnée officielle en matière d'efficacité; toutefois, l'évaluation à cet égard est en cours.

Immunogénicité

Réponses immunitaires humorales

Les anticorps qui se lient à la protéine de spicule ont été induits chez les participants ayant reçu le vaccin au jour 15 (15 jours après la première dose) et ils atteignent leur niveau maximal au jour 43 (15 jours après la deuxième dose). Les réponses anticorps de liaison maximales se rapprochent des niveaux des échantillons de sérums en phase de convalescence ayant la plus grande affinité. Les anticorps de liaison ont atteint des niveaux élevés au jour 36 (7 jours après la deuxième dose) et ont persisté quoique diminué jusqu'au jour 119 (90 jours après la deuxième dose), dernier jour pour lequel des données sont disponibles.

Les anticorps de liaison induits par une dose du vaccin (c'est-à-dire au jour 29) représentaient de 10 à 20 % des réponses élevées observées le jour 36. On ignore comment les réponses anticorps de liaison changent avec le temps. Les réponses anticorps de liaison jusqu'au jour 36 semblent être à peu près équivalentes d'un groupe d'âge à l'autre. Les données pourraient indiquer une durabilité des anticorps de liaison en fonction de l'âge. Les réponses anticorps pour les groupes d'âge de 70 ans et moins ont diminué plus lentement que celles pour les groupes d'âge supérieurs à 70 ans.

Les anticorps neutralisants n'ont été induits au niveau des sérums en phase de convalescence qu'au 36e jour, soit 7 jours après la deuxième dose pour tous les groupes d'âge. Les réponses anticorps neutralisants jusqu'au jour 36 semblent être à peu près équivalentes d'un groupe d'âge à l'autre. Les réponses anticorps neutralisants au jour 119 représentent une plus grande proportion du maximum au jour 43, par rapport aux réponses des anticorps de liaison. Cela peut indiquer une durabilité accrue des réponses anticorps neutralisants par rapport aux réponses anticorps de liaison. Ces données sur les anticorps neutralisants peuvent également indiquer une durabilité des anticorps neutralisants dépendant de l'âge, car les réponses anticorps au jour 119 de chaque cohorte étaient inversement proportionnelles à l'âge de la cohorte.

Les données d'immunogénicité d'un essai de Phase 1 portant sur le vaccin contre la COVID-19 de Moderna chez un nombre restreint de sujets (n=33) révèlent une persistance d'anticorps s'étendant à 6 moisNote de bas de page 175.

Réponses immunitaires à médiation cellulaire

Les lymphocytes T CD4+ et CD8+ propres au SRAS-CoV-2 ont été induits par le vaccin. L'induction maximale des lymphocytes T CD4+ et CD8+ a été observée au jour 43, 14 jours après la dose 2. Le pourcentage de lymphocytes T CD8+ était plus faible pour tous les groupes d'âge que celui des lymphocytes T CD4+. En comparant le pourcentage de cellules qui expriment Th-1 (IFNgamma, IL-2, TNF) par rapport à Th-2 (IL-4 et IL-13), il a été démontré que ce vaccin induit principalement une réponse immunitaire à médiation cellulaire de type Th1.

Innocuité du vaccin et effets indésirables suivant l'immunisation

Les données probantes sur l'innocuité sont basées sur des analyses intermédiaires de 30 351 participants avec une durée de suivi médiane de 63 jours après la dose 2 (92 jours après la dose 1). Un total de 23 276 participants ont fait l'objet d'au moins un moi de suivi après la dose 2 (12 021 personnes ont reçu le vaccin) et 7 667 personnes ont fait l'objet d'au moins deux mois de suivi après la dose 2 (3 894 personnes ont reçu le vaccin)Note de bas de page 174. Les participantes qui ont reçu par inadvertance le vaccin (n = 6) ou le placebo (n = 7) pendant leur grossesse font l'objet d'un suivi.

Réactions locales sollicitées

Chez les participants ayant reçu le vaccin, la fréquence des réactions locales a augmenté entre la dose 1 et la dose 2. La douleur au site d'injection était très courante (83,7 % des participants ayant reçu le vaccin après la dose 1 et 88,2 % des participants ayant reçu le vaccin après la dose 2). Les rougeurs étaient courantes (2,8 à 8,6 %) et le gonflement était courant à très courant (6,1 à 12,2 %). Des réactions de Stade 3 (graves) ont été signalées respectivement par 3,5 % et 7,0 % des participants ayant reçu le vaccin après la dose 1 et la dose 2Note de bas de page 174. Aucune réaction locale de Stade 4 n'a été déclarée. La majorité des réactions locales après l'une ou l'autre dose sont survenues dans les 1 à 2 jours suivant la vaccination et ont eu une durée médiane de 1 à 3 jours. Des réactions tardives au site d'injection (c'est-à-dire apparaissant au jour 8 ou après) ont été notées chez 0,8 % des participants après la première dose et chez 0,2 % des participants après la deuxième dose. Les réactions étaient caractérisées par un érythème, une induration et une sensibilité, et elles ont disparu en 4 à 5 jours.

Un gonflement axillaire localisé et une sensibilité constituaient des effets sollicités sur demande et sont apparus chez mois de 5 % des participants ayant reçu le placebo après une dose quelconque, et chez 10,2 % et 14,2 % des participants ayant reçu le vaccin après, respectivement, la dose 1 et la dose 2. Parmi les participants ayant reçu le vaccin, l'incidence du gonflement axillaire et de la sensibilité graves (Stade 3) a augmenté entre la dose 1 et la dose 2 (de 0,3 à 0,5 %), tandis que dans le groupe placebo, elle a diminué entre la dose 1 et la dose 2 (de 0,2 à 0,1 %)Note de bas de page 174.

Réactions systémiques sollicitées

Les évènements systémiques étaient généralement plus fréquents et plus graves chez les personnes ayant reçu le vaccin que chez celles ayant reçu le placebo, la fréquence et la gravité augmentant avec le nombre de doses (dose 1 par rapport à la dose 2). Chez les participants ayant reçu le vaccin, la fatigue (de 37,2 à 65,3 %), les maux de tête (de 32,6 à 58,0 %), les douleurs musculaires (de 22,7 à 57,6 %) et l'arthralgie (de 16,6 à 42,8 %) étaient très courants dans tous les groupes d'âge et, respectivement, après la dose 1 et la dose 2. Les frissons et les nausées/vomissements étaient très fréquents ou fréquents (respectivement de 8,3 à 44,2 % et de 8,3 à 19,0 %). La fièvre était peu courante après la première dose (0,8 %), mais très courante après la deuxième dose (15,5 %).

Des réactions de Stade 3 ont été signalées respectivement par 2,9 % et 15,7 % des participants ayant reçu le vaccin après la dose 1 et la dose 2 Note de bas de page 174. Après la dose 2, la fièvre de stade 3 (1,3 %), les maux de tête (4,3 %), la fatigue (9,4 %), la myalgie (8,7 %), l'arthralgie (5,1 %) et les frissons (1,3 %) étaient courants. Parmi les participants ayant reçu le placebo, seuls 2,7 % ont déclaré des évènements indésirables de Stade 3 l'une ou l'autre après dose.

L'incidence des évènements de Stade 4 était < 0,1 % après les deux doses chez les participants ayant reçu le vaccin (de 6 à 12 évènements) et le placebo (de 2 à 4 évènements). Une fièvre de stade 4 (> 40,0 °C) a été signalée chez 4 participants ayant reçu le placebo et 4 participants ayant reçu le vaccin après la dose 1, et 2 participants ayant reçu le placebo et 12 participants ayant reçu le vaccin après la dose 2. La majorité des réactions systémiques après l'une ou l'autre dose sont survenues dans les 1 à 2 jours suivant la vaccination et ont eu une durée médiane de 1 à 2 jours.

Évènements indésirables graves ou sévères non sollicités

Au cours des 28 premiers jours suivant l'administration de chaque dose, 1,5 % et 0,5 % des participants du groupe du vaccin (dose 1 et dose 2, respectivement) ont signalé des ÉIG et sévères non sollicités, contre 1,3 % et 0,6 % des participants du groupe placebo, Il n'y avait pas eu d'effet apparent de l'âge sur l'incidence relative des effets ÉIG dans le groupe du vaccin out le groupe placebo. Il y a eu trois cas de paralysie de Bell dans le groupe vacciné qui se sont produits 22, 29 et 32 jours après la deuxième dose et un cas dans le groupe placébo qui s'est produit 17 jours après l'injection. Un ca de paralysie de Bell dans le groupe vacciné a été considéré comme un ÉIG (femme de 67 ans diabétique hospitalisée pour un AVC en raison d'une nouvelle paralysie faciale 32 jours après la vaccination).

Trois des ÉIG chez les participants ayant reçu le vaccin ont été évalués par les chercheurs comme étant liés à l'intervention de l'étude : deux cas de gonflement facial et un cas de nausées et de vomissements accompagnés de maux de tête et de fièvre. Les chercheurs de l'étude ont considéré que quatre autres cas d'ÉIG chez les participants vaccinées et cinq autres chez les participants ayant reçu un placebo étaient liés à l'intervention de l'étudeNote de bas de page 174. Parmi les effets indésirables graves considérés comme liés au vaccin de Moderna, deux cas de maladies auto-immunes ont été signalés : une polyarthrite rhumatoïde chez un participant souffrant d'hypothyroïdie, non résolue au moment du rapport, et un dysfonctionnement autonome chez un participant souffrant d'hypothyroïdie, également non résolu au moment du rapport. Dans le groupe placebo, un participant (souffrant de douleurs dorsales chroniques) a développé une pseudo-polyarthrite rhyzomélique, en voie de résorption.

Aucune différence cliniquement significative dans les ÉIG n'a été observée selon l'âge. Le sexe et la race/l'ethnicité n'ont pas été évalués. Après l'une ou l'autre des doses de vaccin, aucun participant de l'étude de Phase 3 n'a déclaré de réaction allergique immédiate au vaccin.

Autres évènements indésirables graves

Œdème facial

Deux participantes ayant déjà reçu des injections de produit de remplissage dermique dans les joues ont présenté un œdème facial de 1 à 2 jours après l'administration du vaccin. Elles ont été traitées, et l'œdème a disparu au bout d'environ cinq jours. Une troisième participante ayant déjà reçu des injections de produits de remplissage dermique dans les lèvres a présenté un œdème de Quincke au niveau des lèvres deux jours après la vaccination, qui a été qualifié d'important sur le plan médical, mais pas considéré comme un ÉIG. La durée de ce troisième événement et la façon dont il a été géré n'ont pas été précisées.

Décès

Au total, treize décès ont été signalés, six dans le groupe du vaccin et sept dans le groupe placebo. Aucun de ces décès n'a été évalué comme étant lié à une quelconque intervention de l'étude ou à la COVID-19.

Annexe C : Résumé des données probantes concernant le vaccin Vaxzevria d'AstraZeneca contre la COVID-19

Les résultats de quatre essais cliniques (deux Phases 1/2, une Phase 2/3 et une Phase 3) étaient disponibles au moment de l'autorisation du vaccin contre la COVID-19 d'AstraZeneca. Les résultats d'un essai de Phase 3 en cours aux É.-U. n'étaient pas disponibles au moment de la rédaction du présent document. Des données probantes sur l'efficacité potentielle, l'immunogénicité et l'innocuité sont disponibles pour les adultes de 18 ans et plus. L'essai de Phase 2/3 (COV002) et l'essai de Phase 3 (COV003) ont permis d'évaluer l'efficacité potentielle, l'innocuité et l'immunogénicité du vaccin. L'essai de la Phase 2/3 était basé au R.-U., tandis que l'essai de la Phase 3 était basé au Brésil. Ces deux études ont subi une série de modifications de protocole et de défis logistiques pendant la conduite des essais, ce qui a entraîné des changements importants dans la méthodologie des essais. Il y a eu des changements d'un schéma vaccinal à dose unique à un schéma à deux doses, le lancement d'un schéma vaccinal à faible dose/dose standard (LD/DS) [COV002 uniquement] et à dose standard/dose standard (DS/DS), et le recrutement de participants à l'étude progressivement plus âgés (56 à 69 ans, puis 70 ans et plus), après l'accent initial mis sur les adultes de 18 à 55 ans. Dans le schéma de vaccination DS/DS, les participants à l'étude ont été randomisés (1:1) pour recevoir soit le vaccin contre la COVID-19 d'AstraZeneca, AZD1222 (5 x 1010 particules virales par dose de 0,5 ml), soit une injection témoin. Les participants randomisés dans le groupe de contrôle ont reçu deux doses de vaccin méningococcique quadrivalent (MenACWY) [COV002], ou le vaccin MenACWY pour la dose 1 et un placebo pour la dose 2 (COV003).

Il y a eu des différences significatives dans les caractéristiques de base des participants aux essais de la Phase 2/3 et de la Phase 3. En outre, les essais cliniques ont donné la priorité au recrutement de professionnels de la santé et d'autres adultes présentant un fort potentiel d'exposition au SRAS-CoV-2, notamment les travailleurs des services de santé et des services sociaux.

Les données probantes provenant des essais sur le vaccin contre la COVID-19 d'AstraZeneca ont été publiéesNote de bas de page 33. Les données probantes tirées de la surveillance et des études post-commercialisation se trouvent dans le corps de la présente déclaration.

Efficacité potentielle

Les estimations de l'efficacité potentielle du vaccin contre la COVID-19 d'AstraZeneca (AZD1222) proviennent des essais de Phase 2/3 et de Phase 3. À la date limite de réception des données, le 4 novembre 2020, la population de l'analyse primaire des résultats (participants à l'étude ayant reçu les vaccins selon le schéma vaccinal LD/DS ou DS/DS) comptait 11 636 participants séronégatifs au départ (5 807 ayant reçu le vaccin et 5 829 témoins). De cette population, 8 895 participants (4 440 ayant reçu le vaccin et 4 455 témoins) ont reçu les vaccins selon le schéma vaccinal DS/DS. À la date limite de réception des données, le 7 décembre 2020, 12 158 participants à l'étude (6 085 personnes ayant reçu le vaccin et 6 073 témoins) avaient reçu le schéma vaccinal DS/DS. Sauf indication contraire, toutes les données présentées dans ce résumé sont fondées sur le schéma vaccinal DS/DS et sur une date limite de réception des données du 7 décembre 2020.

COVID-19 symptomatique

Le principal résultat d'efficacité potentielle évalué dans les deux essais était la prévention de la première apparition de COVID-19 confirmée 15 jours ou plus après la deuxième dose. Il reposait sur des évaluations des cas par un Comité d'adjudication, sans tenir compte de l'affectation du groupe de participants, et analysé dans la population du schéma combiné LD/DS et DS/DS. L'évaluation dans le sous-groupe qui n'a reçu que le DS/DS était une analyse secondaire prédéfinie dans l'essai clinique. La COVID-19 symptomatique a été définie comme ayant au moins un des symptômes suivants (fièvre objective de 37,8 °C ou plus, toux, essoufflement et anosmie ou agueusie) et un écouvillon positif pour le SRAS-CoV-2 par RT-PCR et confirmé par un Comité d'adjudication.

Selon les données du 7 décembre 2020, 12 158 participants âgés de 18 ans ou plus, sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion (6 085 personnes vaccinées et 6 073 témoins), ont été inclus dans l'analyse du schéma DS/DS. L'efficacité potentielle estimée du vaccin contre les cas confirmés de COVID-19 survenant 15 jours ou plus après la deuxième dose chez les participants à l'étude ayant reçu le schéma vaccinal DS/DS était de 62,5 % (IC à 95 % : 50,7 à 71,4 %), sur la base de l'identification de 71/6 085 (1,2 %) cas chez les personnes vaccinées et de 186/6 073 (3,1 %) cas chez les témoins. L'efficacité potentielle estimée du vaccin selon l'âge était de 63,1 % (51,1 à 72,1 %) chez les participants à l'étude âgés de 18 à 64 ans et de 50,7 % (-65,8 à 85,4 %) chez les participants âgés de 65 ans ou plus. Une analyse du sous-groupe ponctuelle effectuée dans le but d'examiner l'effet confondant potentiel de l'âge et de l'intervalle entre les doses du vaccin sur les estimations de l'efficacité vaccinale pendant l'essai clinique COV002 (R.-U.) a généré une estimation sur l'efficacité vaccinale chez les participants à l'étude âgés de 18 à 55 ans qui ont reçu les deux doses du schéma DS/DS. Selon les données provisoires à la date limite du 4 novembre 2020, l'analyse du sous-groupe a trouvé une efficacité vaccinale de 59,3 % (95 % CI : 25,1 à 77,9 %) dans ce groupe d'âge. Cette analyse a porté sur les participants à l'étude, quel que soit l'intervalle entre les doses.

COVID-19 symptomatique par intervalle

Au 7 décembre 2020, la majorité des participants aux essais cliniques COV002 (R.-U.) et COV003 (Brésil) avaient reçu les deux doses du schéma DS/DS dans un intervalle de 4 à 8 semaines (R.-U. : 45,6 %, Brésil : 87,2 %) ou de 9 à 12 semaines (R.-U. : 34,4 %, Brésil : 10,5 %). Un participant environ sur cinq à l'essai clinique britannique (18,9 %) a reçu le schéma DS/DS avec un intervalle de plus de 12 semaines entre les doses de vaccin. Dans l'essai brésilien, cela concernait moins d'un participant sur 50 (1,8 %). Une très faible proportion des participants à l'étude a reçu le schéma DS/DS avec un intervalle de moins de 4 semaines entre les doses (R.-U. : 1 %, Brésil : 0,4 %).

Une analyse exploratoire a examiné l'effet potentiel de l'intervalle entre l'administration de la première et de la deuxième dose de vaccin sur l'efficacité potentielle du vaccin chez les participants à l'étude recevant le schéma vaccinal DS/DS. Le Tableau 10 résume les estimations de l'efficacité potentielle du vaccin contre les cas confirmés de la COVID-19 survenant 15 jours ou plus après la deuxième dose, par intervalle de dosage. Il semblerait que l'estimation ponctuelle de l'efficacité potentielle d'un vaccin augmente avec l'intervalle entre la première et la deuxième dose de vaccin. Toutefois, il est important de noter que les intervalles de confiance autour de ces estimations ponctuelles se chevauchent.

Tableau 10. Estimations de l'efficacité potentielle du vaccin contre la première apparition de COVID-19 confirmée à partir de 15 jours après la deuxième dose, par intervalle de dosage (ensemble d'efficacité de base DS/DS séronégatifNote de bas de page a
Intervalle de dosage Évènement dans le groupe vacciné (AZD1222) n/N (%) Évènements dans le groupe témoin (MenACWY) n/N (%) Efficacité potentielle du vaccin (IC à 95 %)
4 à 12 semaines 67/5 473 (1,2) 162/5 422 (3) 59,6 % (40,1 à 69,8 %)
4 à 8 semaines 52/4 188 (1,2) 113/4 098 (2,8) 55,7 % (38,5 à 68,1 %)
9 à 12 semaines 15/1 285 (1,2) 49/1 324 (3,7) 69 % (44,8 à 82,6 %)
Plus de 12 semaines 4/571 (0,7) 22/599 (3,7) 81,6 % (47 à 93,6 %)
Note de bas de tableau 10 (a)

Participants sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion; tous les bénéficiaires du vaccin DS/DS (ou les témoins respectifs).

Retour à la référence de la note de bas de page a

Dans une analyse de sous-groupe chez les participants à l'étude qui ont reçu le schéma vaccinal DS/DS, l'efficacité potentielle du vaccin contre les cas confirmés de COVID-19 survenant 15 jours ou plus après la deuxième dose a été estimée par intervalle de dosage et par groupe d'âge. Ces analyses ponctuelles du sous-groupe ont été effectuées chez les participants âgés de 18 à 55 ans pendant l'essai clinique COV002 (R.-U.) et chez tous les participants qui ont reçu les deux doses du schéma DS/DS (des COV002 et COV003), répartis en deux groupes de 18 à 64 ans et de 65 ans et plus.

