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Abstract

Innovative data sources and methods for public health surveillance (PHS) have evolved 
rapidly over the past 10 years, suggesting the need for a closer look at the scientific maturity, 
feasibility, and utility of use in real-world situations. This article provides an overview of recent 
innovations in PHS, including data from social media, internet search engines, the Internet of 
Things (IoT), wastewater surveillance, participatory surveillance, artificial intelligence (AI), and 
nowcasting.

Examples identified suggest that novel data sources and analytic methods have the potential 
to strengthen PHS by improving disease estimates, promoting early warning for disease 
outbreaks, and generating additional and/or more timely information for public health action. 
For example, wastewater surveillance has re-emerged as a practical tool for early detection 
of the coronavirus disease 2019 (COVID-19) and other pathogens, and AI is increasingly used 
to process large amounts of digital data. Challenges to implementing novel methods include 
lack of scientific maturity, limited examples of implementation in real-world public health 
settings, privacy and security risks, and health equity implications. Improving data governance, 
developing clear policies for the use of AI technologies, and public health workforce 
development are important next steps towards advancing the use of innovation in PHS.
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Introduction
Public health surveillance (PHS) is the ongoing, systematic 
collection, analysis, and interpretation of data, followed by the 
dissemination of information, for the purpose of guiding actions 
to prevent and control diseases or improve population  
health (1–3). Traditionally, PHS was conducted with a limited 
number of data sources from public health information systems, 
health care, and laboratory information systems, as well as 
questionnaire-based surveys, which often require substantial 
resources and time to process, analyze, and disseminate.

The digitization of health care and other sectors has reduced 
the time lag, cost and burden associated with conducting PHS, 
and enabled exploration of other sources of data to augment 
traditional sources (4). In addition, artificial intelligence (AI) has 

seen major advances over the past decade. Artificial intelligence-
enabled methodologies that efficiently process large amounts 
of structured and unstructured data are increasingly used in 
PHS (5–7).

Many of these data sources and AI methods were used during 
the coronavirus disease 2019 (COVID-19) pandemic, where 
timely and complete information was crucial to understanding 
and responding to evolving pandemic risks (4). The rapid 
development of these innovative surveillance methods and use 
of novel data sources suggests the need to take a closer look at 
the scientific maturity, as well as the feasibility and utility of their 
use, in real-world applications (5,6,8). The objective of this paper 
is to highlight examples of the application of innovative methods 
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to PHS and provide insights for public health authorities on the 
potential benefits, risks, and challenges of using non-traditional 
data sources and methods in PHS.

This article provides an overview of PHS innovations in data 
and analytic methods published in the past five years, including 
any evidence of their application to real-world settings, ethical 
issues, and known health equity implications. Each innovation 
is described, including its level of scientific maturity and, where 
available, any evidence of its impact on surveillance practice 
or public health action. The results section starts by exploring 
novel data sources that have been applied to PHS, highlighting 
successful examples of their application to provide timely, 
accurate and reliable information to support public health action. 
It then focuses on innovative methods that have been developed 
to analyze surveillance data, including the development of AI 
to support the integration and analysis of large and/or non-
traditional data sources and the application of advanced analytic 
methods to improve nowcasting of information.

Methods

Approach
 
This overview defines the term “innovative surveillance” 
broadly as the use of non-traditional data sources and/or 
analytic methods to detect and understand health events and 
determinants. The primary focus was on data sources and 
analytic methods; this overview does not provide detailed 
discussion of other components of the surveillance process  
(e.g., dissemination or evaluation strategies).

Relevant topic areas were identified for inclusion in this article 
by searching PubMed, Embase, Global Health, and Scopus 
in the spring of 2023. A detailed search strategy, developed 
with the support of a librarian, was restricted to peer reviewed 
articles published between January 1, 2013, and February 23, 
2023, from member countries of the Organisation for Economic 
Co-operation and Development (OECD) and China, in English 
language only. Hand searching provided additional sources.

Results of the literature search were screened for relevance via 
title and abstract search and grouped into topic areas. Final 
selection of articles within each topic area was restricted to 
the past five years (January 1, 2018, to February 23, 2023) to 
ensure that articles were more reflective of current technological 
and methodological innovations. As the search yielded a large 
number of articles on analytic methods, decisions were made by 
the research team to exclude certain broad analytic topic areas 
(such as innovations in biostatistics, laboratory, or geospatial 
analytic methods), and focus on nowcasting and artificial 
intelligence, two areas that have been adopted by public health 
from other disciplines.

