Paracoccidioides brasiliensis: Infectious substances pathogen safety data sheet
Section I – Infectious agent
Name
Paracoccidioides brasiliensis
Agent type
Fungus
Taxonomy
Family
Ajellomycetaceae
Genus
Paracoccidioides
Species
Brasiliensis
Synonym or cross-reference
Zymonema brasiliense; Mycoderma brasiliense; Coccidioides brasiliensis; Monilia brasiliensis; Blastomyces brasiliensis; Aleurisma brasiliense; paracoccidioidomycosis; South American blastomycosis; Lutz's mycosisFootnote 1Footnote 2.
Characteristics
Brief description
Paracoccidioides brasiliensis is the causative agent of a systemic mycosis termed paracoccidioidomycosis (PCM). P. brasiliensis is a thermally dimorphic fungus: it grows as a white mould at 4 to 25 °C and a yeast at 35 to 37 °CFootnote 3. The saprophytic mycelial form is composed of septate hyphae that produce infectious propagules called conidia, which undergo a thermally regulated transition to the yeast form upon infection of host tissuesFootnote 3Footnote 4. Yeast cells are round or oval-shaped and vary in size from 4 to 40 µmFootnote 3. Genomic DNA ranges from 26 to 36 Mbp in size and is arranged in four or five chromosomesFootnote 5Footnote 6.
Properties
The P. brasiliensis species complex comprises at least five phylogenetic groups: S1a, S1b, PS2, PS3, and PS4Footnote 7Footnote 8Footnote 9. Reclassification of the cryptic species PS2, PS3, and PS4 as species P. americana, P. restrepiensis, and P. venezuelensis, respectively, was recently proposedFootnote 8Footnote 9.
Yeast forms of P. brasiliensis reproduce asexually by multiple budding. Mother cells are typically surrounded by multiple daughter cells (i.e., blastoconidia) in a configuration resembling a "pilot wheel"Footnote 3Footnote 4. Genetic evidence suggests that a sexual stage may also occur in the P. brasiliensis life cycle, but this teleomorph has not been isolatedFootnote 10Footnote 11.
Section II – Hazard identification
Pathogenicity and toxicity
Disease associated with P. brasiliensis infection can range from asymptomatic to severe systemic illnessFootnote 7. Infection results from inhalation of P. brasiliensis conidia, which migrate to pulmonary alveoli where transformation to the yeast form occursFootnote 12. In the lungs, P. brasiliensis infection is controlled by the host cellular immune response in most individuals, resulting in asymptomatic or mild, self-limiting respiratory infectionFootnote 13Footnote 14. In a small percentage of infected individuals, inability to control the infection results in progression to clinical disease.
Acute clinical manifestation includes lymph node enlargement in nearly all cases, cutaneous or mucous membrane lesions (17-20% of cases), and pulmonary involvement (5-10% of cases), often accompanied by fever and weight lossFootnote 4Footnote 7. Acute PCM progresses over weeks and can disseminate to other parts of bodyFootnote 4Footnote 7Footnote 14. Acute PCM can be moderate or severe and usually occurs in children, adolescents, and young adultsFootnote 4Footnote 13. The estimated relapse rate was 7.8% and the mortality rate was 5.7% for acute PCMFootnote 15. Latent P. brasiliensis cells that were not cleared during initial infection can reactivate years later resulting in a chronic form of PCM, which can be mild, moderate, or severeFootnote 4Footnote 7Footnote 13. Chronic PCM usually occurs in adults over 30 years of age and predominantly affects malesFootnote 3Footnote 16. Disease develops slowly and symptoms usually persist for more than six monthsFootnote 7. Clinical manifestations include lesions in lungs (90% of cases), mucosa of the upper aerodigestive tract, and skin near the mouth and nose, accompanied by malaise, anorexia, and nauseaFootnote 4Footnote 7Footnote 13. Dissemination to other organs, including the adrenal glands, central nervous system (CNS), and bones, can occur in cases of severe chronic PCMFootnote 7. It is estimated that 3-5% of PCM cases are fatalFootnote 3Footnote 13.
PCM sequelae include dysphonia, adrenal impairment in adults, pulmonary fibrosis, and emphysemaFootnote 4Footnote 11Footnote 17. In disseminated PCM cases involving the CNS, neurological sequelae are commonFootnote 7. Scarring of skin and oral mucosa can be severe.
There are relatively few reports of clinical disease associated with P. brasiliensis in animals, despite serological and molecular evidence of P. brasiliensis infection in many mammalian speciesFootnote 4. PCM has been reported in dogsFootnote 18Footnote 19Footnote 20, catsFootnote 21, and a two-toed slothFootnote 22. A novel strain of P. brasiliensis was isolated from bottlenose dolphins with cutaneous granulomasFootnote 23.