L'analyse ponctuelle du sous-groupe effectuée pour examiner l'effet confondant potentiel de l'âge et de l'intervalle entre les doses sur les estimations de l'efficacité vaccinale pendant l'essai clinique COV002 (R.-U.) a généré une estimation de l'efficacité vaccinale chez les participants à l'étude âgés de 18 à 55 ans qui ont reçu le schéma DS/DS à un intervalle de plus de 8 semaines entre les doses. Basée sur les données provisoires à la date limite du 4 novembre 2020, cette analyse du sous-groupe a généré une estimation de l'efficacité vaccinale de 65,6 % (95 % CI : 24,5 à 84,4 %). Dans l'ensemble de données actualisé au 7 décembre 2020, on comptait 1 375 participants à l'étude de 65 ans ou plus (699 dans le groupe vacciné et 676 dans le groupe témoin). Les estimations de l'efficacité potentielle pour les participants de 65 ans ou plus pour l'intervalle de dosage global de 4 à 12 semaines et celui de 4 à 8 semaines ont des intervalles de confiance larges qui incluent zéro. Les estimations de l'efficacité potentielle du vaccin n'ont pas pu être calculées pour les participants de 65 ans et plus pour les intervalles de dosage de 9 à 12 semaines et de plus de 12 semaines, en raison du manque de participants à l'étude plus âgés qui ont reçu le schéma DS/DS pendant ces intervalles de dosage (Tableau 11).

Tableau 11. Estimations de l'efficacité potentielle du vaccin contre la première apparition de COVID-19 confirmée à partir de 15 jours après la deuxième dose, par intervalle de dosage et groupe d'âge (ensemble d'efficacité potentielle de base DS/DS séronégatifNote de bas de page a
Intervalle de dosage et groupe d'âge Évènement dans le groupe vacciné
(AZD1222) n/N (%)
Évènements dans le
groupe témoin
(MenACWY) n/N (%)
Efficacité potentielle
du vaccin
(IC à 95 %)
4 à 12 semaines
18 à 64 ans 63/4 790 (1,2) 156/4 760 (3) 59,6 % (40,1 à 69,8 %)
65 ans et plus 4/683 (0,6) 6/662 (0,9) 43,2 % (-99,3 à 83,8 %)
4 à 8 semaines
18 à 64 ans 48/3 506 (1,4) 107/3 439 (3,1) 56,6 % (39,1 à 69,1 %)
65 ans et plus 4/682 (0,6) 6/659 (0,9) 43,4% (-98,5 à 83,9 %)
9 à 12 semaines
18 à 64 ans 15/1 284 (1,2) 49/1 321 (3,7) 69 % (44,8 à 82,6 %)
65 ans et plus 0/1 (0) 0/3 (0) Pas d'estimation
Plus de 12 semaines
18 à 64 ans 4/571 (0,7) 22/599 (3,7) 81,6 % (47 à 93,6 %)
65 ans et plus 0/0 (0) 0/0 (0) Pas d'estimation
Note de bas de tableau 11 (a)

Participants sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion; tous les bénéficiaires du vaccin DS/DS (ou les témoins respectifs).

Retour à la référence de la note de bas de page a

COVID-19 symptomatique par la présence d'une comorbidité

L'efficacité potentielle a également été évaluée en fonction de l'existence d'une comorbidité, définie comme la présence d'une ou plusieurs des affections médicales suivantes, légères à modérées et contrôlées au départ : maladie cardiovasculaire, maladie respiratoire, diabète ou obésité (IMC de 30 kg/m2 ou plus), selon les données à la date limite du 4 novembre 2020. Pour cette analyse exploratoire, nous avons inclus les participants à l'étude qui étaient séronégatifs pour le SRAS-CoV-2 au départ et qui ont reçu le schéma DS/DS. L'efficacité potentielle estimée du vaccin contre les cas confirmés de COVID-19 survenant 15 jours ou plus après la deuxième dose chez les participants à l'étude sans comorbidité était de 58 % (IC à 95 % : 25,8 à 76,2 %), sur la base de 17/2 825 (0,6 %) cas décelés dans le groupe vacciné contre 39/2 774 (1,4 %) cas dans le groupe témoin. L'estimation correspondante de l'efficacité potentielle du vaccin chez les participants à l'étude présentant des comorbidités était de 67,1 % (IC à 95 % : 33,2 à 83,8 %), sur la base de l'identification de 10/1 611 (0,6 %) cas dans le groupe vacciné contre 32/1 670 (1,9 %) cas dans le groupe témoin.

COVID-19 symptomatique après une dose

L'efficacité potentielle à divers moments après une dose du vaccin contre la COVID-19 d'AstraZeneca a été évaluée dans le cadre d'une analyse secondaire/exploratoire basée sur les données à la date limite de l'analyse intermédiaire du 4 novembre 2020 (Tableau 12). L'analyse a porté sur des participants à l'étude qui étaient séronégatifs pour le SRAS-CoV-2 au départ et qui ont reçu le vaccin DS comme première dose de vaccin. La durée médiane du suivi était de 115 jours (fourchette : 41 à 149 jours) après la première dose. Il faut noter qu'environ 80 % des participants à l'étude dans le groupe vacciné ont reçu la deuxième dose du vaccin; par conséquent, plusieurs estimations de l'efficacité potentielle du vaccin ne sont pas uniquement attribuables à la seule dose de vaccin DS.

Tableau 12. Estimations de l'efficacité potentielle du vaccin contre la première apparition de COVID-19 confirmée à partir de 15 jours après la deuxième dose, par intervalle de dosage (ensemble d'efficacité de base DS/DS séronégatifNote de bas de page a
Période d'intérêt Évènement dans le groupe vacciné (AZD1222) n/N (%) Évènements dans le groupe témoin (MenACWY) n/N (%) Estimation de l'efficacité potentielle du vaccin (IC à 95 %)
Après la première dose 92
(N = 8 008)
185
(N = 8 013)
50,5 % (36,5 à 61,5 %)
22 jours ou plus après la première dose 51
(N = 6 307)
141
(N = 6 297)
64,1 % (50,5 à 73,9 %)
22 jours ou plus après la première dose, mais avant la deuxième 15
(N = 6 310)
52
(N = 6 296)
71,3% (49 à 83,8%)
Note de bas de tableau 12 (a)

Participants sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion; tous les bénéficiaires du vaccin DS/DS (ou les témoins respectifs).

Retour à la référence de la note de bas de page a

Complications graves de la COVID-19

Formes graves de la COVID-19

Les formes graves de la COVID-19, c'est-à-dire les participants à l'étude qui répondaient à la définition de cas confirmé de COVID-19 et qui ont reçu un score de gravité de 6 ou plus sur l'échelle de progression clinique de l'OMS (p. ex., gravité clinique nécessitant une hospitalisation, et pouvant inclure l'intubation et la ventilation mécanique, et le décès), ont été évaluées en tant qu'analyse secondaire de l'efficacité potentielle du vaccin. L'analyse a porté sur les participants à l'étude qui avaient été suivis pendant 15 jours ou plus après la deuxième dose, qui étaient séronégatifs pour le SRAS-CoV-2 au départ et qui ont reçu les deux doses du schéma DS/DS. Au 7 décembre 2020, 6 085 personnes avaient participé à l'étude dans le groupe vacciné et 6 073 personnes avaient participé dans le groupe témoin. Un cas grave de COVID-19 a été décelé chez un participant du groupe témoin qui a reçu l'intervention témoin dans l'intervalle de 4 à 12 semaines. Ce participant a également dû être admis à l'USI et est finalement décédé. Un autre cas grave s'est produit plus de 21 jours après la première dose et à 14 jours ou moins après la deuxième dose chez un participant à l'étude dans le groupe témoin.

Hospitalisations

L'efficacité potentielle du vaccin contre les hospitalisations associées à la COVID-19 a été évaluée à plusieurs moments (Tableau 13). L'évaluation a porté sur les participants à l'étude qui étaient séronégatifs pour le SRAS-CoV-2 au départ et qui ont reçu les deux doses du schéma DS/DS. Après la deuxième dose (durée médiane du suivi : 36 jours, intervalle : 1 à 79 jours, basée sur les données à la date limite du 4 novembre 2020), on a recensé 7 hospitalisations attribuables à la COVID-19 chez les participants à l'étude qui ont reçu le schéma DS/DS dans l'intervalle de 4 à 12 semaines, toutes chez les participants du groupe témoin. Il n'y a eu aucune hospitalisation dans le groupe vacciné 22 jours ou plus après la première dose; toutefois, deux cas d'hospitalisation attribuables à la COVID-19 ont été constatés dans le groupe vacciné et 16 dans le groupe témoin 15 jours ou plus après la première dose, ce qui donne une estimation d'efficacité potentielle du vaccin de 87,6 % (IC à 95 % : 46 à 97,2 %). Les deux hospitalisations dans le groupe vacciné ont eu lieu 1 et 10 jours après la vaccination (suivi médian : 115 jours, fourchette : 41 à 149).

Tableau 13. Estimations de l'efficacité potentielle du vaccin contre l'hospitalisation, par intervalle de dosage (ensemble d'efficacité potentielle de base DS/DS séronégatifNote de bas de page a
Période d'intérêt Évènement dans le groupe vacciné (AZD1222) n/N (%) Évènements dans le groupe témoin (MenACWY) n/N (%) Efficacité potentielle du vaccin (IC à 95 %)
22 jours ou plus après la première dose Note de bas de page b 0/6 307 (0) 9/6 297 (0,1) 100 % (IC à 95 % : 49,6 à NE)
15 jours ou plus après la deuxième dose Note de bas de page c 0/6 085 (0) 7/6 073 (0,1) S.O.
Note de bas de tableau 13 (a)

Participants sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion; tous les bénéficiaires du vaccin DS/DS (ou les témoins respectifs).

Retour à la référence de la note de bas de page a

Note de bas de tableau 13 (b)

Basé sur les données à la date limite du 4 novembre 2020

Retour à la référence de la note de bas de page b

Note de bas de tableau 13 (c)

Basé sur les données à la date limite du 7 décembre 2020

Retour à la référence de la note de bas de page c

Décès

À la date limite de mise à jour des données, le 7 décembre 2020, un seul décès attribuable à la COVID-19 a été constaté chez un participant à l'étude du schéma DS/DS dans le groupe témoin.

Infection asymptomatique et transmission

Il s'agit d'une analyse exploratoire menée uniquement dans le cadre de l'essai clinique COV002 (R.-U.). Dans le cadre du protocole de l'étude, une semaine après la réception de la première dose, on a demandé aux participants à l'étude de fournir chaque semaine des écouvillons nasaux ou pharyngés auto-administrés pour le test RT-PCR. Toutefois, la présence ou l'absence de symptômes au moment du prélèvement de l'échantillon n'a pas été systématiquement relevée. Une infection asymptomatique a été définie comme un participant à l'étude dont l'infection par le SRAS-CoV-2 a été confirmée par l'analyse virologique d'un prélèvement effectué à l'aide d'un écouvillon, et qui n'a signalé aucun symptôme défini par l'essai clinique de la COVID-19 confirmée. Les participants à l'étude dont l'infection par le SRAS-CoV-2 a été confirmée par une analyse virologique, mais qui n'ont pas signalé s'ils présentaient ou non des symptômes, ont été classés dans la catégorie « symptômes inconnus ».

Tableau 14. Estimations de l'efficacité potentielle du vaccin contre l'infection asymptomatique, par intervalle de dosage (ensemble d'efficacité potentielle de base DS/DS séronégatifNote de bas de page a
Intervalle de
dosage
Évènement dans le
groupe vacciné
(AZD1222) n/N (%)
Évènements dans le
groupe témoin
(MenACWY) n/N (%)
Efficacité potentielle
du vaccin
(IC à 95 %)
22 jours ou plus après la première dose Note de bas de page b
S.O. 14/3 060 (0,5 %) 15/3 064 (0,5 %) 6,6 % (-93,5 à 54,9 %)
15 jours ou plus après la deuxième doseNote de bas de page c
Tout intervalle 8/2 377 (0,3 %) 11/2 340 (0,5 %) 26,9 % (-81,5 à 70,6 %)
4 à 12 semaines S.O. S.O. 37,7 % (-90,1 à 79,6 %)
Plus de 12 semaines S.O. S.O. -4,3 % (-416,5 à 79 %)
Note de bas de tableau 14 (a)

Participants sans preuve préalable d'une infection par le SRAS-CoV-2 à l'inclusion; tous les bénéficiaires du vaccin DS/DS (ou les témoins respectifs).

Retour à la référence de la note de bas de page a

Note de bas de tableau 14 (b)

Basé sur les données à la date limite du 4 novembre 2020

Retour à la référence de la note de bas de page b

Note de bas de tableau 14 (c)

Basé sur les données à la date limite du 7 décembre 2020

Retour à la référence de la note de bas de page c

Une analyse ponctuelle supplémentaire associant des participants à l'étude atteints d'une infection asymptomatique par le SRAS-CoV-2 ou présentant des symptômes inconnus n'a pas non plus permis de démontrer l'efficacité potentielle du schéma DS/DS (3,9 %, IC à 95 % : -72,1 à 46,4 %), sur la base de l'identification de 22 cas dans le groupe vacciné et de 23 cas dans le groupe témoin 15 jours ou plus après la deuxième dose.

Immunogénicité

Environ 15 % de l'ensemble des analyses de sécurité ont été ciblés pour être inclus dans l'ensemble d'analyses d'immunogénicité. Ces analyses ont combiné les données probantes des schémas posologiques DS/DS et LD/DS et peuvent ne pas correspondre complètement aux données des études individuelles.

Réponses immunitaires humorales

Les réponses des anticorps, qu'ils se lient ou se neutralisent, diffèrent selon que les sujets vaccinés sont séronégatifs ou séropositifs. Comparativement aux receveurs séronégatifs, les sujets vaccinés qui étaient séropositifs au départ ont présenté des titres d'anticorps élevés 28 jours après la première dose. Les receveurs séronégatifs ont présenté une augmentation des réponses immunitaires 28 jours après la deuxième dose. En revanche, les receveurs séropositifs ont eu des réponses immunitaires réduites après la deuxième dose, par rapport aux réponses après la première dose. Toutefois, les réponses immunitaires des receveurs séropositifs étaient toujours plus élevées que celles des receveurs séronégatifs. Le mécanisme à l'origine de ces différences et leur impact possible sur les efficacités potentielle et réelle des vaccins restent incertains. Un article récemment publié contient des données probantes supplémentaires sur les réponses humorales Note de bas de page 160.

Les réponses des anticorps, qu'ils soient liants ou neutralisants, étaient plus faibles chez les adultes âgés (plus de 65 ans) que chez les jeunes adultes après les première et deuxième doses de vaccin. Sans corrélat de protection, l'importance de ces différences dans les réponses des anticorps n'est pas claire.

Réponses immunitaires à médiation cellulaire

Des réponses immunitaires à médiation cellulaire ont été provoquées par ce vaccin. La première dose a provoqué un biais Th-1 des lymphocytes T CD4+ dans les groupes d'âge plus jeunes et plus âgés. Les jeunes vaccinés ont présenté des réponses immunitaires cellulaires plus élevées que les groupes plus âgés. La deuxième dose de vaccin n'a notamment pas augmenté les réponses immunitaires cellulaires. Le mécanisme et l'impact sur les efficacités potentielle et réelle des vaccins restent incertains.

Réponses immunitaires anti-vecteurs

On ne sait pas exactement dans quelle mesure la population canadienne est déjà immunisée contre un vecteur vaccinal à base d'adénovirus et quel impact cela pourrait avoir sur l'innocuité et l'efficacité potentielle des vaccins à base d'adénovirus. On ne sait pas non plus dans quelle mesure l'immunisation par des vaccins à base d'adénovirus provoque des réponses immunitaires antivectorielles et quel impact cela pourrait avoir sur les doses de rappel homologues ou hétérologues des vaccins à base d'adénovirus. Les données probantes d'un vaccin à vecteur viral basé sur l'adénovirus humain de type 5 (non autorisé au Canada) ont indiqué que les sujets vaccinés ayant une forte immunité préexistante au vecteur adénovirus avaient des réponses immunitaires anti-SRAS-CoV-2 plus faiblesNote de bas de page 176. Le vaccin contre la COVID-19 d'AstraZeneca est composé d'un vecteur à adénovirus de chimpanzé modifié (ChAd). AstraZeneca n'a trouvé aucune corrélation entre les réponses des anticorps neutralisants anti-ChAd et les réponses immunitaires anti-SRAS-CoV-2. AstraZeneca a aussi trouvé que les niveaux d'anticorps neutralisants n'ont pas été renforcés après la deuxième dose. Toutefois, la neutralisation n'est pas la seule réponse immunitaire anti-vecteur qui pourrait avoir un impact sur l'immunité induite par le vaccin. On ignore encore si les réponses immunitaires au vecteur ChAd auront un impact sur les efficacités potentielle et réelle de ce vaccin.

Innocuité du vaccin et effets secondaires suivant l'immunisation

Les données probantes sur l'innocuité sont fondées sur des analyses intermédiaires de 23 745 participants dont 12 021 ont reçu au moins une dose du vaccin. Les analyses d'innocuité ont été menées dans différents ensembles d'analyse. Les ÉI sollicités survenant dans les 7 jours suivant une dose ont été évalués chez 2 648 personnes ayant reçu au moins une dose de vaccin (DS) et chez 2 497 personnes témoins. Environ un tiers des participants à l'étude ont reçu leur deuxième dose de vaccin dans les six semaines suivant la première. La majorité (environ 90 %) des participants à l'étude dans la cohorte de sécurité avaient moins de 65 ans. La durée médiane du suivi était de 105 jours après la première dose et de 62 jours après la deuxième dose.

Réactions locales sollicitées

Des ÉI au site d'injection local ont été signalés par 74,7 % des participants évalués dans les 7 jours suivant l'administration d'une dose de vaccin contre la COVID-19 d'AstraZeneca et 11 724 ont reçu le témoin. La douleur et la sensibilité étaient les réactions les plus fréquemment signalées (54,2 % et 63,7 %, respectivement), suivies de la chaleur (17,7 %), des ecchymoses (17,3 %), de la rougeur (14 %), du prurit (12,7 %) et du gonflement (10 %). La plupart des réactions locales sollicitées chez les participants ayant reçu le vaccin étaient d'intensité légère ou modérée; des réactions de stade 3 ou 4 ont été déclarées par moins de 9,5 % des participants. Aucun ÉI de stade 4 n'a été déclaré. Les réactions locales étaient généralement plus légères et moins fréquentes après la deuxième dose du vaccin. Selon l'intervalle entre les doses, la réactogénicité du vaccin était plus faible chez les participants qui ont reçu la deuxième dose dans les 6 semaines suivant la première (38 % contre 58,3 % à 74,3 %, lorsque la deuxième dose a été administrée au bout de 6 semaines ou plus).

Réactions systémiques sollicitées

Des ÉI systémiques sollicités ont été signalés par 73 % des participants évalués dans les 7 premiers jours suivant l'administration d'une dose de vaccin. Les ÉI systémiques sollicités les plus courants étaient la fatigue (53,1 %) et les maux de tête (52,6 %). Les autres ÉI systémiques sollicités fréquemment signalés sont les suivants : douleurs musculaires (44 %), malaises (44,2 %), fébrilité (33,6 %), frissons (31,9 %), douleurs articulaires (26,4 %), nausées (21,9 %) et fièvre de 38 °C ou plus (7,9 %). Dans l'ensemble, la fréquence des réactions de stade 3 ou 4, quelles qu'elles soient, ne dépassait pas 8,3 %. Le seul évènement de stade 4 signalé était une fièvre de plus de 40 °C. Dans l'ensemble des groupes d'étude, les ÉI étaient plus légers et moins fréquents après la deuxième dose de vaccin. Selon l'intervalle entre les doses, la réactogénicité du vaccin était plus faible chez les participants qui ont reçu la deuxième dose moins de 6 semaines suivant la première (37,6 % contre 49,2 % à 67,1 %, lorsque la deuxième dose a été administrée au bout de 6 semaines ou plus).