The authors focused this overview on a subset of articles that 
met the definition of “innovative surveillance”, discussed steps 
taken to evaluate or validate the method or data source(s), 
described potential or actual improvements to the PHS system, 
and, where possible, showed application to real-world public 
health practice.

Results

Novel data sources and their applications
 
Overview of novel data sources 
The rise of digital technologies has made new data sources 
available for disease surveillance. Commonly used digital data 
sources include social media and aggregate search query data, 
where initial surveillance applications date from the early 2000s, 
as well as participatory surveillance methods, such as repeated 
cross-sectional online surveys and crowdsourcing of photos 
or sample submissions (9). More recently, PHS applications of 
other digital technologies are being explored, such as mobility 
data and the Internet of Things (IoT), which includes wearable 
devices and other physical objects that connect and exchange 
data via the Internet (8). Digital data sources may have the 
potential to provide more timely information and capture 
populations that may not seek health care; although possible to 
use as an independent source of information, they are generally 
considered to be complementary to traditional surveillance 
data (9).

Social media and web-search data 
Social media (e.g., Twitter/X) and web search (e.g., Google 
Trends) data have been used to support disease surveillance 
as a source of data for nowcasting, situational awareness, and 
outbreak detection (9). A recent systematic review focusing on 
communicable disease surveillance noted that the majority of 
included studies used data from Twitter/X, and that studies that 
used Twitter/X data showed higher overall reliability and validity 
than studies using data from other social media platforms (10). 
The review also noted that the majority of studies focused on 
influenza surveillance, and that additional research was needed 
to assess the effectiveness of social media for other disease 
areas (10). Other examples of the use of social media and/or 
web search data included retrospective analyses to evaluate 
the potential of these sources to predict cases of sexually 
transmitted and blood-borne infections (STBBIs) (11), prioritizing 
restaurant inspections based on foodborne outbreak information 
(12), drug utilization estimates (13), and early warning systems 
for e-cigarette/vaping-related lung injuries (14) and COVID-19 
outbreaks (15).
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One of the challenges with the use of digital media is the need 
to collect and process large quantities of information, either 
through manual monitoring or automation (16). The European 
Centre for Disease Prevention and Control (ECDC) released 
epitweetr, an R-based software library that collects, aggregates, 
detects, and disseminates information for early detection of 
public health threats using Twitter/X. An evaluation of the tool 
noted greater timeliness when compared to manual review (16). 
Artificial intelligence methods such as natural language 
processing, described later in this paper, are also increasingly 
being used to process and analyze digital information sources.

While the utility of social media and web search data for disease 
surveillance has been explored for nearly two decades, the 
validity, reliability, and stability of these data continue to present 
challenges to developing standardized approaches to using this 
information (9). For example, changes to the query algorithms of 
search engines, the use of different language styles, confounding 
search terms, and demographic biases in terms of who uses 
digital technologies, may impact the quality of information from 
these sources for PHS (9,17). A recent systematic scoping review 
also noted that most studies on digital surveillance did not utilize 
their results for public health action, and that more rigorous 
methods were needed to operationalize this information for 
public health decision-making (17). Surveillance platforms that 
combine social media, web search, and healthcare data may 
improve the accuracy of results (9,18).

Participatory surveillance data 
Participatory surveillance involves the voluntary recruitment 
and engagement of members of the public to participate in 
repeated surveys or other crowdsourcing methods (9). This 
approach is sometimes used as an augment to traditional 
disease surveillance, to capture information in a timelier way, 
and to capture populations that may not seek health care for 
testing and diagnosis (8). Examples include Flu Near You in 
the United States, InfluenzaNet in Europe (9), and FluWatchers 
in Canada (19). Community surveillance using self-collected 
specimens has also been implemented and has enabled rapid 
assessment of community-level burden of influenza (20). 
Additionally, studies have explored participatory syndromic 
surveillance using social media and newspaper reports as a 
source of information during the COVID-19 pandemic that may 
be timelier and more accessible than official public health case 
reports (21,22).