Epidemiology
P. brasiliensis is endemic to southern Mexico, Central America, and parts of South AmericaFootnote 13Footnote 24. P. brasiliensis genotypes S1a and S1b are found in Southeast Brazil, Argentina and Paraguay; PS2 (P. americana) in parts of Brazil and Venezuela; PS3 (P. restrepiensis) in Colombia; and PS4 (P. venezuelensis) in VenezuelaFootnote 4Footnote 7Footnote 8Footnote 9. In PCM-endemic regions, prevalence of P. brasiliensis infection in the population ranges from 4 to 47%Footnote 13Footnote 25Footnote 26. Approximately 2% of individuals exposed to P. brasiliensis develop PCMFootnote 4. Acute PCM and chronic PCM comprise 5-25% and 75-95% of cases, respectivelyFootnote 7Footnote 13. Approximately 10-15% of PCM cases occur in children and adolescentsFootnote 3Footnote 7. Although infection rates are similar among males and femalesFootnote 4, approximately 75% to 95% of PCM cases in adults are menFootnote 7Footnote 13Footnote 16.
Approximately 80% of reported PCM cases occur in BrazilFootnote 7Footnote 13. Annual PCM incidence in endemic areas of Brazil is estimated at 0.71 to 3.7 cases per 100,000 inhabitantsFootnote 13. In hyperendemic areas of Brazil, annual incidence can be up to 40 cases per 100,000 inhabitantsFootnote 27. In Colombia, estimated annual incidence is less than 0.24 cases per 100,000 inhabitantsFootnote 28.
Approximately 80 PCM cases have been reported in non-endemic regions, affecting individuals who previously visited or resided in PCM-endemic areasFootnote 3Footnote 13Footnote 29.
While intradermal testing indicates that P. brasiliensis infection rates are similar among males and females, PCM predominantly affects malesFootnote 3Footnote 4Footnote 7. Females produce 17β-estradiol, which inhibits transformation of conidia to yeast, thereby promoting resistance to diseaseFootnote 12. Approximately 73% of PCM patients have a history of agriculture-related occupationsFootnote 3. Smoking and alcohol consumption are associated with development of chronic PCMFootnote 30Footnote 31. PCM mortality rate is higher for immunosuppressed individualsFootnote 32.
Host range
Natural host(s)
Humans and armadillos are the primary hosts of P. brasiliensisFootnote 9Footnote 13. There are a few reported cases of PCM in dogsFootnote 18Footnote 19Footnote 20, a catFootnote 21, squirrel monkeyFootnote 33, and two-toed slothFootnote 22. Serological, histological, and molecular evidence indicates that P. brasiliensis can infect a wide range of hosts including batsFootnote 34, rodentsFootnote 35, equinesFootnote 36, sheepFootnote 37, cattleFootnote 38, pigsFootnote 39, goatsFootnote 40, chickensFootnote 41, rabbitsFootnote 42, opossumsFootnote 43, fishFootnote 44, guinea pigsFootnote 45, raccoonsFootnote 45, porcupinesFootnote 45, grisonFootnote 45, and anteatersFootnote 46.
Other host(s)
Experimental hosts include hamstersFootnote 47 and moths (i.e., Galleria mellonella)Footnote 48.
Infectious dose
Unknown.
Incubation period
Acute PCM develops weeks to months after exposure to P. brasiliensisFootnote 7Footnote 14. Chronic PCM develops years to decades after exposure to P. brasiliensisFootnote 4Footnote 7.
Communicability
P. brasiliensis infection occurs primarily through inhalation of airborne conidiaFootnote 3Footnote 7. Infection resulting from traumatic inoculation of skin or mucous membranes is possible, yet rareFootnote 49Footnote 50. P. brasiliensis has been transmitted via solid organ transplantation; however, the recipient of the P. brasiliensis-infected organ did not develop clinical PCM after one year of follow upFootnote 51. Human-to-human transmission has not been reported.
Section III – Dissemination
Reservoir
Armadillos are known reservoirs of P. brasiliensisFootnote 4Footnote 9Footnote 52.
Zoonosis
None.
Vectors
None.
Section IV – Stability and viability
Drug susceptibility/resistance
P. brasiliensis is susceptible to sulfonamide derivatives (e.g., co-trimoxazole, sulfadiazine, sulfamethoxypyridazine, sulfadoxine)Footnote 53, azoles (e.g., ketoconazole, fluconazole, itraconazole, posaconazole, voriconazole, isavuconazole)Footnote 7, amphotericin BFootnote 7, and terbinafineFootnote 54Footnote 55.
Susceptibility to disinfectants
P. brasiliensis is susceptible to sodium hypochlorite (5%)Footnote 56. Other fungi in the Ajellomycetaceae family are susceptible to phenolic compounds and glutaraldehydeFootnote 57.
Physical inactivation
Gamma irradiation (6.5 kGy) inhibits growth of P. brasiliensisFootnote 58. Yeast and mycelial forms of P. brasiliensis are inactivated at pH 3 and 1.4, respectivelyFootnote 59. Other fungi in the Ajellomycetaceae family are inactivated by moist heat treatment at 121 °C for 30 minFootnote 57.
Survival outside host
In nature, the saprophytic mycelial form of P. brasiliensis presumably occupies soil in PCM endemic regions; however, few attempts to isolate the fungus from soil have been successfulFootnote 60. P. brasiliensis suspended in water at room temperature can survive for several monthsFootnote 61Footnote 62.