Évènements indésirables graves non sollicités

Des ÉIG ont été signalés par moins de 1 % des participants à l'étude et étaient similaires au sein du groupe vacciné et du groupe témoin (0,7 % et 0,8 %, respectivement). Il n'y a pas eu de déséquilibres évidents par classe de système d'organe (CSO). Les ÉIG les plus fréquemment signalés selon la CSO étaient les infections et infestations (0,1 % contre 0,2 %), les blessures, les empoisonnements et les complications liées aux procédures (< 0,1 % contre 0,1 %).

Les chercheurs de l'étude ont considéré que deux ÉIG (pyrexie et myélite transverse) chez les personnes ayant reçu le vaccin étaient liés au vaccin. Le cas de pyrexie (40,5 °) est survenu 2 jours après la première dose et s'est résolu le jour même après l'administration d'acétaminophène. L'évènement de myélite transverse est survenu chez une femme de 37 ans ayant des antécédents familiaux de Charcot-Marie-Tooth de type 1a (mère et frère). La participante a reçu deux doses du vaccin à l'étude à 77 jours d'intervalle. Des changements sensoriels et des maladresses sont apparus deux semaines après la deuxième dose. L'imagerie par résonance magnétique a montré une lésion correspondant à une myélite transverse ou à un infarctus du rachis antérieur. Un troisième ÉIG a été constaté à l'origine (augmentation de la protéine C-réactive). Toutefois, après la date limite, le chercheur a mis à jour la causalité de l'ÉIG lié à l'augmentation de la protéine C-réactive et a indiqué qu'elle n'était pas associée au traitement.

Autres évènements indésirables graves

Évènements de démyélinisation

Un cas de sclérose en plaques s'est produit chez une femme de 37 ans, qui a développé des symptômes sensoriels environ 10 jours après la première (et unique) vaccination. L'épisode clinique a duré trois semaines. Un suivi ultérieur par IRM de la colonne vertébrale et du cerveau a montré une lésion rachidienne aiguë et des lésions cérébrales plus anciennes, révélant une sclérose en plaques préexistante, mais non reconnue auparavant.

Décès

Au total, 6 décès ont été signalés chez les participants à l'étude : 2 dans le groupe vacciné et 4 dans le groupe témoin. Les deux décès de personnes ayant reçu le vaccin étaient attribuables à un néoplasme malin et à une pneumonie fongique, mais aucun n'a été considéré comme lié à l'intervention des chercheurs.

Thrombocytopénie thrombotique immunitaire induite par le vaccin

De rares cas de sérieux caillots sanguins, y compris la thrombose des sinus veineux cérébraux (CVST), associés à la thrombocytopénie ont été signalés au Canada et à l'échelle mondiale après l'utilisation autorisée du vaccin contre la COVID-19 d'AstraZeneca. La majorité des cas se sont généralement produits entre les jours 4 et 28 suivant l'administration du vaccin. Cet ÉI est appelé TTIV (thrombocytopénie thrombotique immunitaire induite par le vaccin). Le mécanisme d'action est semblable à celui de la thrombocytopénie induite par l'héparine (TIH). Le mécanisme exact par lequel les vaccins à vecteur viral contre la COVID-19 peuvent déclencher la TTIV est toujours à l'étude. À l'heure actuelle, aucun facteur de risque n'a été systématiquement signalé chez les personnes ayant développé la TTIV. La fréquence de cet ÉI doit encore être confirmée, mais actuellement on l'estime entre 1/26 000 et 1/100 000 personnes ayant reçu la première dose du vaccin contre la COVID-19 d'AstraZeneca, bien que cela continue d'évoluer et puisse augmenter. Selon les données probantes disponibles du 1 juin 2021, l'ASPC a estimé que le taux de TTIV au Canada était 1 par 73 000 doses administrées. Toutefois, au fur à mesure que les recherches se poursuivent, ce taux pourrait être aussi élevé que 1 par 50 000 personnes vaccinées avec le vaccin contre le COVID-19 COVISHIELD. La fréquence du STT après une deuxième dose du vaccin d'AstraZeneca est actuellement signalée comme étant d'environ 1 par 520 000 personnes, sur la base des données de surveillance de l'innocuité des vaccins au R.-U., mais cela continue d'évoluerNote de bas de page 2. Une collecte de renseignements supplémentaires est en cours pour mieux caractériser le taux de TTIV. Selon l'information disponible, le taux de létalité de la TTIV se situed'environ 20 et 50 %. Toutefois, il peut varier avec une sensibilisation accrue à l'ÉI et un traitement précoce approprié.

Efficacité réelle chez les adultes de 65 ans et plus

En l'absence de données suffisantes issues d'essais cliniques sur l'efficacité du vaccin d'AstraZeneca chez les personnes âgées de 65 ans et plus, une revue de trois études d'observation au R.-U. publiées sous forme de préimpression sur l'efficacité réelle du vaccin dans ce groupe d'âge a été réalisée afin d'éclairer les recommandations du CCNI dans ce groupe d'âge. Les conclusions de cette revue sont résumées ci-dessous.

Les trois études d'observation ont évalué une dose du vaccin Pfizer-BioNTech ou des vaccins AstraZeneca au R.-U. Les résultats ci-dessous ne concernent que la partie sur le vaccin d'AstraZeneca des études. Les études ont été menées pendant la période où le variant B.1.1.7 (alpha) devenait rapidement la souche dominante en circulation dans leurs régions géographiques respectives. Environ 50 % des échantillons de laboratoire se sont révélés avoir un profil conforme à le variant B.1.1.7 (alpha) début décembre 2020 en Angleterre, et 43 % en Écosse début janvier 2021. De la mi-février à la fin février, le variant B.1.1.7 (alpha) représentait presque 100 % des souches en circulation en Angleterre, et était considérée comme la souche dominante en Écosse.

Sommaire général des données probantes

Chez les adultes de 65 ans et plus, des données d'observation provenant du R.-U. ont montré une réduction du risque de maladie symptomatique et d'hospitalisation à partir de deux semaines après une dose du vaccin d'AstraZeneca.

Sommaire détaillé de chaque étude
  1. Hyams et al., Assessing the Effectiveness of BNT162b2 and ChAdOx1nCoV-19 COVID-19 Vaccination in Prevention of Hospitalisations in Elderly and Frail Adults: A Single Centre Test Negative Case-Control Study (en anglais seulement). Préimpression de SSRN-Lancet. 3 mars 2021.

Description : Étude cas-témoins à test négatif de personnes hospitalisées =80 ans (dont beaucoup étaient fragiles avec des comorbidités) dans deux hôpitaux de Bristol, au R.-U. La vaccination a été déterminée par couplage d'enregistrements et un ajustement a été effectué pour un certain nombre de facteurs. L'efficacité du vaccin contre l'hospitalisation a été évaluée chez ceux qui avaient été vaccinés =14 jours avant l'apparition des symptômes.

Résultats :L'efficacité d'une dose du vaccin de 80,4 % (IC 95 % : 36,4 - 94,5) contre l'hospitalisation survenant dans les 14 jours ou plus (maximum de 53 jours) après une dose de vaccin contre la COVID-19 d'AstraZeneca chez les patients de 80 ans et plus.

Examen :

  1. Lopez Bernal et al., Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England (en anglais seulement). medRxiv. Préimpression. 2 mars 2021.

Description : Étude cas-témoins à test négatif utilisant des données de surveillance reliées au Royaume-Uni parmi les patients =70 ans. Les tests PCR ont été effectués dans les 10 jours suivant l'apparition des symptômes. Pour ceux qui ont été vaccinés, les cas et les témoins ont été évalués en fonction du temps écoulé entre la vaccination et l'apparition des symptômes, en tenant compte d'un certain nombre de facteurs. L'impact de la vaccination sur l'hospitalisation des personnes âgées de =80 ans a également été évalué chez les personnes dont le test était positif.

Résultats : L'efficacité d'une dose du vaccin contre l'infection symptomatique par le SRAS-CoV-2 confirmée par PCR dans l'analyse ajustée était de 22 % (IC 95 % : 11 - 32) 14 à 20 jours après la vaccination et a progressivement augmenté jusqu'à 73 % (IC 95 % : 27 - 90) 35 jours ou plus (maximum 48 jours) après la vaccination. En plus de l'effet contre la maladie symptomatique, chez les personnes âgées de =80 ans, il y avait une protection supplémentaire de 37% contre l'hospitalisation dans les 14 jours suivant un test positif chez ceux qui étaient à 14 jours ou plus de leur première dose de vaccin par rapport à ceux qui n'étaient pas vaccinés.

Examen :

  1. Vasileiou et al. Effectiveness of first dose COVID-19 vaccines against hospital admissions in Scotland effectiveness findings from Scotland: national prospective cohort study of 5.4 million people (en anglais seulement). Préimpression de SSRN-Lancet, 19 février 2021.

Description : Une étude de cohorte observationnelle prospective utilisant le couplage d'enregistrements entre les bases de données, y compris les dossiers de vaccination, d'hospitalisation et de laboratoire pour la population en Écosse, avec ajustement pour un certain nombre de facteurs. Bien que l'étude ait inclus les personnes âgées de =18 ans, le vaccin d'AstraZeneca a été principalement administré aux participants âgés de 65 ans et plus. L'efficacité du vaccin en fonction de l'âge est fournie mais ne faisait pas de distinction entre les vaccins de Pfizer-BioNTech et d'AstraZeneca, qui ont tous deux été étudiés, bien que les personnes âgées de =80 ans aient principalement reçu le vaccin d'AstraZeneca.

Résultats : L'efficacité d'une dose du vaccin d'AstraZeneca contre l'hospitalisation était de 74 % (IC 95 % : 66 - 81) 14 à 20 jours après la vaccination et augmentait jusqu'à 94 % (IC 95 % : 73 - 99) 28 à 34 jours après la vaccination. Chez les patients =80 ans, les auteurs ont constaté un pic d'efficacité vaccinale (VE) de 81% (IC 95% : 65 - 90) contre l'hospitalisation dans les 28 à 34 jours après une dose de vaccin qui était principalement le vaccin d'AstraZeneca.

Examen :

En raison de préoccupations liées aux faiblesses méthodologiques de cette étude, le CCNI n'a pas utilisé ces résultats pour étayer ses recommandations.

Annexe D : Résumé des données probantes des essais cliniques pour le vaccin contre la COVID-19 de Janssen

Les données des essais de Phases 1, 2 et 3 étaient disponibles au moment de l'autorisation du vaccin de Janssen. Des données probantes sur l'efficacité potentielle, l'immunogénicité et l'innocuité sont disponibles pour les adultes de 18 ans et plus. L'essai de phase 3 a porté sur 44 325 participants qui ont été randomisés (1:1) et qui ont reçu soit le vaccin (1 dose de 5 x 1010 particules virales), soit un placebo. Les données présentées ci-dessous correspondent à une médiane de deux mois après l'achèvement de la série (une dose). Les données probantes tirées de la surveillance et des études post-commercialisation se trouvent dans le corps de la présente déclaration.

Efficacité potentielle

COVID-19 symptomatique

Les estimations de l'efficacité potentielle du vaccin pour toutes les maladies à COVID-19 symptomatiques, quelle que soit leur gravité, n'étaient pas disponibles. Les estimations de l'efficacité potentielle contre la COVID-19 modérée à sévère/critique étaient le principal résultat de l'essai de Phase 3. Étant donné la définition relativement large de la COVID-19 modérée adoptée pour l'essai clinique, moins de 1 % des cas repérés cadraient avec la définition des cas bénins. Par conséquent, près de tous les cas de la COVID-19 symptomatique observés ont été englobés dans la définition modérée à sévère/critique de la maladie

Les critères coprimaires de l'analyse de l'efficacité potentielle du vaccin sont la prévention de la première apparition d'une infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 et ≥28 jours après la vaccination. L'analyse primaire est étayée par des analyses par sous-groupe des critères primaires stratifiés selon le pays à l'étude, le groupe d'âge, la présence de comorbidités associées à un risque accru d'évolution vers un cas de COVID-19 grave, le sexe et la race ou l'ethnicité. L'efficacité potentielle contre une infection à la COVID-19 symptomatique sévère/critique confirmée se manifestant ≥14 et ≥ 28 jours après la vaccination sont des critères secondaires, également soutenus par des analyses stratifiées selon les mêmes sous-groupes que le critère primaire. Des analyses supplémentaires de l'efficacité potentielle dans les cas de COVID-19 sévère/critique comprennent des examens des cas s'étant soldés par une intervention médicale, des hospitalisations et des décès. Pour les critères tant primaires que secondaires, des courbes de l'incidence cumulative sont utilisées pour examiner le début et la durée potentiels de l'efficacité du vaccin. Des analyses exploratoires de l'efficacité potentielle du vaccin contre l'infection par le SRAS-CoV-2 asymptomatique ou non détectée, de la gravité des symptômes et de la charge virale sont également étudiées. Certains résultats de ces analyses sont présentés dans cette annexe.

Un certain nombre d'analyses sont effectuées dans l'ensemble d'analyse complet, qui correspond aux participants à l'étude qui ont été randomisés et ont reçu l'intervention de l'étude (vaccin ou placebo), indépendamment de la survenue d'infractions au protocole ou du statut sérologique au départ. Cependant, la plupart des analyses primaires de l'efficacité potentielle ont été menées dans l'ensemble conforme au protocole, ce qui correspond aux participants à l'étude qui ont été randomisés, ont reçu l'intervention de l'étude (vaccin ou placebo), étaient séronégatifs au moment de la vaccination et ne présentaient pas d'infractions majeures au protocole considérées comme étant susceptibles d'influer sur l'efficacité potentielle du vaccin. De nombreuses analyses par sous-groupe sont réalisées dans l'ensemble conforme au protocole au moyen de cas de COVID-19 confirmés de manière centralisée, mais elles sont répétées à l'aide d'un ensemble de données plus large comprenant à la fois les cas confirmés de manière centralisée et les cas ayant obtenu un résultat positif au test PCR effectué à un site de dépistage local qui n'avait pas encore été confirmé par l'installation de test central de l'essai clinique à la date limite de réception des données pour l'analyse. L'utilisation des cas confirmés localement est étayée par la démonstration d'une concordance élevée (90,3 %) des résultats de la PCR entre les installations de test locales et centrales de l'essai clinique. Sauf indication contraire, toutes les analyses de l'efficacité potentielle présentées dans ce résumé relèvent de l'ensemble conforme au protocole des participants à l'étude, sur la base d'une date limite de réception des données fixée au 22 janvier 2021.

Infection à la COVID-19 symptomatique confirmée modérée à sévère/critique

La définition de COVID-19 modérée utilisée dans l'essai clinique était très large. Comme tel, les cas respectant la définition de COVID-19 modérée à sévère/critique ont représenté plus de 99 % de tous les cas de COVID-19 symptomatique identifiée dans l'essai. Les estimations de l'efficacité potentielle du vaccin contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination se chiffrent à 66,9 % et à 66,1 %, respectivement (Tableau 15).

Tableau 15. Efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination, ensemble conforme au protocole
Résultats coprimaires Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥14 jours après la vaccination
Infection à la COVID-19 modérée à sévère/critique 116/19 514 3 116,6 348/19 544 3 096,1 66,9 % (59,0 à 73,4)
≥28 jours après la vaccination
Infection à la COVID-19 modérée à sévère/critique 66/19 306 3 102,0 193/19 178 3 070,7 66,1 % (55,0 à 74,8)
Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Tableaux 5 et 6

Infection à la COVID-19 symptomatique confirmée sévère/critique

Les estimations de l'efficacité potentielle du vaccin contre I'infection à la COVID-19 symptomatique confirmée sévère/critique sont de 76,7 % se manifestant au moins 14 jours après la vaccination et de 85,4 % se manifestant au moins 28 jours après la vaccination (Tableau 16).

Tableau 16. Efficacité potentielle contre I'infection à la COVID-19 symptomatique confirmée sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination, ensemble conforme au protocole
Résultats coprimaires Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥14 jours après la vaccination
Infection à la COVID-19 sévère/critique 14/19 514 3 125,1 60/19 544 3 122,0 76,7 % (54,6 à 89,1)
≥28 jours après la vaccination
Infection à la COVID-19 sévère/critique 5/19 306 3 106,2 34/19 178 3 082,6 85,4 % (54,2 à 96,9)
Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Tableaux 5 et 6

Analyses par sous-groupe

Par pays à l'étude

La période couverte par l'essai clinique était associée à l'émergence de nouveaux VP du SRAS-CoV-2 dans certains pays à l'étude. Au moment de la date limite de réception pour l'analyse primaire, des données préliminaires de séquençage génétique étaient disponibles pour une proportion d'isolats des cas du Brésil, de l'Afrique du Sud et des É.-U. (Tableau 17). Aucun variant du SARS-CoV-2 provenant des souches B.1.1.7 (alpha) et P.1 (gamma) n'a été détecté dans les isolats séquencés.

Tableau 17. Résultats du séquençage génétique pour le variant préoccupant, de septembre à décembre 2020
Pays Cas déclarés
N
Cas séquencés
n (%)
Résultats du séquençage
Brésil 179 124 (69,2)

86/124 (69,4 %) - variant 20J/501Y.V3 de la souche P.2 (zêta)

38/124 (30,6 %) - séquence de référence Wuhan-Hu1+D614G

Afrique du Sud 136 91 (66,9) 86/91 (94,5 %) - variant 20H/501Y.V2 de la souche B.1.351 (béta)
É.-U. 268 197 (73,5) 190/197 (96,4 %) - séquence de référence Wuhan-Hu1+D614G
Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, section Cadre épidémiologique de l'étude

Les analyses de l'efficacité potentielle du vaccin par pays ont été menées dans ceux comptant plus de 100 cas déclarés (É.-U., 247; Brésil, 153; Afrique du Sud, 133) à l'aide d'un ensemble de données comprenant à la fois des cas de COVID-19 confirmés centralement par PCR et des cas ayant obtenu un résultat positif au test PCR effectué à un site local, mais non encore confirmés par l'instance centrale de l'essai à la date limite de réception des données d'analyse. L'inclusion des cas confirmés localement a été justifiée par la démonstration d'une concordance élevée (90,3%) des résultats de la PCR entre l'instance centrale et les sites locaux. Les estimations de l'efficacité ponctuelle du vaccin par pays contre l'infection à la COVID-19 symptomatique à la fois confirmée de modérée à sévère/critique et de sévère/critique avec une apparition ≥14 jours et ≥ 28 jours après la vaccination sont équivalentes ou supérieures aux estimations globales de l'efficacité à ces points dans le temps (Tableau 18). L'unique exception est l'estimation ponctuelle de l'efficacité potentielle du vaccin pour l'Afrique du Sud avec une apparition ≥14 jours après la vaccination.

Tableau 18. Efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique et sévère/critique selon le pays pour les pays comptant plus de 100 cas modérés à sévères/critiques et des cas confirmés par PCR à l'instance centrale et aux sites locaux
Pays Apparition post-vaccination Définition de la COVID-19
modéré à sévère/critique Efficacité
(IC à 95 %)
sévère/critique Efficacité
(IC à 95 %)

É.-U.