Outside of respiratory pathogens, recent studies suggest current 
use of participatory approaches to support surveillance of 
potential disease carrying vectors or vector-borne disease. For 
example, platforms such as iNaturalist, eTick.ca, and Mosquito 
Alert use crowdsourced photos to identify the distribution  
and seasonal trends of specific species of ticks and 
mosquitos (23–26), and initiatives such as tickMAP in New York 
state used community-submitted tick specimens to track the 
emergence of tick-borne pathogens in near real time (27).

Participatory surveillance may be applied in a way that enables 
participation from equity-deserving populations that may 
otherwise be excluded from traditional surveillance systems. 
For example, in a rural Appalachian community, participatory 
surveillance via an online or phone-based symptom self-checking 
tool was used to identify at-risk individuals who may otherwise 
have not sought health care and link them to resources from the 
local health department (28). However, certain populations may 
be less likely to participate in participatory surveillance, including 
males, younger and older age groups (29), and those with lower 
income and education (9). This may introduce bias and potential 
health equity issues, particularly if groups that are more likely to 
experience illness are excluded.

New digital data sources 
The use of digital data sources, such as mobile technologies, IoT 
and wearables, represent emerging areas for further exploration. 
For example, mobility data was used to explore the impact of 
COVID-19 and government policy on travel patterns. Health 
inequities were also noted, as socially disadvantaged populations 
were often unable to benefit from stay-at-home orders (30,31).

Wearable devices, such as smartwatches, have been used to 
collect individual-level data on variables linked to viral infection, 
such as resting heart rate, sleep, and mobility (32,33). As an 
example, a study noted that wearable technologies may improve 
nowcasting of influenza-like illness (ILI) rates in the United 
States (33). Various applications of IoT have emerged in the past 
few years. In one study, researchers placed thermal sensors and 
microphones in hospital waiting rooms to monitor coughing, 
which was then used to support ILI surveillance (34).

New digital data sources from mobility, wearables, and IoT 
represent an emerging field that requires greater evaluation 
and assessment (8,32), including careful consideration of privacy 
and ethical concerns (35). Like other digital data sources, these 
sources involve self-selected populations and exclude groups 
who do not have access to digital technologies. Privacy issues 
have also emerged with the use of new digital technologies and 
social media data; data ownership and the right to share data 
and use the data for secondary purposes may differ among the 
public sector (e.g., government), private sector (e.g., Twitter/X), 
and geopolitical jurisdictions (9,25). The need for upgraded 
infrastructure and investment to support the integration and 
analysis of information generated from new technologies may 
also present substantial barriers (8,36).

Wastewater 
Wastewater surveillance (WWS) has evolved as a data source 
that now supports global surveillance of infectious diseases in 
a manner that is independent of health-seeking behaviour and 
healthcare system access (37,38). When coupled with small area 
socio-demographic data, WWS has the potential to forewarn and 
confirm clinical trends, address health inequities, fill reporting 
gaps due to waning clinical testing, and provide purpose-built 
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sentinel surveillance of communities with higher-risk profiles for 
specific pathogens (38–42). The deluge of WWS data during 
the COVID-19 pandemic led to novel analytic methods to help 
inform public health action. These include sophisticated machine 
learning algorithms that were applied to estimate sewage flow 
rates to allow for data normalization (43), and the application of 
simple statistical methods that were then tested to identify early 
warning signals in a user-friendly manner (44,45). New methods 
developed for WWS during the pandemic were validated by 
comparing wastewater signals to clinical case data and COVID-
like illness syndromic data (38,40,41,45,46). Innovations in 
WWS have also benefited from other novel data linkages. In a 
recent study in Iceland, wastewater signals were compared with 
driving under the influence records to help distinguish trends of 
recreational drug use from increased drug dependencies, the 
latter of which may require enhanced public health action (47).

Wastewater surveillance of COVID-19, other infectious 
pathogens, and illicit substances, has identified limitations of this 
approach including the inability to distinguish reasons for signal 
increases/decreases, the degradation of the pathogen/substance 
in the wastewater before testing is performed, changing 
population denominators, and non-standardized sampling 
methods (47–49). Wastewater surveillance is also limited by the 
epidemiological indicators it can provide (i.e., incidence and 
prevalence) and the population it can monitor (e.g., includes only 
those in the sewer shed of a wastewater treatment facility) from 
the WWS data alone (45–49).