P. brasiliensis survival was adversely affected at -20°C and 45°C in soil extracts and by oxygen deprivation in liquid mediumFootnote 59Footnote 63.
Section V – First aid/medical
Surveillance
P. brasiliensis is identified in clinical samples by direct visualisation of multiple-budding cells in a "pilot's wheel" configuration, which are characteristic of the yeast form of P. brasiliensisFootnote 4Footnote 64. P. brasiliensis can be isolated from clinical specimens and cultured but growth is slow (20 to 30 days)Footnote 3. P. brasiliensis antibodies can be detected in serum using double agar gel immunodiffusion test, enzyme-linked immunosorbent assay (ELISA), and immunoblotFootnote 4Footnote 7.
P. brasiliensis antigen can be detected in bronchoalveolar lavage fluid, serum, and cerebrospinal fluid using ELISAFootnote 3Footnote 4. Molecular methods including PCR and sequencing can be used to detect P. brasiliensis in clinical samplesFootnote 4Footnote 65Footnote 66.
Note: The specific recommendations for surveillance in the laboratory should come from the medical surveillance program, which is based on a local risk assessment of the pathogens and activities being undertaken, as well as an overarching risk assessment of the biosafety program as a whole. More information on medical surveillance is available in the Canadian Biosafety Handbook (CBH).
First aid/treatment
PCM can be treated with an appropriate antifungal agent. Prognosis improves with early diagnosis and treatment. Duration of antifungal treatment for mild and moderate forms varies from 9 to 18 months (average 12 months)Footnote 7. Treatment of severe forms involves induction therapy with amphotericin B for 2 to 4 weeks followed by maintenance treatment with oral antifungal medication for up to 24 monthsFootnote 7. Oral lesions have been successfully treated with photodynamic therapy consisting of topical toluidine blue dye and low-level irradiationFootnote 67Footnote 68. Dogs with PCM have also been treated successfully with itraconazoleFootnote 18Footnote 19.
Note: The specific recommendations for first aid/treatment in the laboratory should come from the post-exposure response plan, which is developed as part of the medical surveillance program. More information on the post-exposure response plan can be found in the CBH.
Immunization
No vaccine is currently available. Vaccine research is ongoingFootnote 69Footnote 70.
Note: More information on the medical surveillance program can be found in the CBH, and by consulting the Canadian Immunization Guide.
Prophylaxis
Post-exposure prophylaxis with itraconazole for 30 days is recommendedFootnote 7.
Note: More information on prophylaxis as part of the medical surveillance program can be found in the CBH.
Section VI – Laboratory hazard
Laboratory-acquired infections
A researcher developed localized infection after an accidental needlestick injury with a syringe containing the yeast form of P. brasiliensisFootnote 50. The patient responded favourably to antifungal treatment and was discharged from treatment after 3 monthsFootnote 50.
Note: Please consult the Canadian Biosafety Standard (CBS) and CBH for additional details on requirements for reporting exposure incidents. A Canadian biosafety guideline describing notification and reporting procedures is also available.
Sources/specimens
Specimens may include bronchoalveolar lavage fluid, sputum, scrapings of skin and mucosal lesions, lymph node aspirate, tissue biopsy, serum, urine, and cerebrospinal fluidFootnote 4Footnote 7.
Primary hazards
Exposure to P. brasiliensis via inhalation of airborne infectious material or traumatic inoculation (e.g., needlestick injury)Footnote 50.
Special hazards
None.
Section VII – Exposure controls/personal protection
Risk group classification
P. brasiliensis is a Risk Group 3 human pathogen and Risk Group 1 animal pathogenFootnote 71Footnote 72.
Containment requirements
Containment Level 3 facilities, equipment, and operational practices, as outlined in the CBS, are required for work involving infectious or potentially infectious materials, animals, or cultures.
Protective clothing
The applicable Containment Level 3 requirements for personal protective equipment and clothing as outlined in the CBS, are to be followed. At minimum, it is recommended to use full body coverage dedicated protective clothing, dedicated protective footwear and/or additional protective footwear, gloves when handling infectious materials or animals, face protection when there is a known or potential risk of exposure to splashes or flying objects, respirators when there is a risk of exposure to infectious aerosols, and an additional layer of protective clothing prior to work with infectious materials or animals.
Note: A local risk assessment will identify the appropriate hand, foot, head, body, eye/face, and respiratory protection equipment required. The personal protective equipment requirements for the containment zone must be documented.
Other precautions
All activities involving open vessels of infectious material are to be performed in a certified biological safety cabinet (BSC) or other appropriate primary containment device. The use of needles, syringes, and other sharp objects should be strictly limited. Additional precautions should be considered with work involving animals or large scale activities.
Section VIII – Handling and storage
Spills
Allow aerosols to settle. Wearing protective clothing, gently cover the spill with absorbent paper towel and apply suitable disinfectant, starting at the perimeter and working towards the centre. Allow sufficient contact time with disinfectant before clean up (CBH).
Disposal
All materials/substances that have come in contact with the infectious agent should be completely decontaminated before they are removed from the containment zone. This can be achieved by using decontamination technologies and processes that have been demonstrated to be effective against the infectious material, such as chemical disinfectants, autoclaving, irradiation, incineration, an effluent treatment system, or gaseous decontamination (CBH).