≥14 jours 74,4 % (65,0 à 81,6) 78,0 % (33,1 à 94,6)
≥28 jours 72,0 % (58,2 à 81,7) 85,9 % (-9,4 à 99,7)

Brésil

≥14 jours 66,2 % (51,0 à 77,1) 81,9 % (17,0 à 98,1)
≥28 jours 68,1 % (48,8 à 80,7) 87,6 % (7,8 à 99,7)

Afrique du Sud

≥14 jours 52,0 % (30,3 à 67,4) 73,1 % (40,0 à 89,4)
≥28 jours 64,0 % (41,2 à 78,7) 81,7 % (46,2 à 95,4)
Source : Présentation du fabricant Janssen à Santé Canada, module 2,5 : Aperçu clinique, Tableau 11.

Par groupe d'âge

L'efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination a été évaluée dans divers groupes d'âge (Tableau 19).

Tableau 19. Efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination, par groupe d'âge, ensemble conforme au protocole
Groupe d'âge
(années)
Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥14 jours après la vaccination
De 18 à 39 ans 47/4 356 775,3 122/4 330 762,1 62,1 % (46,6 à 73,6)
De 40 à 59 ans 48/8 394 1 331,5 138/8 452 1 332,9 65,2 % (51,3 à 75,5)
60 à 69 ans 19/4 800 722,9 65/4 907 732,2 70,4 % (50,0 à 83,2)
70 à 79 ans 2/1 768 259,5 23/1 650 239,2 92,0 % (67,6 à 99,1)
≥ 80 0/196 27,42 0/205 29,8 S.O.*
<60 ans (c.-à-d.18 à 59 ans) 95/12 750 2 106,8 260/12 782 2 095,0 63,7 % (53,9 à 71,6)
<65 (c.-à-d. 18 à 64 ans) 107/15 544 2 530,3 297/15 552 2 511,2 64,2 % (55,3 à 71,6)
≥60 ans 21/6 764 1 009,8 88/6 762 1 001,2 76,3 % (61,6 à 86,0)
≥ 65 ans 9/3 970 586,3 51/3 992 584,9 82,4 % (63,9 à 92,4)
≥75 ans 0/751 88,4 8/690 99,2 100,0 % (45,9 à 100,0)
≥28 jours après la vaccination
De 18 à 39 ans 29/4 316 772,4 84/4 254 756,6 66,2 % (47,9 à 78,6)
De 40 à 59 ans 23/8 301 1 325,2 68/8 273 1 320,4 66,3 % (45,2 à 80,0)
60 à 69 ans 12/4 749 719,3 32/4 833 727,1 62,1 % (24,4 à 82,2)
70 à 79 ans 2/1 746) 257,8 9/1 620 237,2 79,6 % (1,2 à 97,9)
≥ 80 ans 0/194 27,3 0/198 29,3 S.O.
<60 ans (c.-à-d.18 à 59 ans) 52/12 617 2 097,6 152/12 527 2 077,0 66,1 % (53,3 à 75,8)
<65 (c.-à-d. 18 à 64 ans) 60/15 378 2 518,7 170/15 253 2 490,1 65,1 % (52,9 à 74,5)
≥60 ans 14/6 689 1 004,4 41/6 651 993,6 66,2 % (36,7 à 83,0)
≥ 65 ans 6/3 928 583,3 23/3 925 580,5 74,0 % (34,4 à 91,4)
≥75 ans 0/740 106,4 3/673 98,1 S.O.

*S.O. = Sans objet; on n'a pas établi d'estimations de l'efficacité potentielle du vaccin puisque moins de six événements ont été signalés.

Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Figures 30 et 31

L'efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination a été calculée pour quatre groupes d'âge : 18 à 59 ans, 18 à 64 ans, ≥60 et ≥65 ans (Tableau 20).

L'analyse a été répétée à l'aide d'un ensemble plus large de données comprenant à la fois les cas confirmés de COVID-19 et les cas ayant obtenu un résultat positif au test PCR effectué à un site de dépistage local à l'intérieur du pays. Les estimations de l'efficacité potentielle du vaccin chez les participants âgés de ≥65 ans à ≥14 jours et à ≥28 jours après la vaccination sont passées à 71,4 % et à 70,1 %, respectivement.

Tableau 20. Efficacité potentielle contre l'infection à la COVID-19 symptomatique confirmée à sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination, par groupe d'âge, ensemble conforme au protocole
Groupe d'âge
(années)
Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥14 jours après la vaccination
18 à 59 ans 8/12 750 2 114,3 41/12 782 2 115,1 80,5 % (57,8 à 92,1)
18 à 64 ans 11/15 544 2 538,5 50/15 552 2 533,8 78,0 % (57,3 à 89,7)
≥60 ans 6/6 764 1 01,7 19/6 762 1 006,9 68,5 % (18,1 à 89,7)
≥ 65 ans 3/3 970 586,6 10/3 992 588,3 69,9 % (-16,8 à 94,7)
≥28 jours après la vaccination
18 à 59 ans 2/12 617 2 101,0 24/12 527 2 086,7 91,7 % (66,7 à 99,1)
18 à 64 ans 2/15 378 2 522,8 28/15 253 2 500,9 92,9 % (71,9 à 99,2)
≥60 ans 3/6 689 1 005,1 10/6 651 995,9 70,3 % (-15,5 à 94,7)
≥ 65 ans 3/3 928 583,4 6/3 925 581,7 50,1 % (-133,4 à 91,9)
Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Figures 32 et 33

Par comorbidité

Dans l'essai clinique, la présence de comorbidités a été définie comme étant un participant à l'étude présentant au départ une ou plusieurs affections médicales associées à un risque accru d'évolution vers un cas de COVID-19 grave (par exemple asthme, maladie cérébrovasculaire, hypertension, maladie respiratoire, maladie du foie et obésité). Chez les participants avec et sans comorbidités, l'efficacité potentielle a été évaluée contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique et contre l'infection à la COVID-19 symptomatique confirmée sévère/critique se manifestant ≥14 jours et ≥ 28 jours après la vaccination (Tableau 21).

En répétant l'analyse avec l'ensemble de données plus large des cas de COVID-19 confirmés de manière centralisée et localement à l'intérieur du pays, on a estimé que l'efficacité potentielle du vaccin contre (a) l'infection à la COVID-19 confirmée modérée à sévère/critique et (b) contre l'infection à la COVID-19 sévère/critique chez les participants présentant des comorbidités était de 58,6 % (IC à 95 % : 40,6 à 71,6 %) et de 75,2 % (IC à 95 % : 32,0 à 92,7 %) pour une apparition ≥28 jours après la vaccination.

Tableau 21. Efficacité contre l'infection à la COVID-19 symptomatique confirmée (a) modérée à sévère/critique et (b) sévère/critique se manifestant ≥14 jours et ≥28 jours après la vaccination, selon la présence ou l'absence de comorbidités, ensemble conforme au protocole
Présence de comorbidités
(oui/non)
Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
(a) Infection à la COVID-19 modérée à sévère/critique
≥14 jours après la vaccination
Oui 47/7 777 1 140,0 126/7 798 1 133,7 62,9 % (47,8 à 74,1)
Non 69/11 737 1 976,6 222/11 746 1 962,5 69,1 % (59,4 à 76,8)
≥28 jours après la vaccination
Oui 27/7 684 1 133,6 52/7 626 1 121,7 48,6 % (16,7 à 69,0)
Non 39/11 622 1 968,4 141/11 552 1 949,0 72,6 % (60,7 à 81,3)
b) Infection à la COVID-19 sévère/critique
≥14 jours après la vaccination
Oui 8/7 777 1 142,9 29/7 798 1 141,7 72,4 % (38,2 à 89,1)
Non 6/11 737 1 982,1 31/11 746 1 980,3 80,7 % (53,0 à 93,4)
≥28 jours après la vaccination
Oui 4/7 684 1 135,0 12/7 626 1 124,2 67,0 % (-8,9 à 92,2)
Non 1/11 622 1 971,1 22/11 552 1 958,3 95,5 % (72,1 à 99,9)
Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Figures 30, 31, 32 et 33

Par statut sérologique

Cette analyse a été réalisée avec l'ensemble de données élargi comprenant les cas de COVID-19 confirmés de manière centralisée et localement et a permis d'estimer l'efficacité potentielle du vaccin contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique chez les participants à l'étude en fonction de leur statut sérologique au départ (tableau 22).

Tableau 22. Efficacité contre l'infection à la COVID-19 symptomatique confirmée modérée à sévère/critique se manifestant ≥14 jours et ≥ 28 jours après la vaccination, y compris les cas confirmés à la fois de manière centralisée et non centralisée, par statut sérologique, ensemble par protocole
Statut sérologique pour le SRAS-CoV-2 au départ Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥14 jours après la vaccination
Indépendamment du statut initial 176/21 636 3 450,2 513/21 574 3 409,8 66,1 % (59,7 à 71,6 %)
Positif 3/2 122 336,3 4/2 030 320,8 28,5 % (-322,8 à 89,5)
Négatif 173/19 514 3 113,9 509/19 544 3 089,1 66,3 % (59,9 à 71,8)
≥28 jours après la vaccination
Indépendamment du statut initial 114/21 424 3 436,3 326/21 199 3 385,9 65,5 % (57,2 à 72,4)
Positif 1/2 118 336,1 2/2 021 320,0 S.O.*
Négatif 113/19 306 3 100,3 324/19 178 3 065,9 65,5 % (57,2 à 72,4)

*S.O. = Sans objet; on n'a pas établi d'estimations de l'efficacité potentielle du vaccin puisque moins de six événements ont été signalés.

Source : Tableau 14, document d'information de la FDA pour la réunion du comité consultatif sur les vaccins et les produits biologiques connexes (26 février 2021).

Hospitalisations

Une analyse a posteriori a évalué l'efficacité potentielle du vaccin contre les hospitalisations associées à la COVID-19. L'analyse portait sur des cas survenus ≥1 jour, ≥14 jours et ≥28 jours après la vaccination chez des participants à l'étude séronégatifs au départ (Tableau 23). À chaque point temporel, l'analyse a été réalisée à partir (a) des cas de COVID-19 confirmés de manière centralisée uniquement et (b) des cas confirmés à la fois de manière centralisée et locale (« tout résultat positif au test PCR »).

Tableau 23. Efficacité contre les hospitalisations associées à la COVID-19 pour des symptômes apparus ≥1, ≥14 et ≥28 jours après la vaccination
Population d'analyse Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
≥1 jour après la vaccination (FAS-SN)
Cas confirmés 6 3 202,8 18 3 213,1 66,6 % (12,1 à 89,1)
Tout résultat positif au test PCR 6 3 202,8 42 3 211,6 85,7 % (66,1 à 95,0)
≥14 jours après la vaccination (conforme au protocole)
Cas confirmés 2 3 125,8 11 3 125,9 81,8 % (16,7 à 98,0)
Tout résultat positif au test PCR 2 3 125,8 29 3 125,1 93,1 % (72,7 à 99,2)
≥28 jours après la vaccination (conforme au protocole)
Cas confirmés 0 3 106,3 6 3 084,4 100,0 % (15,7 à 100,0)
Tout résultat positif au test PCR 0 3 106,3 16 3 083,9 100,0 % (74,3 à 100,0)

FAS-SN = Ensemble d'analyse complet, participants à l'étude entièrement randomisée avec administration documentée du vaccin à l'étude, séronégatifs au départ; PP = ensemble conforme au protocole

Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Tableau 10.

Décès

Dix-neuf décès ont été signalés au cours de l'essai clinique : 3 dans le groupe vacciné et 16 dans le groupe placebo. Sur les 19 décès, il a été établi qu'aucun dans le groupe vacciné n'était associé à la COVID-19, d'après les classifications de cas de COVID-19 de l'OMS, en combinaison avec un résultat positif à la RT-PCR, comparativement à cinq décès associés à la COVID-19 dans le groupe placebo. Les 5 décès survenus dans le groupe placebo concernaient des participants sud-africains présentant une ou plusieurs comorbidités associées à un risque accru d'évolution vers un cas grave de COVID-19.

Infection par le SARS-CoV-2 asymptomatique ou non détectée

L'analyse de l'efficacité du vaccin contre l'infection par la COVID-19 asymptomatique ou non détectée (participants à l'étude ne répondant pas à l'une des définitions de cas pour la COVID-19 symptomatique et ayant un résultat positif au test PCR ou sérologique) et contre la séroconversion a été réalisée à deux points dans le temps : avec une apparition à 29 jours et 28 jours ou plus après la vaccination. Une analyse de sensibilité a également été réalisée pour chacun de ces résultats en éliminant les participants présentant des symptômes à tout moment depuis le dépistage et avant le résultat positif au test PCR ou sérologique (« sans symptômes antérieurs »).

L'estimation ponctuelle de l'efficacité potentielle du vaccin contre l'infection à la COVID-19 asymptomatique ou non détectée pour une apparition ≥28 jours après la vaccination se chiffre à 59,7 % (et à 74,0 % après retrait des participants affichant des symptômes antérieurs) et contre une séroconversion s'élevant à 66,5 % (74,2 % après retrait des participants affichant des symptômes antérieurs) (Tableau 24). Les résultats de la séroconversion devraient être interprétés avec prudence, car il s'agit d'une analyse préliminaire fondée sur une durée de suivi limitée d'environ 29 % des participants à l'étude prévus pour l'analyse finale basée sur la sérologie au 71e jour.

Tableau 24. Efficacité contre l'infection par la COVID-19 asymptomatique et non détectée, et contre la séroconversion, avec une apparition 28 jours ou plus après la vaccination
Résultats Groupe vacciné Groupe placebo Efficacité du vaccin
(IC à 95 %)
Cas (n/N) Années-personnes Cas (n/N) Années-personnes
Ensemble d'analyse complet, séronégatif au départ
Infection par le SRAS-CoV-2 asymptomatique ou non détectée 22/19 301 3 099,70 54/19 162 3 064,20 59,7 % (32,8 à 76,6)
Infection par le SARS-CoV-2 asymptomatique ou non détectée sans symptômes antérieurs 10/19 301 3 098,0 38/19 162 3 061,5 74,0 % (46,8 à 88,4)
Ensemble sur le risque sérologiqueFootnote *
Séroconversion 18/1 346 312,2 50/1 304 298,2 65,5 % (39,9 à 81,1)
Séroconversion sans symptômes antérieurs 10/1 346 310,9 37/1 304 296,60
Note de bas de tableau 24 (*)

Ensemble sur le risque sérologique = participants dont le résultat sérologique était disponible au 71e jour après la vaccination.

Retour à la référence de la note de bas de page *

Source : Présentation du fabricant Janssen à Santé Canada, module 2.5 : Aperçu clinique, Tableau 12.

Immunogénicité

La majorité de l'analyse d'immunogénicité est basée sur les données d'un essai de Phase 1 qui a inclus deux cohortes d'adultes en bonne santé âgés de 18 à 55 ans et de 65 ans et plus. Dans chaque cohorte, il y avait deux niveaux de dose administrés en une ou deux doses. L'analyse ci-dessous provient d'une dose de la plus faible dose, soit de 5x1010 particules virales.

Réponses immunitaires humorales

Les réponses des anticorps ont été provoquées par une dose du vaccin de Janssen. Les anticorps de liaison et de neutralisation ont atteint un maximum au 29e jour et se sont maintenus jusqu'au 85e jour (dernier point d'évaluation dans le temps) dans la cohorte plus jeune. Dans la cohorte plus âgée, les réponses des anticorps de liaison étaient légèrement inférieures à celles de la cohorte plus jeune et ont été déclenchées plus lentement, augmentant du 15e au 57e jour (dernier point d'évaluation dans le temps). Les réponses des anticorps neutralisants étaient d'un niveau similaire à celles de la cohorte plus jeune. Elles ont été déclenchées dès le 15e jour et ont maintenu un plateau approximatif jusqu'au 57e jour. Les réponses des anticorps fonctionnels, déterminées par la fonction effectrice Fc, ont été déclenchées au maximum au 29e jour (le dernier jour de l'évaluation), à des niveaux similaires dans les deux cohortes d'âge.

On dispose de peu de données sur les personnes séropositives qui pourraient indiquer qu'elles ont une réponse forte à une seule dose de vaccin.

On dispose également de données minimes démontrant une diminution de la réponse des anticorps neutralisants au variant viral B.1.1.7 (alpha).

Sans corrélat de protection, l'importance de ces différences dans les réponses des anticorps n'est pas claire.

Réponses immunitaires à médiation cellulaire

Les réponses immunitaires cellulaires ont été déclenchées par une dose de ce vaccin et étaient similaires dans les deux cohortes d'âge. Des réponses des lymphocytes T CD4+ spécifiques à la protéine de spicule ont été détectées chez 76 % des jeunes vaccinés et chez 60 % des vaccinés plus âgés. Des réponses des lymphocytes T CD4+ à biais Th-1 ont été observées dès le 15e jour après la vaccination et sont restées élevées jusqu'au 29e jour (dernier point d'évaluation dans le temps). Des réponses des lymphocytes T CD8+ spécifiques à la protéine de spicule ont été détectées chez 51 % des jeunes vaccinés et chez 36 % des vaccinés plus âgés au 15e jour après la vaccination et sont restées élevées jusqu'au 29e jour.

Réponses immunitaires anti-vectorielles

On ne sait pas exactement dans quelle mesure la population canadienne est déjà immunisée contre un vecteur vaccinal à base d'adénovirus et quel impact cela pourrait avoir sur l'innocuité et l'efficacité potentielle des vaccins à base d'adénovirus. On ne sait pas non plus dans quelle mesure l'immunisation par des vaccins à base d'adénovirus provoque des réponses immunitaires anti-vectorielles et quel impact cela pourrait avoir sur les doses de rappel homologues ou hétérologues des vaccins à base d'adénovirus. Des données probantes sur un vaccin contre la COVID-19 à vecteur viral basé sur l'adénovirus humain de type 5 (non autorisé au Canada) ont indiqué que les personnes vaccinées ayant une forte immunité préexistante au vecteur adénoviral présentaient des réponses immunitaires anti-SRAS-CoV-2 plus faiblesNote de bas de page 136. Le vaccin contre la COVID-19 de Janssen utilise un Ad26 modifié. Janssen n'a trouvé aucune corrélation entre les réponses des anticorps neutralisants anti-Ad26 et les réponses immunitaires anti-SRAS-CoV-2. Cependant, la neutralisation n'est pas la seule réponse immunitaire anti-vectorielle qui pourrait avoir un effet sur l'immunité induite par le vaccin. On ignore encore si les réponses immunitaires au vecteur Ad26 auront un effet sur l'efficacité potentielle et réelle de ce vaccin.

Innocuité du vaccin et effets secondaires suivant l'immunisation

Les données probantes relatives à l'innocuité sont fondées sur des analyses intermédiaires de 21 895 participants (dont 7 331 avaient 60 ans ou plus) ayant reçu au moins une dose du vaccin. Un sous-ensemble sur l'innocuité comprenait 3 356 participants du groupe vacciné qui ont été suivis pour des réactions sollicitées dans les sept jours suivant la vaccination et des réactions non sollicitées dans les 28 jours suivant la vaccination. Les événements indésirables (ÉI) nécessitant des soins médicaux (ÉIM), les événements indésirables graves (ÉIG) et les ÉI ayant entraîné l'arrêt de la participation à l'étude ont été évalués chez tous les participants. Globalement, la durée médiane du suivi était de 58 jours après la vaccination.

Réactions locales sollicitées

Des ÉI sollicités au site d'injection local ont été signalés par 50,3 % des participants évalués dans les sept premiers jours suivant l'administration d'une dose de vaccin. La douleur au site d'injection a été l'ÉI local le plus fréquemment signalé (48,7 %), suivi par la chaleur (7,3 %) et l'enflure (5,3 %). Dans le groupe vacciné, la fréquence des ÉI locaux sollicités était plus faible chez les participants âgés de 60 ans et plus que chez les participants âgés entre 18 ans et plus et moins de 60 ans. La fréquence des ÉI locaux sollicités était également similaire chez les participants qui étaient séronégatifs pour le SRAS-CoV-2 au départ par rapport aux participants qui étaient séropositifs pour le SRAS-CoV-2 au départ (50,1 % et 54,5 %, respectivement). La plupart des réactions locales sollicitées chez les participants ayant reçu le vaccin étaient d'intensité légère ou modérée; des réactions de stade 3 ont été déclarées par 0,7 % ou moins des participants. Aucun ÉI local sollicité de stade 4 n'a été déclaré.