Innovative analytic methods
 
Artificial intelligence 
Artificial intelligence, which includes natural language processing 
(NLP), machine learning, and deep learning, can integrate, 
process, and interpret multiple sources of information more 
efficiently and more consistently than humans (50). The recent 
growth in the use of AI-based technologies that can process 
unstructured text data has enabled the use of novel data 
sources, including those discussed in the previous sections, 
to be leveraged more effectively (7). Artificial intelligence 
has enormous potential to improve PHS, as it is capable of 
processing large amounts of data to identify anomalies that 
may pose a threat to public health (7), however, it is still an 
emerging field in which more real-world evaluations are needed. 
Some of the published innovations using AI for PHS still reside 
within academic collaborations. One such study from the Yale 
School of Medicine used NLP, which applies AI methods to 
the interpretation of human language, to provide real-time 
monitoring of population health by identifying symptoms 
mentioned on social media platforms (51).

Machine learning identifies complex patterns in data for 
classification and prediction (50). In New York City (NYC), 
machine learning, in combination with NLP, was tested 

to improve “pre-syndromic surveillance”, which seeks to 
identify rare or previously unseen threats to health from 
clinical information (52). In this study, multidimensional 
semantic scan (MUSES) is a machine learning and NLP-based 
method developed to improve early detection of illness by 
eliminating the need for predefined case definitions and 
automatically clustering information by small geographies and/
or demographics. MUSES was applied to historical free-text 
complaint data from NYC emergency departments and was 
found to identify more events of public health interest and a 
lower false positive rate than the current approaches used by the 
New York City Department of Health and Mental Hygiene (52). 
Natural language processing-based PHS has also been tested 
to improve the timeliness of overdose mortality reporting by 
eliminating the need for manual coding of free-text death 
certificates (53). The above examples show the potential of 
AI in PHS, but it remains unclear how many AI methods have 
been implemented into PHS. One real-world application by the 
Department of Veterans Affairs in the United States showed 
successful adaptation of an existing NLP-based PHS method 
early in the COVID-19 pandemic to monitor travel history in 
clinical records for public health follow-up (54).

Deep learning is a specialized type of machine learning that 
incorporates sophisticated neural networks that support 
classification using large amounts of text and are designed 
to work in a manner similar to a human brain. It has been 
increasingly used to support disease surveillance (7,55). The 
Centers for Disease Control and Prevention (CDC) tested neural 
networks and found that deep learning can interpret physician 
records to accurately predict the chief complaint, and potentially 
improve the timeliness and accuracy of information available for 
syndromic surveillance (56). Deep learning has also been applied 
to internet-based surveillance systems to support early warning, 
situational awareness, and nowcasting of infectious diseases. For 
example, Sentinel, an American surveillance system, uses deep 
learning to identify and classify health-related social media posts, 
news media, and CDC data to detect possible outbreaks and 
provide situational awareness (55). 

The use of AI to support PHS is a new and emerging field that 
still needs evaluation of implementation into existing public 
health systems. Algorithms and machine learning models built 
with inaccurate, incomplete, or unrepresentative datasets, 
may both limit the accuracy of AI-based methods as well as 
bias results based on race, gender, or other characteristics 
(50,57). It is important to ensure that there is transparency in 
how AI models are built so that results are explainable, and 
that those who are interpreting the outputs of AI analyses are 
adequately skilled in PHS and can apply appropriate judgment. 
It is also important for public health professionals to understand 
AI methods, their applications, and their risks before applying it 
to public health practice (57).
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Nowcasting 
Nowcasting uses recent surveillance data to model the 
current situation (e.g., case counts) when real-time data are 
unavailable (58). In one study, nowcasting using a Bayesian 
approach accurately estimated COVID-19 rates to inform 
resource allocation in NYC, successfully overcoming delays 
between testing and reporting (59). Advances in nowcasting 
have also been adopted in One Health surveillance systems to 
help fill data gaps and help anticipate zoonotic outbreaks. For 
example, the Norwegian Institute of Public Health successfully 
applied nowcasting principals to respond to gastrointestinal 
illness outbreaks using Campylobacter testing data from poultry 
farms and meteorological data (60). While nowcasting can be 
useful to estimate current situational awareness during rapidly 
changing public health emergencies, it is limited by the quality 
of data and the clarity of the interpretations provided to decision 
makers (59,61).