Storage
The applicable Containment Level 3 requirements for storage outlined in the CBS are to be followed. Containers of infectious material or toxins stored outside the containment zone must be labelled, leakproof, impact resistant, and kept in locked storage equipment and within an area with limited access (CBH).
Section IX – Regulatory and other information
Canadian regulatory information
Controlled activities with P. brasiliensis require a Human Pathogens and Toxins licence, issued by the Public Health Agency of CanadaFootnote 71.
The following is a non-exhaustive list of applicable designations, regulations, or legislations:
- Human Pathogen and Toxins Act and Human Pathogens and Toxins Regulations
- Transportation of Dangerous Goods Regulations
Last file update
2020
Prepared by
Centre for Biosecurity, Public Health Agency of Canada.
Disclaimer
The scientific information, opinions, and recommendations contained in this Pathogen Safety Data Sheet have been developed based on or compiled from trusted sources available at the time of publication. Newly discovered hazards are frequent and this information may not be completely up to date. The Government of Canada accepts no responsibility for the accuracy, sufficiency, or reliability or for any loss or injury resulting from the use of the information.
Persons in Canada are responsible for complying with the relevant laws, including regulations, guidelines and standards applicable to the import, transport, and use of pathogens in Canada set by relevant regulatory authorities, including the Public Health Agency of Canada, Health Canada, Canadian Food Inspection Agency, Environment and Climate Change Canada, and Transport Canada. The risk classification and related regulatory requirements referenced in this Pathogen Safety Data Sheet, such as those found in the Canadian Biosafety Standard, may be incomplete and are specific to the Canadian context. Other jurisdictions will have their own requirements.
Copyright © Public Health Agency of Canada, 2024, Canada
References:
- Footnote 1
-
Species Fungorum. Paracoccidioides brasiliensis (Splend.) F.P. Almeida.
- Footnote 2
-
Negroni, R. 1993. Paracoccidioidomycosis (South American blastomycosis, Lutz's mycosis). Int. J. Dermatol. 32:847-859.
- Footnote 3
-
Restrepo, A. M., A. M. Tobón Orozco, B. L. Gómez, and G. Benard. 2015. Paracoccidioidomycosis, p. 225-236. D. R. Hospenthal and M. G. Rinaldi (eds.), Diagnosis and Treatment of Fungal Infections. Springer International Publishing, Switzerland.
- Footnote 4
-
Mendes, R. P., R. d. S. Cavalcante, S. A. Marques, M. E. A. Marques, J. Venturini, T. F. Sylvestre, A. M. M. Paniago, A. C. Pereira, J. d. F. da Silva, A. T. Fabro, S. d. M. G. Bosco, E. Bagagli, R. C. Hahn, and A. D. Levorato. 2017. Paracoccidioidomycosis: Current perspectives from Brazil. The Open Microbiology Journal. 11:224-282.
- Footnote 5
-
Almeida, A. J., D. R. Matute, J. A. Carmona, M. Martins, I. Torres, J. G. McEwen, A. Restrepo, C. Leão, P. Ludovico, and F. Rodrigues. 2007. Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: Flow cytometry and GP43 sequence analysis. Fungal Genetics and Biology. 44:25-31.
- Footnote 6
-
Desjardins, C. A., M. D. Champion, J. W. Holder, A. Muszewska, J. Goldberg, A. M. Bailão, M. M. Brigido, M. E. da Silva Ferreira, A. M. Garcia, M. Grynberg, S. Gujja, D. I. Heiman, M. R. Henn, C. D. Kodira, H. León-Narváez, L. V. G. Longo, L. Ma, I. Malavazi, A. L. Matsuo, F. V. Morais, M. Pereira, S. Rodríguez-Brito, S. Sakthikumar, S. M. Salem-Izacc, S. M. Sykes, M. M. Teixeira, M. C. Vallejo, M. E. M. T. Walter, C. Yandava, S. Young, Q. Zeng, J. Zucker, M. S. Felipe, G. H. Goldman, B. J. Haas, J. G. McEwen, G. Nino-Vega, R. Puccia, G. San-Blas, C. M. A. de Soares, B. W. Birren, and C. A. Cuomo. 2011. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genetics. 7:e1002345-e1002345.
- Footnote 7
-
Shikanai-Yasuda, M. A., R. P. Mendes, A. L. Colombo, F. d. Q. Telles, A. Kono, A. M. M. Paniago, A. Nathan, A. C. F. d. Valle, E. Bagagli, G. Benard, M. S. Ferreira, M. d. M. Teixeira, M. L. S. Vergara, R. M. Pereira, R. d. S. Cavalcante, R. Hahn, R. R. Durlacher, Z. Khoury, Z. P. d. Camargo, M. L. Moretti, and R. Martinez. 2018. Brazilian guidelines for the clinical management of paracoccidioidomycosis. Epidemiologia e Serviços De Saúde. 27:e0500001-e0500001.