Réactions systémiques sollicitées

Des ÉI systémiques sollicités ont été signalés par 55,2 % des participants évalués dans les sept premiers jours suivant l'administration d'une dose de vaccin. Les ÉI sollicités les plus courants étaient les maux de tête (39,0 %) et la fatigue (38,3 %). Les autres ÉI systémiques sollicités fréquemment rapportés étaient des douleurs musculaires (33,2 %), des nausées (14,2 %) et une fièvre de 38,0 °C ou plus (9,0 %). Même si les ÉI étaient plus faibles chez les participants âgés de 60 ans et plus que chez les participants âgés de 18 ans et plus à moins de 60 ans, il n'y avait pas de différence pertinente au niveau clinique dans la fréquence des ÉI systémiques sollicités. Des ÉI ont été observés de façon similaire chez les participants qui étaient séronégatifs pour le SRAS-CoV-2 au départ (55,4 %) par rapport aux participants qui étaient séropositifs pour le SRAS-CoV-2 au départ (50,6 %). Dans l'ensemble, la fréquence de toutes les réactions de stade 3 était inférieure à 2 %, et aucun ÉI systémique sollicité de stade 4 n'a été signalé. Des antipyrétiques ont été recommandés après la vaccination pour soulager les symptômes si nécessaire. Des analgésiques ou des antipyrétiques ont été utilisés par 26,4 % des personnes vaccinées de 18 à 59 ans et par 9,8 % des personnes vaccinées de 60 ans et plus jusqu'à sept jours après la vaccination dans le cadre de l'analyse complète. La majorité des ÉI systémiques sollicités étaient de nature transitoire et avaient une durée médiane d'un à deux jours après la vaccination.

Événements indésirables graves non sollicités

Au cours de la période de 28 jours suivant la vaccination, 19 (0,6 %) participants ont présenté des ÉI non sollicités de stade 3 au moins dans le groupe vacciné, contre 18 (0,6 %) participants dans le groupe placebo. Parmi ces ÉI non sollicités de stade 3 au moins, 5 (0,1 %) ont été considérés comme étant liés au vaccin à l'étude. Il n'y a pas eu de déséquilibres évidents par CSO. On n'a relevé aucun cas d'anaphylaxie lors des essais cliniques. Cependant, le fabricant a annoncé avoir reçu des rapports préliminaires de deux cas de réactions allergiques graves, dont un cas d'anaphylaxie, chez des participants ayant reçu le vaccin. Aucun détail sur les rapports n'a été fourni à ce jour.

Au total, sept participants (moins de 0,1 %) ont signalé des ÉIG qui ont été considérés par le chercheur comme étant liés au vaccin à l'étude et qui ont conduit à l'arrêt de l'étude. Voici quelques-uns de ces ÉIG :

Autres événements indésirables graves

Acouphènes

Six cas d'acouphènes ont été signalés dans le groupe vacciné et aucun dans le groupe placebo. Le chercheur a considéré que tous les cas étaient non graves, et que deux cas étaient liés. Tous les participants présentaient des affections médicales sous-jacentes (telles que des antécédents d'acouphènes et de migraines, des antécédents d'hypertension, des allergies saisonnières et une hypothyroïdie) ou prenaient des médicaments qui offraient une autre cause plus plausible pour l'événement que le vaccin.

Convulsions/crise

Quatre cas ont été signalés dans le groupe vacciné (un cas grave) et un cas (non grave) dans le groupe placebo, tous considérés comme étant non liés au vaccin de l'étude par le chercheur. Le cas grave de convulsion/crise d'épilepsie a été rapporté chez un participant ayant des antécédents d'épilepsie et de trouble obsessionnel-compulsif.

Événements thrombotiques et thromboemboliques

L'incidence globale des événements thrombotiques et thromboemboliques (artériels et veineux) était similaire dans les groupes vaccinés (n = 15, 0,1 %) et placebo (n = 10, < 0,1 %). Un déséquilibre numérique a été observé pour les sous-types de thrombose veineuse profonde/d'embolie pulmonaire, avec un total de neuf cas dans le groupe vacciné (quatre cas graves) et trois cas dans le groupe placebo (deux cas graves). Une occurrence de thrombose du sinus transverse est survenue le jour 21 après la vaccination chez un participant masculin âgé de 25 ans sans antécédents médicaux. Le sujet a subi également une crise épileptique déclarée comme étant une conséquence d'un saignement secondaire attribuable à une pression veineuse élevée découlant de l'obstruction du débit veineux. Deux procédures de thrombectomie ont été effectuées en raison de son état d'hypercoagulabilité. Aucune cause clairement identifiée n'a été attribuée à l'événement et l'incident a été réputé non lié au vaccin en raison de facteurs contributifs possibles (précédant l'infection et une anomalie anatomique). Un cas non grave, apparu 27 jours après la vaccination chez un participant ayant des antécédents médicaux d'obésité et de cholécystectomie, a été considéré comme étant lié au vaccin.

Thrombocytopénie thrombotique immunitaire induite par le vaccin

Ont été signalés récemment aux É.-U. de rares cas de caillots sanguins graves, notamment une CVST, associés à une thrombocytopénie par suite de l'utilisation autorisée du vaccin contre la COVID-19 de Janssen. Ce type d'ÉI, que l'on appelle thrombocytopénie immunitaire thrombotique induite par le vaccin (TTIV), a été associé aux vaccins à vecteur viral contre la COVID-19 d'AstraZeneca et de Janssen. Le mécanisme en cause est semblable à la thrombocytopénie induite par l'héparine (TIH). Le mécanisme précis par lequel les vaccins à vecteur viral contre la maladie sont susceptibles de provoquer la TTIV fait toujours d'objet de recherche. Au 24 mai 2021, 32 cas de STT ont été confirmés sur 10,2 millions de doses de Janssen administrées aux É.-U. La majorité des cas signalés à ce jour sont survenus chez des femmes âgées de 18 à 49 ans. Toutefois, des recherches sont en cours et des cas supplémentaires peuvent être identifiés en raison d'une sensibilisation accrue et de la mise en évidence actuelle de la reconnaissance clinique de cet évènement. Selon les déclarations, les symptômes sont apparus entre les jours 6 et 15 après la vaccination. La recherche à ce sujet se poursuit.

Troubles démyélinisants

Au total, quatre cas de troubles démyélinisants ont été rapportés dans le groupe vacciné (deux cas de neuropathie périphérique, un cas d'hypergammaglobulinémie monoclonale bénigne, un cas de SGB) contre cinq cas dans le groupe placebo (deux cas de neuropathie périphérique, un SGB et deux pertes sensorielles).

Décès

Au total, 19 décès ont été signalés chez les participants à l'étude : 3 dans le groupe vacciné et 16 dans le groupe témoin. Dans le groupe vacciné, les causes de décès selon le terme préféré étaient l'abcès du poumon, la pneumonie non liée à la COVID-19 et un cas de cause inconnue au moment de la date limite des données. Aucun de ces décès n'a été considéré par les chercheurs comme étant lié à une quelconque intervention de l'étude.

Grossesse

Huit grossesses ont été signalées jusqu'au 22 janvier 2021 (quatre dans le groupe vacciné, quatre dans le groupe placebo). La vaccination a eu lieu dans les 30 jours suivant les dernières menstruations chez sept participantes (trois vaccins, quatre placebos), tandis que chez une participante vaccinée, la vaccination a eu lieu avant les dernières menstruations. Les ÉI non sollicités liés à la grossesse comprenaient un avortement spontané (un dans le groupe vacciné, zéro dans le groupe placebo), un avortement incomplet (zéro dans le groupe vacciné, un dans le groupe placebo), un avortement volontaire (zéro dans le groupe vacciné, deux dans le groupe placebo) et une grossesse extra-utérine (une dans le groupe vacciné, zéro dans le groupe placebo). Deux grossesses sont en cours parmi les participantes du groupe vacciné, et les issues sont inconnues à ce jour.

Annexe E : Fréquence des évènements indésirables sollicités après l'administration de vaccins contre la COVID-19 dans les essais cliniques

Tableau 25. Fréquence des évènements indésirables locaux sollicités dans les populations autoriséesNote de bas de page a
ESSI Vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19 Vaccin Spikevax de Moderna contre la COVID-19
Adultes (≥16 ans) Adolescents (12-15 ans) Adultes Adolescents (12-17 ans)
Vaccin Placebo témoin Vaccin Placebo témoin Vaccin Placebo témoin Vaccin Placebo témoin
Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2
Douleur au point d'injection Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Sensibilité NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Rougeur/érythème Fréquent Fréquent Peu fréquent Peu fréquent Fréquent Fréquent Fréquent Peu fréquent Fréquent Fréquent Peu fréquent Peu fréquent Très fréquent Très fréquent Peu fréquent Peu fréquent
Enflure Fréquent Fréquent Peu fréquent Peu fréquent Fréquent Fréquent Fréquent Peu fréquent Fréquent Très fréquent Peu fréquent Peu fréquent Très fréquent Très fréquent Fréquent Fréquent
LymphadénopathieNote de bas de page b/Gonflement axillaire et sensibilité NS NS NS NS NS NS NS NS Très fréquent Très fréquent Fréquent Fréquent Très fréquent Très fréquent Fréquent Fréquent
Chaleur NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Prurit NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Induration NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Note de bas de tableau 25 (a)

Très fréquent = se produit chez 10 % ou plus des personnes vaccinées, Fréquent = se produit chez 1 à moins de 10 % des personnes vaccinées, Peu fréquent = se produit chez 0,1 % à moins de 1 % des personnes vaccinées

Retour à la référence de la note de bas de tableau a

Note de bas de page 25 (b)

La lymphadénopathie n'était pas un événement indésirable sollicité pour le vaccin contre la COVID-19 de Pfizer BioNTech ou le vaccin contre la COVID-19 d'AstraZeneca et a été signalée comme un événement indésirable non sollicité. Veuillez consulter les Annexes A et C pour plus de détails.

Retour à la référence de la note de bas de tableau b

Abréviations :

  • ESSI : effets secondaires suivant l'immunisation
  • menACWY : vaccin méningococcique quadrivalent
  • NS : non sollicité
Tableau 26. Fréquence des événements indésirables locaux sollicités dans les populations autorisées pour les vaccins à vecteur viral contre la COVID-19Note de bas de page a
ESSI Vaccin Vaxzevria d'AstraZeneca contre la COVID-19 Vaccin contre la COVID-19 de JanssenNote de bas de page b
Vaccin MenACWY témoin Vaccin Témoin placebo
Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 1
Douleur au point d'injection Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Sensibilité Très fréquent Très fréquent Très fréquent Très fréquent NS NS
Rougeur/érythème Très fréquent Fréquent Fréquent Peu fréquent Fréquent Fréquent
Enflure Fréquent Fréquent Fréquent Fréquent Fréquent Fréquent
LymphadénopathieNote de bas de page b/ Gonflement axillaire et sensibilité NS NS NS NS NS NS
Chaleur Très fréquent Fréquent Très fréquent Fréquent NS NS
Prurit Très fréquent Fréquent Fréquent Fréquent NS NS
Induration Fréquent Fréquent Fréquent Fréquent NS NS
Note de bas de tableau 26 (a)

Très fréquent = se produit chez 10 % ou plus des personnes vaccinées, Fréquent = se produit chez 1 à moins de 10 % des personnes vavaccinées, Peu fréquent = se produit chez 0,1 % à moins de 1 % des personnes vaccinées

Retour à la référence de la note de bas de page a

Note de bas de tableau 26 (b)

Vaccin à dose unique (deuxième dose non applicable)

Retour à la référence de la note de bas de page b

Note de bas de tableau 26 (c)

La lymphadénopathie n'était pas un événement indésirable sollicité pour le vaccin contre la COVID-19 d'AstraZeneca et a été signalée comme un évènement indésirable non sollicité. Veuillez consulter l'Annexe C pour plus de détails.

Retour à la référence de la note de bas de page c

Abréviations :

  • ESSI : effets secondaires suivant l'immunisation;
  • menACWY : vaccin méningococcique quadrivalent;
  • NS : non sollicité
Tableau 27. Fréquence des évènements indésirables systémiques sollicités dans les populations autorisées pour les vaccins à ARNm contre la COVID-19Note de bas de page a
ESSI Vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19 Vaccin Spikevax de Moderna contre la COVID-19
Adultes (≥16 ans) Adolescents (12-15 ans) Adultes Adolescents (12-17 ans)
Vaccin Placebo témoin Vaccin Placebo témoin Vaccin Placebo témoin Vaccin Placebo témoin
Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2
Fatigue Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Céphalées Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Douleurs musculaires Très fréquent Très fréquent Très fréquent Fréquent Très fréquent Très fréquent Très fréquent Fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Frissons Très fréquent Très fréquent Fréquent Fréquent Très fréquent Très fréquent Fréquent Fréquent Fréquent Très fréquent Fréquent Fréquent Très fréquent Très fréquent Très fréquent Fréquent
Douleurs articulaires Fréquent Très fréquent Fréquent Fréquent Fréquent Très fréquent Fréquent Fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Fréquent
FièvreNote de bas de page b Fréquent Très fréquent Peu fréquent Peu fréquent Très fréquent Très fréquent Fréquent Peu fréquent Peu fréquent Très fréquent Peu fréquent Peu fréquent Fréquent Très fréquent Fréquent Fréquent
FébrilitéNote de bas de page b NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Diarrhée Fréquent Fréquent Fréquent Fréquent Fréquent Fréquent Fréquent Fréquent NS NS NS NS NS NS NS NS
Nausées et/ou vomissementsNote de bas de page c Peu fréquent Fréquent Peu fréquent Peu fréquent Fréquent Fréquent Peu fréquent Fréquent Fréquent Très fréquent Fréquent Fréquent Très fréquent Très fréquent Fréquent Fréquent
Note de bas de tableau 27 (a)

Très fréquent = se produit chez 10 % ou plus des personnes vaccinées, Fréquent = se produit chez 1 à moins de 10 % des personnes vaccinées, Peu fréquent = se produit chez 0,1 % à moins de 1 % des personnes vaccinées

Retour à la référence de la note de bas de tableau a

Note de bas de tableau 27 (b)

La fièvre était la déclaration objective d'une température ≥ 38 °C/100,4 °F. La fébrilité était un sentiment subjectif et autodéclaré d'avoir de la fièvre.

Retour à la référence de la note de bas de tableau b

Note de bas de tableau 27 (c)

Si deux éléments sont déclarés, le premier reflète la nausée et le deuxième reflète la fréquence de vomissements.

Retour à la référence de la note de bas de tableau c

Abréviations :

  • ESSI : effets secondaires suivant l'immunisation
  • menACWY : vaccin méningococcique quadrivalent
  • NS : non sollicité
Tableau 28. Fréquence des évènements indésirables systémiques sollicités dans les populations autorisées pour les vaccins à vecteur viral contre la COVID-19Note de bas de page a
ESSI Vaccin Vaxzevria d'AstraZeneca contre la COVID-19 Vaccin contre la COVID-19 de Janssenb
Vaccin MenACWY témoin Vaccin Placebo témoin
Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 1
Fatigue Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Céphalées Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Douleurs musculaires Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent Très fréquent
Frissons Très fréquent Fréquent Fréquent Fréquent NS NS
Douleurs articulaires Très fréquent Très fréquent Fréquent Fréquent NS NS
FièvreNote de bas de page b Fréquent Peu fréquent Peu fréquent Peu fréquent Fréquent Peu fréquent
FébrilitéNote de bas de page b Très fréquent Fréquent Fréquent Fréquent NS NS
Diarrhée NS NS NS NS NS NS
Nausées et/ou vomissementsNote de bas de page c Très fréquent/
Fréquent
Fréquent/
Peu fréquent
Très fréquent/
Peu fréquent
Fréquent/
Peu fréquent
Très fréquent Fréquent
Note de bas de tableau 28 (a)

Très fréquent = se produit chez 10 % ou plus des personnes vaccinées, Fréquent = se produit chez 1 à moins de 10 % des personnes vaccinées, Peu fréquent = se produit chez 0,1 % à moins de 1 % des personnes vaccinées

Retour à la référence de la note de bas de page a

Note de bas de tableau 28 (b)

La fièvre était la déclaration objective d'une température = 38 °C/100,4 °F. La fébrilité était un sentiment subjectif et autodéclaré d'avoir de la fièvre.

Retour à la référence de la note de bas de page b

Note de bas de tableau 28 (c)

Si deux éléments sont déclarés, le premier reflète la nausée et le deuxième reflète la fréquence de vomissements.

Retour à la référence de la note de bas de page c

Abréviations :

  • ESSI : effets secondaires suivant l'immunisation
  • menACWY : vaccin méningococcique quadrivalent
  • NS : non sollicité

Annexe F : Grossesse, allaitement et registres de vaccination contre la COVID-19

Il existe un registre canadien de vaccination contre la COVID-19 pour les personnes enceintes ou qui allaitent (en anglais seulement) :

Tableau 29. Information sur le registre pour personnes enceintes selon le produit de vaccination
Produit de vaccination Information sur le registre
Vaccin Comirnaty de Pfizer-BioNTech contre la COVID-19 Pfizer ne dispose pas de registre d'exposition pour personnes enceintes. Celles qui ont reçu le vaccin contre la COVID-19 de Pfizer ainsi que les fournisseurs de soins de santé sont incités à déclarer au fabricant toute exposition au vaccin contre la COVID-19 durant la grossesse et l'allaitement (1-866-723-7111).
Vaccin Spikevax de Moderna contre la COVID-19 Il existe un registre d'exposition qui permet de surveiller toute issue chez les personnes enceintes exposées au vaccin contre la COVID-19 de Moderna. Celles qui reçoivent ce vaccin durant la grossesse sont incitées à s'inscrire au registre en appelant le 1-866-MODERNA (1-866-663-3762).
Vaccin Vaxzevria d'AstraZeneca contre la COVID-19 Il existe un registre d'exposition qui permet de surveiller toute issue chez les personnes enceintes exposées au vaccin contre la COVID-19 d'AstraZeneca. Celles qui reçoivent ce vaccin durant la grossesse sont incitées à s'inscrire au registre en consultant C-VIPER: COVID-19 Vaccines International Pregnancy Exposure Registry (en anglais seulement) ou en appelant le 1-800-616-3791.
Vaccin contre la COVID-19 de Janssen Il existe un registre d'exposition qui permet de surveiller toute issue chez les personnes enceintes exposées au vaccin contre la COVID-19 de Janssen. Celles qui reçoivent ce vaccin durant la grossesse sont incitées à s'inscrire au registre en consultant C-VIPER: COVID-19 Vaccines International Pregnancy Exposure Registry (en anglais seulement).

Références

Note de bas de page 1

Agence européenne des médicaments (EMA). Vaxzevria: EMA advises against use in people with history of capillary leak syndrome [Internet]. Amsterdam: EMA; 2021 juin 11 [cited 29 juin 2021]. Available from: https://www.ema.europa.eu/en/news/vaxzevria-ema-advises-against-use-people-history-capillary-leak-syndrome.

Retour à la référence de la note de bas de page 1

Note de bas de page 2

Medicines and Healthcare products Regulatory Agency (MHRA). Coronavirus vaccine - weekly summary of Yellow Card reporting [Internet]. London (UK): Department of Health and Social Care; 7 oct 2021 [cited 16 oct 2021]. Available from: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting.