Discussion

This review has explored innovations in PHS over the past 
decade and, where possible, described examples of their 
applications to PHS programs. Examples of the use of 
these novel sources to support PHS include providing novel 
information that improves estimates of disease, promoting early 
warning and identification of potential threats to health, and 
generating new information for public health action.

Despite these opportunities, there are substantial challenges 
to integrating innovations in PHS into practice. As new data 
sources and methods are added to the PHS toolbox, their risks 
and benefits should be considered with the goal of improving 
overall population health. Most of the areas explored in this 
paper are lacking in scientific maturity, and in many cases, are so 
novel that standard methods and best practices do not yet exist 
to help advance these fields reliably and responsibly (49,50,57). 
Many of the novel methods identified in this paper were tested 
in academic environments with no clear real-life implementation 
strategy (51,55). More evaluations of these interventions in 
real-world settings, which assess their utility in improving 
PHS and implications for public health action, are needed. 
These evaluations could be used to develop and disseminate 
guidance and standardized approaches to support public health 
organizations in implementing novel methods.

The use of digital technologies and AI in PHS also introduces 
challenges for privacy and security, data governance, and ethical 
considerations. For example, there is a need to balance between 
the benefits of having large quantities of granular information for 
analysis and the need to ensure individuals cannot be  
(re)identified. This is particularly true with AI methods, given the 
large quantity of information that is usually required to train the 
model (54,57,62,63). In the case of digital data, which may be 

publicly available, but where permission to use for surveillance 
purposes has not been acquired, it is not clear how/whether 
informed consent can or needs to be obtained. Particular care 
needs to be taken to ensure that data are anonymized and 
confidential information is not revealed (63). Protection of 
digital data and transparency in how and what data is acquired, 
stored, and used are key to maintaining public trust and ensuring 
the sustainability of these systems (57,64), and thus progress 
towards digital data governance is needed to fully operationalize 
these data sources. Ethical frameworks for the use of AI and 
social media data in research (63), and guidelines for the use 
of AI more broadly (65–67), have been developed to support 
responsible conduct and protection of individuals from whom 
data is collected. 

Health equity is an important consideration in implementing 
new surveillance methods. This overview identified several 
examples of approaches that could be used to support health 
equity, as they include populations that may be missed in 
traditional surveillance. However, a recent review article noted 
that there were no studies that specifically focused on vulnerable 
populations in the use of digital PHS, and thus substantial work 
is needed to explore the health equity implications of its use 
(17). Furthermore, greater work is needed to explore, identify, 
and address biases in AI algorithms and in the data used to train 
AI algorithms to ensure that these methods are not perpetuating 
harmful outputs as a consequence of biased inputs (57).

Limitations
Limitations of this overview should be noted. This article was 
intended to provide a snapshot of recent innovations in PHS and 
explore examples of real-world application. As such, it is not 
intended to be an exhaustive list, and cannot provide detailed 
appraisal of the effectiveness of these innovations. The article 
focused on peer-reviewed literature only, and thus may have 
omitted articles from applied public health settings that were 
published as grey literature. The use of peer-reviewed literature 
may also have produced a positive publication bias, with studies 
noting negative results or unintended consequences potentially 
being under-represented. This is an important consideration 
given that non-traditional data sources may also be a source 
of public health misinformation (68), and thus require careful 
consideration and evaluation prior to use.

Conclusion
Novel data and methods for PHS have the potential to improve 
the quantity, accuracy, completeness, timeliness, and accessibility 
of information available for public health response; however, 
the evidence base to support their utility in the real-world, as 
opposed to academic, settings appears to be lacking. Substantial 
barriers prevent the implementation of novel data and methods 
in PHS, ranging from health equity, privacy, and ethical concerns 
to training and availability of data and technologies. Improving 
data governance mechanisms, developing clear policies 
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for ethical use of AI technologies in PHS, and training the 
public health workforce on the responsible use of innovative 
technologies are important next steps towards advancing greater 
use of novel methods and data sources.
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