- Footnote 8
-
Turissini, D. A., O. M. Gomez, M. M. Teixeira, J. G. McEwen, and D. R. Matute. 2017. Species boundaries in the human pathogen Paracoccidioides. Fungal Genetics and Biology. 106:9-25.
- Footnote 9
-
Hrycyk, M. F., H. Garcia Garces, S. d. M. G. Bosco, S. L. de Oliveira, S. A. Marques, and E. Bagagli. 2018. Ecology of Paracoccidioides brasiliensis, P. lutzii and related species: Infection in armadillos, soil occurrence and mycological aspects. Medical Mycology (Oxford). 56:950-962.
- Footnote 10
-
Teixeira, M. M., R. C. Theodoro, G. Nino-Vega, E. Bagagli, and M. S. S. Felipe. 2014. Paracoccidioides species complex: Ecology, phylogeny, sexual reproduction, and virulence. PLoS Pathogens. 10:e1004397-e1004397.
- Footnote 11
-
Teixeira, M., R. C. Theodoro, S. Derengowski L, A. M. Nicola, E. Bagagli, and M. S. Felipe. 2013. Molecular and morphological data support the existence of a sexual cycle in species of the genus Paracoccidioides. Eukaryot. Cell. 12:380-389.
- Footnote 12
-
Shankar, J., A. Restrepo, K. V. Clemons, and D. A. Stevens. 2011. Hormones and the resistance of women to paracoccidioidomycosis. Clin. Microbiol. Rev. 24:296-313.
- Footnote 13
-
Martinez, R. 2017. New trends in paracoccidioidomycosis epidemiology. Journal of Fungi (Basel). 3:1.
- Footnote 14
-
R. Buccheri, Z. Khoury, L. C. B. Barata, and G. Benard. 2016. Incubation period and early natural history events of the acute form of paracoccidioidomycosis: Lessons from patients with a single Paracoccidioides spp. exposure. Mycopathologia. 181:435-439.
- Footnote 15
-
Romaneli, M. T. d. N., N. R. Tardelli, A. T. Tresoldi, A. M. Morcillo, and R. M. Pereira. 2019. Acute‐subacute paracoccidioidomycosis: A paediatric cohort of 141 patients, exploring clinical characteristics, laboratorial analysis and developing a non‐survival predictor. Mycoses. 62:999-1005.
- Footnote 16
-
Blotta, M., R. L. Mamoni, S. J. Oliveira, S. A. Nouer, P. Papaiordanou, A. Goveia, and Z. P. d. Camargo. 1999. Endemic regions of paracoccidioidomycosis in Brazil: a clinical and epidemiologic study of 584 cases in the southeast region. Am. J. Trop. Med. Hyg. 61:390-394.
- Footnote 17
-
Pereira, R. M., G. Guerra-Júnior, and A. T. Tresoldi. 2006. Adrenal function in 23 children with paracoccidioidomycosis. Revista do Instituto De Medicina Tropical De São Paulo. 48:333-336.
- Footnote 18
-
De Farias, M. R., L. A. Z. Condas, M. G. Ribeiro, Bosco, Sandra de Moraes Gimenes, M. D. Muro, J. Werner, R. C. Theodoro, E. Bagagli, S. A. Marques, and M. Franco. 2011. Paracoccidioidomycosis in a dog: case report of generalized lymphadenomegaly. Mycopathologia. 172:147-152.
- Footnote 19
-
Headley, S. A., L. G. Pretto-Giordano, G. W. Di Santis, L. A. Gomes, R. Macagnan, D. F. Da Nóbrega, K. M. Leite, B. K. de Alcântara, E. N. Itano, and A. A. Alfieri. 2017. Paracoccidioides brasiliensis-associated dermatitis and lymphadenitis in a dog. Mycopathologia. 182:425-434.
- Footnote 20
-
Ricci, G., F. Mota, A. Wakamatsu, R. Serafim, R. Borra, and M. Franco. 2004. Canine paracoccidioidomycosis. Sabouraudia. 42:379-383.
- Footnote 21
-
Gonzalez, J. F., N. A. Montiel, and R. L. Maass. 2010. First report on the diagnosis and treatment of encephalic and urinary paracoccidioidomycosis in a cat. Journal of Feline Medicine and Surgery. 12:659-662.
- Footnote 22
-
Trejo-Chávez, A., R. Ramírez-Romero, J. Ancer-Rodríguez, A. Nevárez-Garza, and L. Rodriguez-Tovar. 2011. Disseminated paracoccidioidomycosis in a Southern two-toed sloth (Choloepus didactylus). J. Comp. Pathol. 144:231-234.
- Footnote 23
-
Bossart, G. D., P. Fair, A. M. Schaefer, and J. S. Reif. 2017. Health and Environmental Risk Assessment Project for bottlenose dolphins Tursiops truncatus from the southeastern USA. I. Infectious diseases. Dis. Aquat. Org. 125:141-153.
- Footnote 24
-
López‐Martínez, R., F. Hernández‐Hernández, L. J. Méndez‐Tovar, P. Manzano–Gayosso, A. Bonifaz, R. Arenas, M. d. C. Padilla‐Desgarennes, R. Estrada, and G. Chávez. 2014. Paracoccidioidomycosis in Mexico: clinical and epidemiological data from 93 new cases (1972–2012). Mycoses. 57:525-530.