Retour à la référence de la note de bas de page 2

Note de bas de page 3

UK medicine regulator looking at capillary leak syndrome precaution for AstraZeneca shot [Internet]. London (UK): Reuters; 11 juin 2021 [cited 29 juin 2021]. Available from: https://www.reuters.com/world/uk/uk-medicine-regulator-looking-capillary-leak-syndrome-precaution-astrazeneca-2021-06-11/.

Retour à la référence de la note de bas de page 3

Note de bas de page 4

Agence de la santé publique du Canada(ASPC). COVID-19: Vaccine safety and side effects [Internet]. Ottawa (ON): Government of Canada; 2021 Oct 8 [cited 16 oct 2021]. Available from: https://www.canada.ca/fr/sante-publique/services/maladies/maladie-coronavirus-covid-19/vaccins/securite-effets-secondaires.html.

Retour à la référence de la note de bas de page 4

Note de bas de page 5

Agence européenne des médicaments (EMA). COVID-19 Vaccine Janssen: Guillain-Barré syndrome listed as a very rare side effect [Internet]. Amsterdam: EMA; 22 juillet 2021 [cited 2021 Sep 23]. Available from: https://www.ema.europa.eu/en/news/covid-19-vaccine-janssen-guillain-barre-syndrome-listed-very-rare-side-effect.

Retour à la référence de la note de bas de page 5

Note de bas de page 6

Statement of the WHO Global Advisory Committee on Vaccine Safety (GACVS) COVID-19 subcommittee on reports of Guillain-Barré Syndrome (GBS) following adenovirus vector COVID-19 vaccines [Internet]. Geneva: World Health Organization; 26 juillet 2021 [cited 23 sep 2021]. Disponibe: https://www.who.int/news/item/26-07-2021-statement-of-the-who-gacvs-covid-19-subcommittee-on-gbs.

Retour à la référence de la note de bas de page 6

Note de bas de page 7

Agence européenne des médicaments (EMA). COVID-19 vaccine safety update. Vaxzevria: AstraZeneca [Internet]. Amsterdam: EMA; 14 juillet 2021 [cited 23 sep 2021]. Available from: https://www.ema.europa.eu/en/documents/covid-19-vaccine-safety-update/covid-19-vaccine-safety-update-vaxzevria-previously-covid-19-vaccine-astrazeneca-14-july-2021_en.pdf.

Retour à la référence de la note de bas de page 7

Note de bas de page 8

Food and Drug Administration (FDA). Coronavirus (COVID-19) Update: July 13, 2021. FDA news release. [Internet]. Silver Spring (MD): FDA; 13 juillet 2021 [cited 23 sep 2021]. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-july-13-2021.

Retour à la référence de la note de bas de page 8

Note de bas de page 9

Ismail SJ, Langley JM, Harris TM, Warshawsky BF, Desai S, FarhangMehr M. Canada's Comité consultatif national de l'immunisation (CCNI): Evidence-based decision-making on vaccines and immunization. Vaccine. 2010;28:A58,63. doi: 10.1016/j.vaccine.2010.02.035.

Retour à la référence de la note de bas de page 9

Note de bas de page 10

Ismail SJ, Hardy K, Tunis MC, Young K, Sicard N, Quach C. A framework for the systematic consideration of ethics, equity, feasibility, and acceptability in vaccine program recommendations. Vaccine. 10 août 2020;38(36):5861,5876. doi: 10.1016/j.vaccine.2020.05.051.

Retour à la référence de la note de bas de page 10

Note de bas de page 11

Ismail SJ, Tunis MC, Zhao L, Quach C. Navigating inequities: a roadmap out of the pandemic. BMJ Glob Health 2021 Jan;6(1):e004087. doi: 10.1136/bmjgh-2020-004087.

Retour à la référence de la note de bas de page 11

Note de bas de page 12

Gates M, Pillay J, Wingert A, Guitard S, Rahman S, Zakher B, et al. Risk factors associated with severe outcomes of COVID-19: An updated rapid review to inform national guidance on vaccine prioritization in Canada. medRxiv. 22 mai 2021. doi: 10.1101/2021.04.23.21256014v2.

Retour à la référence de la note de bas de page 12

Note de bas de page 13

Wingert A, Pillay J, Gates M, Guitard S, Rahman S, Beck A, et al. Risk factors for severe outcomes of COVID-19: a rapid review. medRxiv. 1 sep 2020. doi: https://doi.org/10.1101/2020.08.27.20183434.

Retour à la référence de la note de bas de page 13

Note de bas de page 14

Wingert A, Pillay J, Gates M, Guitard S, Rahman S, Beck A, et al. Risk factors for severity of COVID-19: a rapid review to inform vaccine prioritisation in Canada. BMJ Open. 13 mai 2021;11(5):e044684,2020-044684. doi: 10.1136/bmjopen-2020-044684.

Retour à la référence de la note de bas de page 14

Note de bas de page 15

Hyams C, Marlow R, Maseko Z, King J, Ward L, Fox K, et al. Assessing the effectiveness of BNT162b2 and ChAdOx1nCoV-19 COVID-19 vaccination in prevention of hospitalisations in elderly and frail adults: A single centre test negative case-control study. SSRN- Lancet prepublication. 3 mars 2021. doi: 10.2139/ssrn.3796835.

Retour à la référence de la note de bas de page 15

Note de bas de page 16

Lopez Bernal J, Andrews N, Gower C, Stowe J, Robertson C, Tessier E, et al. Early effectiveness of COVID-19 vaccination with BNT162b2 mRNA vaccine and ChAdOx1 adenovirus vector vaccine on symptomatic disease, hospitalisations and mortality in older adults in England. medRxiv. 2 mars 2021. doi: 10.1101/2021.03.01.21252652.

Retour à la référence de la note de bas de page 16

Note de bas de page 17

Vasileiou E, Simpson CR, Robertson C, Shi T, Kerr S, Agrawal U, et al. Effectiveness of first dose of COVID-19 vaccines against hospital admissions in Scotland: national prospective cohort study of 5.4 million people. SSRN- Lancet prepublication. 19 fév 2021. doi: 10.2139/ssrn.3789264.

Retour à la référence de la note de bas de page 17

Note de bas de page 18

Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. BNT162b2 mRNA Covid-19 Vaccine in a nationwide mass vaccination setting. N Engl J Med. 24 fév 2021. doi: 10.1056/NEJMoa2101765.

Retour à la référence de la note de bas de page 18

Note de bas de page 19

Aran D. Estimating real-world COVID-19 vaccine effectiveness in Israel using aggregated counts. medRxiv. 23 fév 2021. doi: 10.1101/2021.02.05.21251139.

Retour à la référence de la note de bas de page 19

Note de bas de page 20

Rinott E. Reduction in COVID-19 patients requiring mechanical ventilation following implementation of a national COVID-19 vaccination program — Israel, December 2020–February 2021. MMWR Morb Mortal Wkly Rep. 5 mars 2021;70(9):326,328. doi: 10.15585/mmwr.mm7009e3.

Retour à la référence de la note de bas de page 20

Note de bas de page 21

Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 5 mai 2021. doi: 10.1016/S0140-6736(21)00947-8.

Retour à la référence de la note de bas de page 21

Note de bas de page 22

Pawlowski C, Lenehan P, Puranik A, Agarwal V, Venkatakrishnan AJ, Niesen MJM, et al. FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med (N Y). 13 août 2021;2(8):979,992.e8. doi: 10.1016/j.medj.2021.06.007.

Retour à la référence de la note de bas de page 22

Note de bas de page 23

Brown KA, Stall NM, Vanniyasingam T, Buchan SA, Daneman N, Hillmer MP, et al. Early impact of Ontario’s COVID-19 vaccine rollout on long-term care home residents and health care workers. Science Briefs of the Ontario COVID-19 Science Advisory Table. 17 mars 2021;2(13):doi: 10.47326/ocsat.2021.02.13.1.0.

Retour à la référence de la note de bas de page 23

Note de bas de page 24

Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al. Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontario, Canada. medRxiv. 28 mai 2021. doi: 10.1101/2021.05.24.21257744.

Retour à la référence de la note de bas de page 24

Note de bas de page 25

Weekes M, Jones NK, Rivett L, Workman C, Ferris M, Shaw A, et al. Single-dose BNT162b2 vaccine protects against asymptomatic SARS-CoV-2 infection. Authorea. 24 fév 2021. doi: 10.22541/au.161420511.12987747/v1.

Retour à la référence de la note de bas de page 25

Note de bas de page 26

Tande AJ, Pollock BD, Shah ND, Farrugia G, Virk A, Swift M, et al. Impact of the COVID-19 vaccine on asymptomatic infection among patients undergoing pre-procedural COVID-19 molecular screening. Clin Infect Dis. 10 mars 2021;ciab229. doi: 10.1093/cid/ciab229.

Retour à la référence de la note de bas de page 26

Note de bas de page 27

Carazo S, Talbot D, Boulianne N, Brisson M, Gilca R, Deceuninck G, et al. Single-dose mRNA vaccine effectiveness against SARS-CoV-2 in healthcare workers extending 16 weeks post-vaccination: a test-negative design from Quebec, Canada. Clin Infect Dis. 20 août 2021:ciab739. doi: 10.1093/cid/ciab739.

Retour à la référence de la note de bas de page 27

Note de bas de page 28

Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Sbihi H, et al. Comparative single-dose mRNA and ChAdOx1 vaccine effectiveness against SARS-CoV-2, including early variants of concern: a test-negative design, British Columbia, Canada. medRxiv. 22 septembre 2021. doi: 10.1101/2021.09.20.21263875.

Retour à la référence de la note de bas de page 28

Note de bas de page 29

Pouwels KB, Pritchard E, Matthews PC, Stoesser N, Eyre DW, Vihta KD, et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat Med. 14 octobre 2021. doi: 10.1038/s41591-021-01548-7.

Retour à la référence de la note de bas de page 29

Note de bas de page 30

Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med. 12 août 2021;385(7):585,594. doi: 10.1056/NEJMoa2108891.

Retour à la référence de la note de bas de page 30

Note de bas de page 31

Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv. 30 septembre 2021. doi: 10.1101/2021.06.28.21259420.

Retour à la référence de la note de bas de page 31

Note de bas de page 32

Seppälä E, Veneti L, Starrfelt J, Danielsen AS, Bragstad K, Hungnes O, et al. Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021. Euro Surveill. 26 septembre 2021;26(35):2100793. doi: 10.2807/1560-7917.ES.2021.26.35.2100793.

Retour à la référence de la note de bas de page 32

Note de bas de page 33

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 9 janvier 2021;397(10269):99,111. doi: 10.1016/S0140-6736(20)32661-1.

Retour à la référence de la note de bas de page 33

Note de bas de page 34

De Serres G, Febriani Y, Ouakki M, Talbot D, Deceuninck G, Brousseau N, et al. Efficacité de deux doses de vaccin contre la COVID-19 chez les adultes québécois vivant dans la communauté [Internet]. Montréal: Institut national de santé publique du Québec (INSPQ); 29 septembre 2021 [cited 2021 Oct 15]. Available from: https://www.inspq.qc.ca/covid-19/vaccination/efficacite-2-doses.

Retour à la référence de la note de bas de page 34

Note de bas de page 35

BC Centre for Disease Control (BCCDC). Two doses prevent about 95 per cent of COVID-19 hospitalizations: B.C. COVID-19 vaccine effectiveness results [Internet]. Vancouver: Provincial Health Services Authority; 29 septembre 2021 [cited 2021 Oct 15]. Available from: http://www.bccdc.ca/about/news-stories/stories/2021/covid-19-vaccine-effectiveness-results.

Retour à la référence de la note de bas de page 35

Note de bas de page 36

Payne R, Longet S, Austin J, Skelly D, Dejnirattisai W, Adele S, et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell. 16 octobre 2021. doi: 10.1016/j.cell.2021.10.011.

Retour à la référence de la note de bas de page 36

Note de bas de page 37

Parry H, Bruton R, Stephens C, Brown K, Amirthalingam G, Otter A, et al. Differential immunogenicity of BNT162b2 or ChAdOx1 vaccines after extended-interval homologous dual vaccination in older people. Immun Ageing. 20 août 2021;18(1):34. doi: 10.1186/s12979-021-00246-9.

Retour à la référence de la note de bas de page 37

Note de bas de page 38

Tauzin A, Gong SY, Beaudoin-Bussières G, Vézina D, Gasser R, Nault L, et al. Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a sixteen-week interval between doses. medRxiv. 21 septembre 2021. doi: 10.1101/2021.09.17.21263532.

Retour à la référence de la note de bas de page 38

Note de bas de page 39

Amirthalingam G, Bernal JL, Andrews NJ, Whitaker H, Gower C, Stowe J, et al. Higher serological responses and increased vaccine effectiveness demonstrate the value of extended vaccine schedules in combatting COVID-19 in England. medRxiv. 28 juillet 2021. doi: 10.1101/2021.07.26.21261140.

Retour à la référence de la note de bas de page 39

Note de bas de page 40

Hall V, Ferreira V, Ierullo M, Ku T, Beata Majchrzak-Kita, Kulasingam V, et al. Delayed interval BNT162b2 mRNA COVID-19 vaccination provides robust immunity. Research Square [preprint]. 24 août 2021. doi: 10.21203/rs.3.rs-793234/v1.

Retour à la référence de la note de bas de page 40

Note de bas de page 41

Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK. medRxiv. 21 septembre 2021. doi: 10.1101/2021.09.15.21263583.

Retour à la référence de la note de bas de page 41

Note de bas de page 42

The Green Book. Chapter 14a - COVID-19 - SARS-CoV-2 [Internet]. London (UK): Public Health England; 16 septembre 2021 [cited 2021 Oct 16]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018444/Greenbook_chapter_14a_16Sept21.pdf.

Retour à la référence de la note de bas de page 42

Note de bas de page 43

Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV, Ramos GM, et al. Humoral and cellular immune response against SARS-CoV-2 variants following heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. medRxiv. 3 juin 2021. doi: 10.1101/2021.06.01.21258172.

Retour à la référence de la note de bas de page 43

Note de bas de page 44

Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine. 20 janvier 2016;34(4):413,423. doi: 10.1016/j.vaccine.2015.11.062.

Retour à la référence de la note de bas de page 44

Note de bas de page 45

Thrombosis Canada. Vaccine-Induced Prothrombotic Immune Thrombocytopenia (VIPIT) [Internet]. Whitby (ON): Thrombosis Canada; 26 avril 2021 [cited 19 mai 2021]. Available from: https://thrombosiscanada.ca/wp-uploads/uploads/2021/04/51.-Vaccine-induced-prothrobotic-immune-thrombcytopenia_26Apr21-Final.pdf.

Retour à la référence de la note de bas de page 45

Note de bas de page 46

Raw RK, Kelly C, Rees J, Wroe C, Chadwick DR. Previous COVID-19 infection but not Long-COVID is associated with increased adverse events following BNT162b2/Pfizer vaccination. medRxiv. 22 avril 2021. doi: 10.1101/2021.04.15.21252192.

Retour à la référence de la note de bas de page 46

Note de bas de page 47

Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 8 avril 2021;384(14):1372,1374. doi: 10.1056/NEJMc2101667.

Retour à la référence de la note de bas de page 47

Note de bas de page 48

Arnold DT, Milne A, Samms E, Stadon L, Maskell NA, Hamilton FW. Are vaccines safe in patients with Long COVID? A prospective observational study. medRxiv. 14 mars 2021. doi: 10.1101/2021.03.11.21253225.

Retour à la référence de la note de bas de page 48

Note de bas de page 49

Personal communication, re: CANVAS Network, as per Julie A. Bettinger, Vaccine Evaluation Center, BC Children’s Hospital, University of British Columbia following presentation to NACI on April 1, 2021.

Retour à la référence de la note de bas de page 49

Note de bas de page 50

Brighton Collaboration. Interim case definition of Thrombosis with Thrombocytopenia Syndrome (TTS) [Internet]. Decatur (GA): The Task Force for Global Health; 21 avril 2021 [cited 18 mai 2021]. Available from: https://brightoncollaboration.us/thrombosis-with-thrombocytopenia-syndrome-interim-case-definition/.

Retour à la référence de la note de bas de page 50

Note de bas de page 51

Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 9 avril 2021. doi: 10.1056/NEJMoa2104840.

Retour à la référence de la note de bas de page 51

Note de bas de page 52

European Medicines Agency (EMA). AstraZeneca’s COVID-19 vaccine: EMA finds possible link to very rare cases of unusual blood clots with low blood platelets [Internet]. Amsterdam: EMA; 7 avril 2021 [cited 19 mai 2021]. Available from: https://www.ema.europa.eu/en/news/astrazenecas-covid-19-vaccine-ema-finds-possible-link-very-rare-cases-unusual-blood-clots-low-blood.

Retour à la référence de la note de bas de page 52

Note de bas de page 53

Chan BT, Bobos P, Odutayo A, Pai M. Meta-analysis of risk of vaccine-induced immune thrombotic thrombocytopenia following ChAdOx1-S recombinant vaccine. medRxiv. 8 mai 2021. doi: 10.1101/2021.05.04.21256613.

Retour à la référence de la note de bas de page 53

Note de bas de page 54

Shay DK, Gee J, Su JR, Myers TR, Marquez P, Liu R, et al. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine - United States, March-April 2021. MMWR Morb Mortal Wkly Rep. 7 mai 2021;70(18):680,684. doi: 10.15585/mmwr.mm7018e2.

Retour à la référence de la note de bas de page 54

Note de bas de page 55

Therapeutic Goods Administration (TGA). COVID-19 vaccine weekly safety report [Internet]. Canberra: Department of Health, Australian Government; 14 octobre 2021 [cited 2021 Oct 18]. Available from: https://www.tga.gov.au/periodic/covid-19-vaccine-weekly-safety-report-14-10-2021.

Retour à la référence de la note de bas de page 55

Note de bas de page 56

Pai M, Grill A, Ivers N, Stall NM, Miller KJ, Niel U, et al. Vaccine-induced immune thrombotic thrombocytopenia (VITT) following adenovirus vector COVID-19 vaccination: Interim guidance for healthcare professionals in the outpatient setting. Version 2.0. Science Briefs of the Ontario COVID-19 Science Advisory Table. 2021;2(20):doi: 10.47326/ocsat.2021.02.20.2.0.

Retour à la référence de la note de bas de page 56

Note de bas de page 57

Pharmacovigilance Risk Assessment Committee (PRAC). Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 Vaccine (ChAdOx1-S [recombinant]) – Vaxzevria (previously COVID-19 Vaccine AstraZeneca) (Other viral vaccines) [Internet]. Amsterdam: European Medicines Agency (EMA); 8 avril 2021 [cited 19 mai 2021]. Available from: https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-embolic-thrombotic-events-smq-covid-19-vaccine-chadox1-s-recombinant_en.pdf.

Retour à la référence de la note de bas de page 57

Note de bas de page 58

National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Selected adverse events reported after COVID-19 vaccination [Internet]. Atlanta (GA): United States Centers for Disease Control and Prevention (CDC); 14 septembre 2021 [cited 15 septembre 2021]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html.

Retour à la référence de la note de bas de page 58

Note de bas de page 59

World Health Organization (WHO). COVID-19 subcommittee of the WHO Global Advisory Committee on Vaccine Safety (GACVS) reviews cases of mild myocarditis reported with COVID-19 mRNA vaccines [Internet]. Geneva: WHO; 26 mai 2021 [cited 14 juin 2021]. Available from: https://www.who.int/news/item/26-05-2021-gacvs-myocarditis-reported-with-covid-19-mrna-vaccines.

Retour à la référence de la note de bas de page 59

Note de bas de page 60

Gov.il. Surveillance of myocarditis (inflammation of the heart muscle) cases between December 2020 and May 2021 (including). Press release [Internet]. Israel: Ministry of Health; 6 juin 2021 [cited 22 juin 2021]. Available from: https://www.gov.il/en/departments/news/01062021-03.