- Footnote 25
-
Magalhães, Evandro Monteiro de Sá, C. d. F. Ribeiro, C. S. Dâmaso, L. F. L. Coelho, R. R. Silva, E. B. Ferreira, M. R. Rodrigues, Z. P. d. Camargo, T. R. G. Velloso, and L. C. C. Malaquias. 2014. Prevalence of paracoccidioidomycosis infection by intradermal reaction in rural areas in Alfenas, Minas Gerais, Brazil. Revista do Instituto De Medicina Tropical De São Paulo. 56:281-285.
- Footnote 26
-
Marques, Ana Paula da C, S. M. V. Oliveira, G. R. Rezende, D. A. Melo, S. M. Fernandes-Fitts, E. R. J. Pontes, M. da Glória Bonecini-Almeida, Z. P. Camargo, and A. M. Paniago. 2013. Evaluation of Paracoccidioides brasiliensis infection by gp 43 intradermal test in rural settlements in Central-West Brazil. Mycopathologia. 176:41-47.
- Footnote 27
-
Vieira, G. d. D., T. d. C. Alves, Lima, Sônia Maria Dias de, L. M. A. Camargo, and C. M. d. Sousa. 2014. Paracoccidioidomycosis in a western Brazilian Amazon State: clinical-epidemiologic profile and spatial distribution of the disease. Rev. Soc. Bras. Med. Trop. 47:63-68.
- Footnote 28
-
Torrado, E., E. Castañeda, F. de la Hoz, and A. Restrepo. 2000. Paracoccidioidomicocis: definición de las áreas endémicas de Colombia. Biomedica. 20:327-334.
- Footnote 29
-
Buitrago, M. J., L. Bernal‐Martínez, M. V. Castelli, J. L. Rodríguez‐Tudela, and M. Cuenca‐Estrella. 2011. Histoplasmosis and paracoccidioidomycosis in a non‐endemic area: a review of cases and diagnosis. Journal of Travel Medicine. 18:26-33.
- Footnote 30
-
Martinez, R., and M. J. Moya. 1992. The relationship between paracoccidioidomycosis and alcoholism. Rev. Saude Publica. 26:12-16.
- Footnote 31
-
dos Santos, W. A., B. M. da Silva, E. D. Passos, E. Zandonade, and A. Falqueto. 2003. Association between smoking and paracoccidioidomycosis: a case-control study in the State of Espírito Santo, Brazil. Cadernos De Saude Publica. 19:245-253.
- Footnote 32
-
de Almeida, J. N., P. M. Peçanha, and A. L. Colombo. 2019; 2018. Paracoccidioidomycosis in immunocompromised patients: A literature review. Journal of Fungi (Basel). 5:2.
- Footnote 33
-
Johnson, W., and C. Lang. 1977. Paracoccidioidomycosis (South American blastomycosis) in a squirrel monkey (Saimiri sciureus). Vet. Pathol. 14:368-371.
- Footnote 34
-
da Paz, G. S., B. M. V. Adorno, V. B. Richini‐Pereira, S. M. Bosco, and H. Langoni. 2018. Infection by Histoplasma capsulatum, Cryptococcus spp. and Paracoccidioides brasiliensis in bats collected in urban areas. Transboundary and Emerging Diseases. 65:1797-1805.
- Footnote 35
-
Losnak, D. O., F. R. Rocha, B. S. Almeida, K. Z. Batista, S. L. Althoff, J. Haupt, L. S. Ruiz, L. Anversa, S. B. Lucheis, and L. M. Paiz. 2018. Molecular detection of fungi of public health importance in wild animals from Southern Brazil. Mycoses. 61:455-463.
- Footnote 36
-
Albano, A. P. N., G. B. Klafke, T. M. Brandolt, V. P. Da Hora, C. E. W. Nogueira, M. O. Xavier, and M. C. A. Meireles. 2015. Seroepidemiology of Paracoccidioides brasiliensis infection in horses from Rio Grande do Sul, Brazil. Brazilian J. Microbiol. 46:513-517.
- Footnote 37
-
Oliveira, G. G., I. T. Navarro, R. L. Freire, D. R. Belitardo, L. H. Silveira, Z. P. Camargo, E. N. Itano, and M. A. Ono. 2012. Serological survey of paracoccidioidomycosis in sheep. Mycopathologia. 173:63-68.
- Footnote 38
-
Silveira, L., R. Paes, E. Medeiros, E. Itano, Z. Camargo, and M. Ono. 2008. Occurrence of antibodies to Paracoccidioides brasiliensis in dairy cattle from Mato Grosso do Sul, Brazil. Mycopathologia. 165:367-371.
- Footnote 39
-
Belitardo, D. R., A. S. Calefi, I. K. Borges, G. G. de Oliveira, M. R. Sbeghen, E. N. Itano, Z. P. de Camargo, and M. A. Ono. 2014. Detection of antibodies against Paracoccidioides brasiliensis in free-range domestic pigs (Sus scrofa). Mycopathologia. 177:91-95.
- Footnote 40
-
Ferreira, J. B., I. T. Navarro, R. L. Freire, G. G. Oliveira, A. M. Omori, D. R. Belitardo, E. N. Itano, Z. P. Camargo, and M. A. Ono. 2013. Evaluation of Paracoccidioides brasiliensis infection in dairy goats. Mycopathologia. 176:95-99.
- Footnote 41
-
Oliveira, G. G., L. H. Silveira, E. N. Itano, R. M. Soares, R. L. Freire, M. A. Watanabe, Z. P. Camargo, and M. A. Ono. 2011. Serological evidence of Paracoccidioides brasiliensis infection in chickens from Paraná and Mato Grosso do Sul States, Brazil. Mycopathologia. 171:197-202.
- Footnote 42
-
Belitardo, D. R., A. S. Calefi, M. R. Sbeghen, G. G. de Oliveira, M. A. E. Watanabe, Z. P. de Camargo, and M. A. Ono. 2014. Paracoccidioides brasiliensis infection in domestic rabbits (Oryctolagus cuniculus). Mycoses. 57:222-227.
- Footnote 43
-
Albano, A., G. Klafke, T. Brandolt, V. Da Hora, L. Minello, S. Jorge, E. Santos, G. Behling, Z. Camargo, and M. Xavier. 2014. Wild animals as sentinels of Paracoccidioides brasiliensis in the state of Rio Grande do Sul, Brazil. Mycopathologia. 177:207-215.
- Footnote 44
-
de Souza Suguiura, Igor Massahiro, R. Macagnan, A. M. Omori, E. L. Buck, J. A. Scarpassa, L. G. Pretto-Giordano, L. A. Vilas-Boas, Z. P. de Camargo, E. N. Itano, and M. A. Ono. 2020. First report of Paracoccidioides brasiliensis infection in fish. Medical Mycology. 58:737-743.
- Footnote 45
-
Richini-Pereira, V. B., De Moraes Gimenes Bosco, Sandra, J. Griese, R. Cordeiro Theodoro, Assis Da Graça Macoris, Severino, R. José Da Silva, L. Barrozo, Morais E Silva Tavares, Patrícia, R. Maria Zancopé-Oliveira, and E. Bagagli. 2008. Molecular detection of Paracoccidioides brasiliensis in road-killed wild animals. Medical Mycology. 46:35-40.
- Footnote 46
-
Richini-Pereira, V. B., S. M. Bosco, R. C. Theodoro, L. Barrozo, S. C. Pedrini, P. S. Rosa, and E. Bagagli. 2009. Importance of xenarthrans in the eco-epidemiology of Paracoccidioides brasiliensis. BMC Research Notes. 2:1-6.
- Footnote 47
-
Essayag, S., M. Landaeta, C. Hartung, S. Magaldi, L. Spencer, R. Suárez, F. García, and E. Pérez. 2002. Histopathologic and histochemical characterization of calcified structures in hamsters inoculated with Paracoccidioides brasiliensis. Mycoses. 45:351-357.
- Footnote 48
-
de Lacorte Singulani, J., L. Scorzoni, A. M. Fusco-Almeida, and M. J. S. Mendes-Giannini. 2016. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model. Int. J. Antimicrob. Agents. 48:292-297.
- Footnote 49
-
Restrepo, A., M. Robledo, R. Giraldo, H. Herna, F. Sierra, F. Gutie, F. London, R. Lo, and G. Calle. 1976. The gamut of paracoccidioidomycosis. Am. J. Med. 61:33-42.
- Footnote 50
-
Loth, E. A., Dos Santos, José Henrique Fermino, C. S. De Oliveira, H. Uyeda, Simao, Rita de Cassia Garcia, and R. F. Gandra. 2015. Infection caused by the yeast form of Paracoccidioides brasiliensis. JMM Case Reports. 2:e000016.
- Footnote 51
-
Batista, M. V., P. K. Sato, L. C. Pierrotti, F. J. De Paula, G. F. Ferreira, D. S. Ribeiro-David, W. C. Nahas, M. I. S. Duarte, and M. A. Shikanai-Yasuda. 2012. Recipient of kidney from donor with asymptomatic infection by Paracoccidioides brasiliensis. Med. Mycol. 50:187-192.
- Footnote 52
-
Corredor, G. G., J. H. Castaño, A. Paralta, S. Díez, M. Arango, J. McEween, and A. Restrepo. 1999. Isolation of Paracoccidioides brasiliensis from the nine-banded armadillo Dasypus novemcinctus, in an endemic area for paracoccidioidomycosis in Columbia. Rev. Iberoam. Micol. 16:216-220.
- Footnote 53
-
Shikanai-Yasuda, M. A. 2015. Paracoccidioidomycosis treatment. Revista do Instituto De Medicina Tropical De São Paulo. 57:31-37.
- Footnote 54
-
Ollague, J., A. De Zurita, and G. Calero. 2000. Paracoccidioidomycosis (South American blastomycosis) successfully treated with terbinafine: first case report. Br. J. Dermatol. 143:188-191.