Retour à la référence de la note de bas de page 60

Note de bas de page 61

Shimabukuro, T. COVID-19 Vaccine Safety Updates. Vaccines and Related Biological Products. Advisory Committee (VRBPAC). [VRBPAC meeting presentation] [Internet]. Atlanta: United States Centers for Disease Control and Prevention (CDC), COVID-19 Vaccine Task Force; 10 juin 2021 [cited 14 juin 2021]. Available from: https://www.fda.gov/media/150054/download.

Retour à la référence de la note de bas de page 61

Note de bas de page 62

European Medicines Agency (EMA). COVID-19 vaccines: update on ongoing evaluation of myocarditis and pericarditis [Internet]. Amsterdam: EMA; 11 juin 2021 [cited 14 juin 2021]. Available from: https://www.ema.europa.eu/en/news/covid-19-vaccines-update-ongoing-evaluation-myocarditis-pericarditis.

Retour à la référence de la note de bas de page 62

Note de bas de page 63

Reports of suspected adverse reactions to COVID-19 vaccines in Switzerland – update [Internet]. Bern (Switzerland): Swissmedic; 24 septembre 2021 [cited 16 octobre 2021]. Available from: https://www.swissmedic.ch/swissmedic/en/home/news/coronavirus-covid-19/covid-19-vaccines-safety-update-6.html.

Retour à la référence de la note de bas de page 63

Note de bas de page 64

Ontario Agency for Health Protection and Promotion (Public Health Ontario). Myocarditis and pericarditis following vaccination with COVID-19 mRNA vaccines in Ontario: December 13, 2020 to August 7, 2021  [Internet]. Toronto (ON): Queen’s Printer for Ontario; 2021 [cited 25 août 2021]. Available from: https://www.publichealthontario.ca/-/media/documents/ncov/epi/covid-19-myocarditis-pericarditis-vaccines-epi.pdf?sc_lang=en.

Retour à la référence de la note de bas de page 64

Note de bas de page 65

Shimabukuro, T. COVID-19 Vaccine safety updates [slides presented at Advisory Committee on Immunization Practices (ACIP) meeting] [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (CDC); 23 juin 2021 [cited 25 juin 2021]. Available from: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-COVID-Shimabukuro-508.pdf.

Retour à la référence de la note de bas de page 65

Note de bas de page 66

Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation. 10 août 2021;144(6):471,484. doi: 10.1161/CIRCULATIONAHA.121.056135.

Retour à la référence de la note de bas de page 66

Note de bas de page 67

Luk A, Clarke B, Dahdah N, Ducharme A, Krahn A, McCrindle B, et al. Myocarditis and pericarditis following COVID-19 mRNA vaccination: Practical considerations for care providers. Can J Cardiol. 7 août 2021:S0828-282X(21)00624-3. doi: 10.1016/j.cjca.2021.08.001.

Retour à la référence de la note de bas de page 67

Note de bas de page 68

Singer ME, Taub IB, Kaelber DC. Risk of myocarditis from COVID-19 infection in people under age 20: A population-based analysis. medRxiv. 27 juillet 2021. doi: 10.1101/2021.07.23.21260998.

Retour à la référence de la note de bas de page 68

Note de bas de page 69

Agence de la santé publique du Canada (ASPC). Reported side effects following COVID-19 vaccination in Canada [Internet]. Ottawa: Government of Canada; 8 octobre 2021 [cited 16 octobre 2021]. Available from: https://health-infobase.canada.ca/covid-19/vaccine-safety/.

Retour à la référence de la note de bas de page 69

Note de bas de page 70

European Medicines Agency (EMA). EMA advises against use of COVID-19 Vaccine Janssen in people with history of capillary leak syndrome [Internet]. Amsterdam: EMA; 9 juillet 2021 [cited 16 octobre 2021]. Available from: https://www.ema.europa.eu/en/news/ema-advises-against-use-covid-19-vaccine-janssen-people-history-capillary-leak-syndrome.

Retour à la référence de la note de bas de page 70

Note de bas de page 71

Rosenblum HG, Hadler SC, Moulia D, Shimabukuro TT, Su JR, Tepper NK, et al. Use of COVID-19 vaccines after reports of adverse events among adult recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices - United States, July 2021. MMWR Morb Mortal Wkly Rep. 13 août 2021;70(32):1094,1099. doi: 10.15585/mmwr.mm7032e4.

Retour à la référence de la note de bas de page 71

Note de bas de page 72

Shapiro Ben David S, Potasman I, Rahamim-Cohen D. Rate of recurrent Guillain-Barré syndrome after mRNA COVID-19 vaccine BNT162b2. JAMA Neurol. 1 septembre 2021. doi: 10.1001/jamaneurol.2021.3287.

Retour à la référence de la note de bas de page 72

Note de bas de page 73

Greenhawt M, Abrams EM, Shaker M, Chu DK, Khan D, Akin C, et al. The risk of allergic reaction to SARS-CoV-2 vaccines and recommended evaluation and management: A systematic review, meta-analysis, GRADE assessment, and international consensus approach. J Allergy Clin Immunol Pract. octobre 2021;9(10):3546,3567. doi: 10.1016/j.jaip.2021.06.006.

Retour à la référence de la note de bas de page 73

Note de bas de page 74

Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 12 octobre 2021;326(14):1390,1399. doi: 10.1001/jama.2021.15072.

Retour à la référence de la note de bas de page 74

Note de bas de page 75

Hourihane JO, Byrne AM, Blümchen K, Turner PJ, Greenhawt M. Ascertainment bias in anaphylaxis safety data of COVID-19 vaccines. J Allergy Clin Immunol Pract. juillet 2021 ;9(7):2562,2566. doi: 10.1016/j.jaip.2021.04.025.

Retour à la référence de la note de bas de page 75

Note de bas de page 76

Klein N. Safety update for COVID-19 vaccines. Rapid cycle analysis to monitor the safety of COVID-19 vaccines in near real-time within the Vaccine Safety Datalink: myocarditis and a naphylaxis [slides presented at Advisory Committee on Immunization Practices (ACIP) meeting] [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (CDC); 30 août 2021 [cited 16 octobre 2021]. Available from: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-08-30/04-COVID-Klein-508.pdf.

Retour à la référence de la note de bas de page 76

Note de bas de page 77

Advisory Committee Statement (ACS). Comité consultatif national de l'immunisation (CCNI). Recommendations on the duration of the post-vaccination observation period for influenza vaccination during the COVID-19 pandemic [Internet]. Ottawa (ON): Agence de la santé publique du Canada; 15 octobre 2020 [cited 18 octobre 2021]. Available from: https://www.canada.ca/en/public-health/services/immunization/national-advisory-committee-on-immunization-naci/recommendations-duration-observation-period-post-influenza-vaccination-during-covid-19-pandemic.html#a1.

Retour à la référence de la note de bas de page 77

Note de bas de page 78

Krantz MS, Kwah JH, Stone CA Jr, Phillips EJ, Ortega G, Banerji A, et al. Safety evaluation of the second dose of messenger RNA COVID-19 vaccines in patients with immediate reactions to the first dose. JAMA Intern Med. 26 juillet 2021. doi: 10.1001/jamainternmed.2021.3779.

Retour à la référence de la note de bas de page 78

Note de bas de page 79

Krantz MS, Bruusgaard-Mouritsen MA, Koo G, Phillips EJ, Stone CA,Jr, Garvey LH. Anaphylaxis to the first dose of mRNA SARS-CoV-2 vaccines: Don't give up on the second dose! Allergy. septembre 2021;76(9):2916,2920. doi: 10.1111/all.14958.

Retour à la référence de la note de bas de page 79

Note de bas de page 80

Kessel A, Bamberger E, Nachshon L, Rosman Y, Confino-Cohen R, Elizur A. Safe administration of the Pfizer-BioNtTech COVID-19 vaccine following an immediate reaction to the first dose. Allergy. 9 août 2021. doi: 10.1111/all.15038.

Retour à la référence de la note de bas de page 80

Note de bas de page 81

Kelso JM. Misdiagnosis of systemic allergic reactions to mRNA COVID-19 vaccines. Ann Allergy Asthma Immunol. juillet 2021;127(1):133,134. doi: 10.1016/j.anai.2021.03.024.

Retour à la référence de la note de bas de page 81

Note de bas de page 82

Warren CM, Snow TT, Lee AS, Shah MM, Heider A, Blomkalns A, et al. Assessment of allergic and anaphylactic reactions to mRNA COVID-19 vaccines with confirmatory testing in a US regional health system. JAMA Netw Open. 1 septembre 2021;4(9):e2125524. doi: 10.1001/jamanetworkopen.2021.25524.

Retour à la référence de la note de bas de page 82

Note de bas de page 83

Young K, Prematunge C, Waddell L, Emerging Science Group. Rapid review on protective immunity. Ottawa (ON): Agence de la santé publique de Canada; 12 février 2021.

Retour à la référence de la note de bas de page 83

Note de bas de page 84

Krutikov M, Palmer T, Tut G, Fuller C, Shrotri M, Williams H, et al. Incidence of SARS-CoV-2 infection according to baseline antibody status in staff and residents of 100 long-term care facilities (VIVALDI): a prospective cohort study. Lancet Healthy Longev. juin 2021 ;2(6):e362,e370. doi: 10.1016/S2666-7568(21)00093-3.

Retour à la référence de la note de bas de page 84

Note de bas de page 85

World Health Organization. Weekly epidemiological update on COVID-19 - 6 July 2021. Edition 47 [Internet]. Geneva: WHO; 6 juillet 2021 [cited 16 juillet 2021]. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---6-july-2021.

Retour à la référence de la note de bas de page 85

Note de bas de page 86

National Collaborating Centre for Methods and Tools (NCCMT). What is the effectiveness, immunogenicity and safety of COVID-19 vaccines in persons who have had a prior, confirmed COVID-19 infection?  [Internet]. Hamilton (ON): NCCMT; 25 juin 2021 [cited 16 juillet 2021]. Available from: https://www.nccmt.ca/covid-19/covid-19-rapid-evidenceservice/36.

Retour à la référence de la note de bas de page 86

Note de bas de page 87

Personal communication, re: CANVAS Network, as per Julie A. Bettinger, Vaccine Evaluation Center, BC Children’s Hospital, University of British Columbia following presentation to NACI on June 29, 2021.

Retour à la référence de la note de bas de page 87

Note de bas de page 88

Shrestha N,K., Burke P,C., Nowacki A,S., Terpeluk ,Paul, Gordon S,M. Necessity of COVID-19 vaccination in previously infected individuals. medRxiv. 19 juin 2021. doi: 10.1101/2021.06.01.21258176.

Retour à la référence de la note de bas de page 88

Note de bas de page 89

Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B, Charlett A, et al. Effectiveness of BNT162b2 mRNA vaccine against infection and COVID-19 vaccine coverage in healthcare workers in England, multicentre prospective cohort study (the SIREN Study). SSRN- Lancet prepublication. 9 mars 2021. doi: 10.21203/rs.3.rs-257937/v1.

Retour à la référence de la note de bas de page 89

Note de bas de page 90

Goldberg Y, Mandel M, Woodbridge Y, Fluss R, Novikov I, Yaari R, et al. Protection of previous SARS-CoV-2 infection is similar to that of BNT162b2 vaccine protection: A three-month nationwide experience from Israel. medRxiv. 24 avril 2021. doi: 10.1101/2021.04.20.21255670.

Retour à la référence de la note de bas de page 90

Note de bas de page 91

Ciccone EJ, Zhu DR, Ajeen R, Lodge E,K., Shook-Sa B, Boyce RM, et al. SARS-CoV-2 seropositivity after infection and antibody response to mRNA-based vaccination. medRxiv. 22 février 2021. doi: 10.1101/2021.02.09.21251319.

Retour à la référence de la note de bas de page 91

Note de bas de page 92

Saadat S, Rikhtegaran Tehrani Z, Logue J, Newman M, Frieman MB, Harris AD, et al. Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected with SARS-CoV-2. JAMA. 13 avril 2021;325(14):1467,1469. doi: 10.1001/jama.2021.3341.

Retour à la référence de la note de bas de page 92

Note de bas de page 93

Samanovic MI, Cornelius AR, Gray-Gaillard S, Allen JR, Karmacharya T, Wilson JP, et al. Robust immune responses after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals. medRxiv. 17 avril 2021. doi: 10.1101/2021.02.07.21251311.

Retour à la référence de la note de bas de page 93

Note de bas de page 94

Stamatatos L, Czartoski J, Wan Y, Homad LJ, Rubin V, Glantz H, et al. A single mRNA immunization boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. medRxiv. 10 mars 2021. doi: 10.1101/2021.02.05.21251182.

Retour à la référence de la note de bas de page 94

Note de bas de page 95

Personal communication, re: RECOVER study, as per Hélène Decaluwe, Associate Professor, Department of Pediatrics, CHU Sainte-Justine Research Center, University of Montreal following presentation to NACI on April 1, 2021.

Retour à la référence de la note de bas de page 95

Note de bas de page 96

Achiron A, Dolev M, Menascu S, Zohar DN, Dreyer-Alster S, Miron S, et al. COVID-19 vaccination in patients with multiple sclerosis: What we have learnt by February 2021. Mult Scler. mai 2021, 27(6):864,870. doi: 10.1177/13524585211003476.

Retour à la référence de la note de bas de page 96

Note de bas de page 97

Botwin GJ, Li D, Figueiredo J, Cheng S, Braun J, McGovern DPB, et al. Adverse events following SARS-CoV-2 mRNA vaccination among patients with inflammatory bowel disease. medRxiv. 31 mars 2021. doi: 10.1101/2021.03.30.21254607.

Retour à la référence de la note de bas de page 97

Note de bas de page 98

Braun-Moscovici Y, Kaplan M, Markovits D, Giryes S, Toledano K, Tavor Y, et al. Humoral response to Pfizer mRNA vaccine against SARS CoV2, in patients with autoimmune inflammatory rheumatic diseases and the impact on the rheumatic disease activity. medRxiv. 6 avril 2021. doi: 10.1101/2021.04.02.21254493:2021.04.02.21254493.

Retour à la référence de la note de bas de page 98

Note de bas de page 99

Connolly CM, Ruddy JA, Boyarsky BJ, Avery RK, Werbel WA, Segev DL, et al. Safety of the first dose of mRNA SARS-CoV-2 vaccines in patients with rheumatic and musculoskeletal diseases. Ann Rheum Dis. 19 mars 2021. doi: 10.1136/annrheumdis-2021-220231.

Retour à la référence de la note de bas de page 99

Note de bas de page 100

Geisen UM, Berner DK, Tran F, Sümbül M, Vullriede L, Ciripoi M, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort. Ann Rheum Dis. 24 mars 2021. doi: 10.1136/annrheumdis-2021-220272.

Retour à la référence de la note de bas de page 100

Note de bas de page 101

Wong S, Dixon R, Pazos VM, , Gnjatic S, Colombel J, et al. Serological response to COVID-19 vaccination in IBD patients receiving biologics. medRxiv. 20 mars 2021. doi: 10.1101/2021.03.17.21253848.

Retour à la référence de la note de bas de page 101

Note de bas de page 102

Watad A, De Marco G, Mahajna H, Druyan A, Eltity M, Hijazi N, et al. Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. Vaccines (Basel). 29 avril 2021;9(5):435. doi: 10.3390/vaccines9050435.

Retour à la référence de la note de bas de page 102

Note de bas de page 103

Boyarsky BJ, Ruddy JA, Connolly CM, Ou MT, Werbel WA, Garonzik-Wang JM, et al. Antibody response to a single dose of SARS-CoV-2 mRNA vaccine in patients with rheumatic and musculoskeletal diseases. Ann Rheum Dis. 23 mars 2021. doi: 10.1136/annrheumdis-2021-220289.

Retour à la référence de la note de bas de page 103

Note de bas de page 104

Deepak P, Kim W, Paley MA, Yang M, Carvidi AB, El-Qunni A, et al. Glucocorticoids and B cell depleting agents substantially impair immunogenicity of mRNA vaccines to SARS-CoV-2. medRxiv. 9 avril 2021. doi: 10.1101/2021.04.05.21254656.

Retour à la référence de la note de bas de page 104

Note de bas de page 105

Kennedy NA, Lin S, Goodhand JR, Chanchlani N, Hamilton B, Bewshea C, et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines. medRxiv. 29 mars 2021. doi: 10.1101/2021.03.25.21254335.

Retour à la référence de la note de bas de page 105

Note de bas de page 106

Committee for Medicinal Products for Human Use (CHMP). Assessment report. COVID-19 Vaccine Moderna [Internet]. Amsterdam: European Medicines Agency; 11 mars 2021 [cited 19 mai 2021]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf.

Retour à la référence de la note de bas de page 106

Note de bas de page 107

Committee for Medicinal Products for Human Use (CHMP). Assessment report. Comirnaty [Internet]. Amsterdam: European Medicines Agency; 19 février 2021 [cited 2021 Apr 26]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf.

Retour à la référence de la note de bas de page 107

Note de bas de page 108

Fact sheet for healthcare providers administering vaccine (vaccination providers): Emergency Use Authorization (EUA) of the Janssen COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19). [Internet]. Silver Spring (MD): U.S. Food and Drug Administration (FDA); 23 avril 2021 [cited 19 mai 2021]. Available from: https://www.fda.gov/media/146304/download.

Retour à la référence de la note de bas de page 108

Note de bas de page 109

Stebbings R, Maguire S, Armour G, Jones C, Goodman J, Maguire AK, et al. Developmental and reproductive safety of AZD1222 (ChAdOx1 nCoV-19) in mice. Reprod Toxicol. septembre 2021;104:134,142. doi: 10.1016/j.reprotox.2021.07.010.

Retour à la référence de la note de bas de page 109

Note de bas de page 110

Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, et al. Preliminary findings of mRNA Covid-19 vaccine safety in pregnant persons. N Engl J Med. 2021 04/21; 2021/04.

Retour à la référence de la note de bas de page 110

Note de bas de page 111

Golan Y, Prahl M, Cassidy A, Wu AHB, Jigmeddagva U, Lin CY, et al. Immune response during lactation after anti-SARS-CoV2 mRNA vaccine. medRxiv. 18 mars 2021. doi: 10.1101/2021.03.09.21253241.

Retour à la référence de la note de bas de page 111

Note de bas de page 112

Beharier O, Mayo RP, Raz T, Sacks KN, Schreiber L, Suissa-Cohen Y, et al. Efficient maternal to neonatal transfer of SARS-CoV-2 and BNT162b2 antibodies. medRxiv. 26 avril 2021. doi: 10.1101/2021.03.31.21254674.

Retour à la référence de la note de bas de page 112

Note de bas de page 113

Atyeo C, DeRiso EA, Davis C, Bordt EA, DeGuzman RM, Shook LL, et al. COVID-19 mRNA vaccines drive differential Fc-functional profiles in pregnant, lactating, and non-pregnant women. medRxiv. 5 avril 2021. doi: 10.1101/2021.04.04.438404.

Retour à la référence de la note de bas de page 113

Note de bas de page 114

Gray KJ, Bordt EA, Atyeo C, Deriso E, Akinwunmi B, Young N, et al. COVID-19 vaccine response in pregnant and lactating women: a cohort study. medRxiv. 8 mars 2021. 10.1101/2021.03.07.21253094:2021.03.07.21253094.

Retour à la référence de la note de bas de page 114

Note de bas de page 115

Prabhu M, Murphy EA, Sukhu AC, Yee J, Singh S, Eng D, et al. Antibody response to SARS-CoV-2 mRNA vaccines in pregnant women and their neonates. medRxiv. 6 avril 2021. doi: 10.1101/2021.04.05.438524:2021.04.05.438524.

Retour à la référence de la note de bas de page 115

Note de bas de page 116

Rottenstreich A, Zarbiv G, Oiknine-Djian E, Zigron R, Wolf DG, Porat S. Efficient maternofetal transplacental transfer of anti- SARS-CoV-2 spike antibodies after antenatal SARS-CoV-2 BNT162b2 mRNA vaccination. Clin Infect Dis. 3 avril 2021. doi: 10.1093/cid/ciab266.

Retour à la référence de la note de bas de page 116

Note de bas de page 117

Mithal LB, Otero S, Shanes ED, Goldstein JA, Miller ES. Cord blood antibodies following maternal coronavirus disease 2019 vaccination during pregnancy. Am J Obstet Gynecol. 1 avril 2021. doi: 10.1016/j.ajog.2021.03.035.

Retour à la référence de la note de bas de page 117

Note de bas de page 118

Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, et al. SARS-CoV-2-specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women. JAMA. 18 mai 2021;325(19):2013,2014. doi: 10.1001/jama.2021.5782.

Retour à la référence de la note de bas de page 118

Note de bas de page 119

Valcarce V, Stafford LS, Neu J, Cacho N, Parker L, Mueller M, et al. Detection of SARS-CoV-2 specific IgA in the human milk of COVID-19 vaccinated, lactating health care workers. medRxiv. 13 avril 2021. doi: 10.1101/2021.04.02.21254642.

Retour à la référence de la note de bas de page 119

Note de bas de page 120

Esteve-Palau E, Gonzalez-Cuevas A, Guerrero ME, Garcia-Terol C, Alvarez MC, Garcia-Aranda G, et al. Quantification of specific antibodies against SARS-CoV-2 in breast milk of lactating women vaccinated with an mRNA vaccine. medRxiv. 7 avril 2021. doi: 10.1101/2021.04.05.21254819.

Retour à la référence de la note de bas de page 120

Note de bas de page 121

Kelly JC, Carter EB, Raghuraman N, Nolan LS, Gong Q, Lewis AN, et al. Anti-severe acute respiratory syndrome coronavirus 2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination. Am J Obstet Gynecol. 31 mars 2021. doi: 10.1016/j.ajog.2021.03.031.

Retour à la référence de la note de bas de page 121

Note de bas de page 122

Statistics Canada. Table 17-10-0005-01  Population estimates on July 1st, by age and sex [Internet]. Statistics Canada: Ottawa (ON); 29 septembre 2020 [cited 2021 May 10]. Available from: https://doi.org/10.25318/1710000501-eng.

Retour à la référence de la note de bas de page 122

Note de bas de page 123

Agence de la santé publique du Canada (ASPC). Surveillance and Epidemiology Division, Centre for Immunization and Respiratory Infectious Diseases, Infectious Disease Prevention and Control Branch. Data cut-off 13 août 2021. Ottawa (ON): ASPC; 16 août 2021.

Retour à la référence de la note de bas de page 123

Note de bas de page 124

Puranik A, Lenehan PJ, Silvert E, Niesen MJM, Corchado-Garcia J, O’Horo JC, et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv. 9 août 2021. doi: 10.1101/2021.08.06.21261707:2021.08.06.21261707.

Retour à la référence de la note de bas de page 124

Note de bas de page 125

Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al. Comparative effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions - United States, March-August 2021. MMWR Morb Mortal Wkly Rep. 24 septembre 2021 ;70(38):1337,1343. doi: 10.15585/mmwr.mm7038e1.

Retour à la référence de la note de bas de page 125

Note de bas de page 126

Steensels D, Pierlet N, Penders J, Mesotten D, Heylen L. Comparison of SARS-CoV-2 antibody response following vaccination with BNT162b2 and mRNA-1273. JAMA. 30 août 2021. doi: 10.1001/jama.2021.15125.

Retour à la référence de la note de bas de page 126

Note de bas de page 127

Richards NE, Keshavarz B, Workman LJ, Nelson MR, Platts-Mills TAE, Wilson JM. Comparison of SARS-CoV-2 antibody response by age among recipients of the BNT162b2 vs the mRNA-1273 vaccine. JAMA Netw Open. 1 septembre 2021;4(9):e2124331. doi: 10.1001/jamanetworkopen.2021.24331.

Retour à la référence de la note de bas de page 127

Note de bas de page 128

Barbeau DJ, Martin JM, Carney E, Dougherty E, Doyle JD, Dermody TS, et al. Comparative analysis of human immune responses following SARS-CoV-2 vaccination with BNT162b2, mRNA-1273, or Ad26.COV2.S. medRxiv. 23 septembre 2021. doi: 10.1101/2021.09.21.21262927.

Retour à la référence de la note de bas de page 128

Note de bas de page 129

Markewitz R, Pauli D, Dargvainiene J, Steinhagen K, Engel S, Herbst V, et al. The temporal course of T- and B-cell responses to vaccination with BNT162b2 and mRNA-1273. Clin Microbiol Infect. 20 septembre 2021. doi: 10.1016/j.cmi.2021.09.006.

Retour à la référence de la note de bas de page 129

Note de bas de page 130

 Kaplonek P, Cizmeci D, Fischinger S, Collier A, Suscovich T, Linde C, et al. Subtle immunological differences in mRNA-1273 and BNT162b2 COVID-19 vaccine induced Fc-functional profiles. bioRxiv. 31 août 2021. doi: 10.1101/2021.08.31.458247.

Retour à la référence de la note de bas de page 130

Note de bas de page 131

Montoya JG, Adams AE, Bonetti V, Deng S, Link NA, Pertsch S, et al. Differences in IgG antibody responses following BNT162b2 and mRNA-1273 Vaccines. bioRxiv. 19 juin 2021. doi: 10.1101/2021.06.18.449086.

Retour à la référence de la note de bas de page 131

Note de bas de page 132

Angus Reid Institute. All but AstraZeneca? Most unvaccinated Canadians uncomfortable with brand; fewer would take the jab if offered [Internet]. Vancouver (BC): Angus Reid Institute; 12 avril 2021 [cited 2021 Apr 14]. Available from: https://angusreid.org/astrazeneca-confidence/.

Retour à la référence de la note de bas de page 132

Note de bas de page 133

Angus Reid Institute. Vaccine Vacillation: Confidence in AstraZeneca jumps amid increased eligibility; trust in Johnson & Johnson tumbles [Internet]. Vancouver (BC): Angus Reid Institute; 26 avril 2021 [cited 30 mai 2021]. Available from: https://angusreid.org/vaccine-astrazeneca-johnson/.

Retour à la référence de la note de bas de page 133

Note de bas de page 134

Impact and Innovation Unit. COVID-19 Snapshot Monitoring (COSMO Canada). (5-12 mai 2021; wave 13). Ottawa (ON): Impact Canada Initiative; 2021.

Retour à la référence de la note de bas de page 134

Note de bas de page 135

NIA Long-Term Care COVID-19 Tracker Open Data Working Group. NIA long-term care COVID-19 tracker [Internet]. Toronto (ON): National Institute on Ageing, Ryerson University.; 14 septembre 2021 [cited 14 septembre 2021]. Available from: https://ltc-covid19-tracker.ca/.

Retour à la référence de la note de bas de page 135

Note de bas de page 136

Breznik JA, Zhang A, Huynh A, Miller MS, Nazy I, Bowdish DME, et al. Antibody responses 3-5 months post-vaccination with mRNA-1273 or BNT163b2 in nursing home residents. medRxiv. 19 août 2021. doi: 10.1101/2021.08.17.21262152.

Retour à la référence de la note de bas de page 136

Note de bas de page 137

Abe KT, Hu Q, Mozafarihashjin M, Samson R, Manguiat K, Robinson A, et al. Neutralizing antibody responses to SARS-CoV-2 variants in vaccinated Ontario long-term care home residents and workers. medRxiv. 27 août 2021. doi: 10.1101/2021.08.06.21261721.

Retour à la référence de la note de bas de page 137

Note de bas de page 138

Personal communication, re: Immunogenicity evidence from long-term care (LTC) in Canada, as per Alison McGreer, Department of Microbiology, Mount Sinai Hospital, Toronto, following presentation to NACI on September 1, 2021.

Retour à la référence de la note de bas de page 138

Note de bas de page 139

Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N Engl J Med. 15 septembre 2021. doi: 10.1056/NEJMoa2114255.

Retour à la référence de la note de bas de page 139

Note de bas de page 140

Patalon T, Gazit S, Pitzer VE, Prunas O, Warren JL, Weinberger DM. Short term reduction in the odds of testing positive for SARS-CoV-2; a comparison between two doses and three doses of the BNT162b2 vaccine. medRxiv. 31 août 2021. doi: 10.1101/2021.08.29.21262792.

Retour à la référence de la note de bas de page 140

Note de bas de page 141

Harrington P, Doores KJ, Radia D, O’Reilly A, Jeff Lam HP, Seow J, et al. Single dose of BNT162b2 mRNA vaccine against SARS-CoV2 induces neutralizing antibody and polyfunctional T-cell responses in patients with CML. medRxiv. 22 avril 2021. doi: 10.1101/2021.04.15.21255482.

Retour à la référence de la note de bas de page 141

Note de bas de page 142

Herishanu Y, Avivi I, Aharon A, Shefer G, Levi S, Bronstein Y, et al. Efficacy of the BNT162b2 mRNA COVID-19 Vaccine in patients with chronic lymphocytic leukemia. Blood. 15 avril 2021. doi: 10.1182/blood.2021011568.

Retour à la référence de la note de bas de page 142

Note de bas de page 143

Monin-Aldama L, Laing AG, Muñoz-Ruiz M, McKenzie DR, Barrio IdMd, Alaguthurai T, et al. Interim results of the safety and immune-efficacy of 1 versus 2 doses of COVID-19 vaccine BNT162b2 for cancer patients in the context of the UK vaccine priority guidelines. medRxiv. 17 mars 2021. doi: 10.1101/2021.03.17.21253131.

Retour à la référence de la note de bas de page 143

Note de bas de page 144

 Waissengrin B, Agbarya A, Safadi E, Padova H, Wolf I. Short-term safety of the BNT162b2 mRNA COVID-19 vaccine in patients with cancer treated with immune checkpoint inhibitors. Lancet Oncol. mai 2021;22(5):581,583. doi: 10.1016/S1470-2045(21)00155-8.

Retour à la référence de la note de bas de page 144

Note de bas de page 145

Boyarsky BJ, Ou MT, Greenberg RS, Teles AT, Werbel WA, Avery RK, et al. Safety of the first dose of SARS-CoV-2 vaccination in solid organ transplant recipients. Transplantation. 1 mai 2021;105(5):e56,e57. doi: 10.1097/TP.0000000000003654.

Retour à la référence de la note de bas de page 145

Note de bas de page 146

Grupper A, Rabinowich L, Schwartz D, Schwartz IF, Ben-Yehoyada M, Shashar M, et al. Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am J Transplant. 18 avril 2021. doi: 10.1111/ajt.16615.

Retour à la référence de la note de bas de page 146

Note de bas de page 147

Ou MT, Boyarsky BJ, Motter JD, Greenberg RS, Teles AT, Ruddy JA, et al. Safety and reactogenicity of 2 doses of SARS-CoV-2 vaccination in solid organ transplant recipients. Transplantation. 9 avril 2021. doi: 10.1097/TP.0000000000003780.

Retour à la référence de la note de bas de page 147

Note de bas de page 148

Rabinowich L, Grupper A, Baruch R, Ben-Yehoyada M, Halperin T, Turner D, et al. Low immunogenicity to SARS-CoV-2 vaccination among liver transplant recipients. J Hepatol. 20 avril 2021. doi: 10.1016/j.jhep.2021.04.020.

Retour à la référence de la note de bas de page 148

Note de bas de page 149

Frater J, Ewer K, Ogbe A, Pace M, Adele S, Adland E, et al. Safety and immunogenicity of the ChAdox1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection. SSRN Preprints. 19 avril 2021. https://papers.ssrn.com/abstract=3829931.

Retour à la référence de la note de bas de page 149

Note de bas de page 150

Levy I, Wieder-Finesod A, Litchevski V, Biber A, Indenbaum V, Olmer L, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 Vaccine in people living with HIV-1. SSRN Preprints. 20 avril 2021. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3829650.

Retour à la référence de la note de bas de page 150

Note de bas de page 151

Madhi S, Koen A, Fairlie L, Cutland C, Baillie V, Padayachee S, et al. ChAdOx1 nCoV-19 (AZD1222) Vaccine in people living with and without HIV. Research Square [preprint]. 17 mars 2021. doi: 10.21203/rs.3.rs-322470/v1.

Retour à la référence de la note de bas de page 151

Note de bas de page 152

Committee for Medicinal Products for Human Use (CHMP). Assessment report. COVID-19 Vaccine Janssen [Internet]. Amsterdam: European Medicines Agency; 11 mars 2021 [cited 19 mai 2021]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/covid-19-vaccine-janssen-epar-public-assessment-report_en.pdf.

Retour à la référence de la note de bas de page 152

Note de bas de page 153

Committee for Medicinal Products for Human Use (CHMP). Assessment report. COVID-19 Vaccine AstraZeneca [Internet]. Amsterdam: European Medicines Agency; 29 janvier 2021 [cited 19 mai 2021]. Available from: https://www.ema.europa.eu/en/documents/assessment-report/vaxzevria-previously-covid-19-vaccine-astrazeneca-epar-public-assessment-report_en.pdf.

Retour à la référence de la note de bas de page 153

Note de bas de page 154

Fox A, Norris C, Amanat F, Zolla-Pazner S, Powell RL. The vaccine-elicited immunoglobulin profile in milk after COVID-19 mRNA-based vaccination is IgG-dominant and lacks secretory antibodies. medRxiv. 26 mars 2021. doi: 10.1101/2021.03.22.21253831.

Retour à la référence de la note de bas de page 154

Note de bas de page 155

Golan Y, Prahl M, Cassidy A, Lin CY, Ahituv N, Flaherman VJ, et al. COVID-19 mRNA vaccine is not detected in human milk. medRxiv. 8 mars 2021. doi: 10.1101/2021.03.05.21252998.

Retour à la référence de la note de bas de page 155

Note de bas de page 156

Baird JK, Jensen SM, Urba WJ, Fox BA, Baird JR. SARS-CoV-2 antibodies detected in human breast milk post-vaccination. medRxiv. 10 mars 2021. doi: 10.1101/2021.02.23.21252328.

Retour à la référence de la note de bas de page 156

Note de bas de page 157

Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy outcomes: a systematic review and meta-analysis. CMAJ. 19 avril 2021;193(16):E540,E548. doi: 10.1503/cmaj.202604.

Retour à la référence de la note de bas de page 157

Note de bas de page 158

Canadian Surveillance of COVID-19 in Pregnancy. Epidemiology, maternal and infant outcomes. Report #3: released February 25, 2021, early release. Maternal and fetal outcomes (March 1, 2020 to December 31, 2020) from five Canadian provinces [Internet]. Vancouver (BC): University of British Columbia; 25 février 2021 [cited 6 mai 2021]. Available from: https://ridprogram.med.ubc.ca/cancovid-preg/.

Retour à la référence de la note de bas de page 158

Note de bas de page 159

Corchado-Garcia J, Puyraimond-Zemmour D, Hughes T, Cristea-Platon T, Lenehan P, Pawlowski C, et al. Real-world effectiveness of Ad26.COV2.S adenoviral vector vaccine for COVID-19. medRxiv. 30 avril 2021. doi: 10.1101/2021.04.27.21256193.

Retour à la référence de la note de bas de page 159

Note de bas de page 160

Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 19 décembre 2021;396(10267):1979,1993. doi: 10.1016/S0140-6736(20)32466-1.

Retour à la référence de la note de bas de page 160

Note de bas de page 161

Sheikh A, McMenamin J, Taylor B, Robertson C, Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 14 juin 2021;397(10293):2461,2462. doi: 10.1016/S0140-6736(21)01358-1.

Retour à la référence de la note de bas de page 161

Note de bas de page 162

Stowe J, Andrews N, Gower C, Gallagher E, Utsi L, Simmons R, et al. Effectiveness of COVID-19 vaccines against hospital admission with the Delta (B.1.617.2) variant. Public library - PHE national - Knowledge Hub [preprint]. 14 juin 2021. https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view/479607266.

Retour à la référence de la note de bas de page 162

Note de bas de page 163

Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 30 mars 2021. doi: 10.1016/S0140-6736(21)00628-0.

Retour à la référence de la note de bas de page 163

Note de bas de page 164

Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 16 mars 2021. doi: 10.1056/NEJMoa2102214.

Retour à la référence de la note de bas de page 164

Note de bas de page 165

Corrin T, Baumeister A. Evergreen rapid review on COVID-19 vaccine knowledge, attitudes, and behaviors. https://www.nccmt.ca/covid-19/covid-19-evidence-reviews. Ottawa (ON): Agence de la santé publique du Canada,  ASPC Emerging Science Group; 2021.

Retour à la référence de la note de bas de page 165

Note de bas de page 166

COVID-19 Snapshot Monitoring (COSMO Canada). (2020, December; Wave 11) [Internet]. Ottawa (ON): Impact Canada Initiative; 2021 [cited 31 mars 2021]. Available from: https://impact.canada.ca/en/challenges/cosmo-canada.

Retour à la référence de la note de bas de page 166

Note de bas de page 167

COVID-19 Snapshot Monitoring (COSMO Canada). (2020, December; Wave 10) [Internet]. Ottawa (ON): Impact Canada Initiative; 2021 [cited 30 mars 2021]. Available from: https://impact.canada.ca/en/challenges/cosmo-canada.

Retour à la référence de la note de bas de page 167

Note de bas de page 168

Immunization Promotion and Partnerships Unit. COVID-19 vaccine resource and training needs survey for health care providers. [Unpublished]. Ottawa (ON): Agence de la santé publique de Canada; 2020.

Retour à la référence de la note de bas de page 168

Note de bas de page 169

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 31 décembre 2020 ;383(27):2603,2615. doi: 10.1056/NEJMoa2034577.

Retour à la référence de la note de bas de page 169

Note de bas de page 170

Frenck RW Jr, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 Vaccine in adolescents. N Engl J Med. 27 mai 2021. doi: 10.1056/NEJMoa2107456.

Retour à la référence de la note de bas de page 170

Note de bas de page 171

United States Food and Drug Administration (FDA). Development and licensure of vaccines to prevent COVID-19: Guidance for industry [Internet]. Silver Spring (MD): FDA; 2020 Jun [cited 15 janvier 2021]. Available from: https://www.fda.gov/media/139638/download.

Retour à la référence de la note de bas de page 171

Note de bas de page 172

Ali K, Berman G, Zhou H, Deng W, Faughnan V, Coronado-Voges M, et al. Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents. N Engl J Med. 11 août 2021. doi: 10.1056/NEJMoa2109522.

Retour à la référence de la note de bas de page 172

Note de bas de page 173

Moderna. Clinical study protocol. A phase 3, randomized, stratified, observer-blind, placebo-controlled study to evaluate the efficacy, safety, and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine in adults aged 18 years and older [Internet]. Cambridge (MA): ModernaTX, Inc.; 20 août 2020 [cited 12 décembre 2020]. Available from: https://www.modernatx.com/sites/default/files/mRNA-1273-P301-Protocol.pdf.

Retour à la référence de la note de bas de page 173

Note de bas de page 174

Moderna. Vaccines and Related Biological Products Advisory Committee Meeting December 17, 2020. FDA Briefing Document. Moderna COVID-19 Vaccine [Internet].; décembre 2020 [cited 23 décembre 2020]. Available from: https://www.fda.gov/media/144434/download.

Retour à la référence de la note de bas de page 174

Note de bas de page 175

Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 6 avril 2021. doi: 10.1056/NEJMc2103916.

Retour à la référence de la note de bas de page 175

Note de bas de page 176

Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 15 août 2020 ;396(10249):479,488. doi: 10.1016/S0140-6736(20)31605-6

Retour à la référence de la note de bas de page 176

Détails de la page

Date de modification :