- Footnote 55
-
Cruz, R. C., S. M. Werneck, C. S. Oliveira, P. C. Santos, B. M. Soares, D. A. Santos, and P. S. Cisalpino. 2013. Influence of different media, incubation times, and temperatures for determining the MICs of seven antifungal agents against Paracoccidioides brasiliensis by microdilution. J. Clin. Microbiol. 51:436-443.
- Footnote 56
-
Shikanai-Yasuda, M. A., R. T. Taguchi, M. K. Sato, N. T. Melo, C. M. Assis, R. C. Nigro, E. E. Camargo, C. S. Lacaz, V. Amato Neto, and A. Sesso. 1991. In vitro action of some disinfectants on Paracoccidioides brasiliensis yeast forms. Revista do Instituto De Medicina Tropical De São Paulo. 33:37-43.
- Footnote 57
-
Kowalski, W. J. 2012. Hospital airborne infection control. CRC Press, Boca Raton, FL.
- Footnote 58
-
Demicheli, M. C., B. S. Reis, A. M. Goes, and Ribeiro de Andrade, Antero Silva. 2006. Paracoccidioides brasiliensis: attenuation of yeast cells by gamma irradiation. Mycoses. 49:184-189.
- Footnote 59
-
Restrepo, A., L. H. Moncada, and M. Quintero. 1969. Effect of hydrogen ion concentration and of temperature on the growth of Paracoccidioides brasiliensis in soil extracts. Sabouraudia. 7:207-215.
- Footnote 60
-
Franco, M., E. Bagagli, S. Scapolio, and C. D. S. Lacaz. 2000. A critical analysis of isolation of Paracoccidioides brasiliensis from soil. Medical Mycology. 38:185-191.
- Footnote 61
-
Urdaneta, M., and C. D. S. Lacaz. 1965. Preservation of fungi in distilled water. Preliminary results. Rev. Inst. Med. Trop. Sao Paulo. 7:24-26.
- Footnote 62
-
de Bedout, C., L. E. Cano, A. M. Tabares, M. Van de Ven, and A. Restrepo. 1986. Water as a substrate for the development of Paracoccidiodes brasiliensis mycelial form. Mycopathologia. 96:123-130.
- Footnote 63
-
Restrepo, A., B. E. Jiménez, and C. de Bedout. 1981. Survival of Paracoccidioides brasiliensis yeast cells under microaerophilic conditions. Sabouraudia. 19:301-305.
- Footnote 64
-
Moreto, T., M. E. A. Marques, M. De Oliveira, D. Moris, L. De Carvalho, and R. P. Mendes. 2011. Accuracy of routine diagnostic tests used in paracoccidioidomycosis patients at a university hospital. Trans. R. Soc. Trop. Med. Hyg. 105:473-478.
- Footnote 65
-
Gaviria, M., V. Rivera, C. Muñoz-Cadavid, L. E. Cano, and T. W. Naranjo. 2015. Validation and clinical application of a nested PCR for paracoccidioidomycosis diagnosis in clinical samples from Colombian patients. The Brazilian Journal of Infectious Diseases. 19:376-383.
- Footnote 66
-
Rocha-Silva, F., S. M. de Figueiredo, La Santrer, Emanoelle Fernandes Rutren, A. S. Machado, B. Fernandes, C. B. Assunção, A. M. Góes, and R. B. Caligiorne. 2018. Paracoccidioidomycosis: Detection of Paracoccidioides brasiliensis´ genome in biological samples by quantitative chain reaction polymerase (qPCR). Microb. Pathog. 121:359-362.
- Footnote 67
-
Ribeiro, C. M., C. A. Caixeta, M. L. de Carli, F. F. Sperandio, de Sá Magalhães, Evandro Monteiro, A. A. C. Pereira, and J. A. C. Hanemann. 2017. Photodynamic inactivation of oral paracoccidioidomycosis affecting woman with systemic lupus erythematosus: an unusual case report. Photodiagnosis and Photodynamic Therapy. 17:160-163.
- Footnote 68
-
Dos Santos, L. F., N. B. Melo, M. L. de Carli, A. C. S. Mendes, G. M. A. Bani, L. M. Verinaud, E. Burger, Gabriel de Oliveira, I. Moraes, A. A. Pereira, and M. R. Brigagão. 2017. Photodynamic inactivation of Paracoccidioides brasiliensis helps the outcome of oral paracoccidiodomycosis. Lasers in Medical Science. 32:921-930.
- Footnote 69
-
Oliveira, A. F., and P. S. R. Coelho. 2017. Yeast expressing GP43 protein as a vaccine against Paracoccidioides brasiliensis infection, p. 213-224. Vaccines for Invasive Fungal Infections. Springer New York, NY.
- Footnote 70
-
Travassos, L. R., and C. P. Taborda. 2012. Paracoccidioidomycosis vaccine. Human Vaccines & Immunotherapeutics. 8:1450-1453.
- Footnote 71
-
Public Health Agency of Canada. 2019. Human Pathogens and Toxins Act (HPTA) (S.C. 2009, c.24).
- Footnote 72
-
Government of Canada. 2020. ePATHogen - Risk Group Database.
Page details
- Date modified: