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EXECUTIVE SUMMARY 

Great Lakes coastal wetlands are strongly influenced by their physical environment, particularly 

by water-level fluctuations that incorporate the effect of large-scale synoptic systems controlling 

climate (i.e. surface air temperature, precipitation, evaporat ion, winds, etc). Water levels are 

therefore frequently described as the primary driver of changes of wetland structure, composition, 

and distribution, with annual, seasonal, and sub-seasonal fluctuations maintaining wetland 

vegetation biodiversity and habitat extent. Wetland ecosystems are hence highly vulnerable to 

the anticipated global warming, as altered lake hydrology can have a significant impact on their 

ecology. Adverse effects of climate change, which may result in habitat and/or biodiversity loss  

or increased anthropogenic stressors and expansion of invasive plant species, may lead to a 

dramatic deterioration of their conservation and functional values. 

In 2017, Environment and Climate Change Canada (ECCC) announced the Great Lakes 

Protection Initiative (GLPI; 2017-2022), which contains a study to confront the impacts of climate 

change entitled ‘Assessing and Enhancing the Resilience of Great Lakes Coastal Wetlands’. This 

study supports the 2012 Great Lakes Water Quality Agreement (GLWQA) and the 2014 Canada 

Ontario Agreement (COA), on Great Lakes Water Quality and Ecosystem Health in their focus on 

conserving productive wetland ecosystems and resilient populations of native species. It was built 

on three central objectives: (1) to assess the vulnerability of coastal wetlands; (2) to recommend 

adaptation strategies, measures, and actions to enhance their resilience; and (3) to engage, share 

information, and build consensus on priorities with partners, stakeholders, and rights holders.  

Scientists and technical experts from four branches of ECCC, under the direction of the Strategic 

Policy Branch’s Regional Director General, conducted the GLPI work. The other branches 

involved are the National Hydrological Service (NHS), Canadian Wildlife Service (CWS) and the 

Wildlife and Landscape Science Directorate (WLSD). Some of the key elements of this project 

were to determine the character, magnitude and rate of climate change to which wetlands are 

likely to be exposed, as well as the degree to which wetland distribution and composition will be 

affected, which form the basis of the vulnerability assessment. To address these aspects, the 

Hydrodynamic and Ecohydraulic Section of the NHS modelled the succession of wetland class 

distribution (submerged aquatic vegetation, emergent marshes, wet meadows, and swamps) and 

two invasive plant expansions under climate scenarios for the period 2070 to 2099. Four main 

objectives were pursued to meet the study priorities: 
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1. Develop two-dimensional lake models (hydrodynamic and wave models) to simulate 

physical conditions near coastal wetlands; 

2. Collect, transform and integrate geo- and time-referenced environmental data (topography 

and plant distribution) on selected wetlands; 

3. Build two-dimensional predictive models of wetland classes and invasive plant distribution; 

4. Estimate the changes in wetland composition and the potential of expansion for two 

invasive plants expected under the projected climate by the end of the current century.  

The sensitivity of Great Lakes coastal wetlands to global warming was assessed using a Coastal 

Wetland Response Model (CWRM), which predicts the spatiotemporal succession of large 

wetland classes based on hydrodynamic and waves time series. The CWRM, which  simulates 

physical (water depth and waves) and environmental (vegetation distribution) conditions, was 

adapted to twenty wetland sites along the Canadian Great Lakes coastline. The model links large-

scale dynamics (i.e., those that define the Great Lakes climate and hydrodynamics) to small-scale 

processes that explain changes in wetland class distribution through changes in physical 

conditions.  

To project wetland class distribution, downscaled CMIP5 Atmosphere-Ocean General Circulation 

Models (AOGCMS) forced by a scenario of moderate anthropogenic CO2 emissions (i.e. 

Representative Concentration Pathway 4.5) were used. These models project a mean increase 

in annual surface air temperature of 3.3°C in the Midwest and Great Lakes region (Byun and 

Hamlet, 2018), although large variability affects the different climate projections in the CMIP5 

ensemble. These models represent possible future climates from which water levels and waves 

can be generated, providing time series covering the recent past (1980 to 2009 , baseline) and 

future (2070 to 2099) periods. A subset of two CMIP5 AOGCMs was selected to delineate the 

range of anticipated changes in lake levels: the lower- and upper-bounds scenarios. The 

Boundary Water Issues Section of the NHS estimated projected mean lake levels using the 

components net basin supply approach.  

The CWRM is composed of a 10 m grid adapted for coastal wetlands that are directly influenced 

by lake hydrology. It integrates relevant local topography information extracted from high -

resolution digital elevation models (DEMs) generated from corrected LIDAR-derived and 

bathymetric datasets. These digital representations of the bare ground (bare earth) topographic 

surface have an average error of 16 cm (ranging from 10 cm to 27 cm), providing accurate 

elevation in the terrestrial and lacustrine portions of wetlands. Nearshore-dynamics (water levels 

and waves) were extracted from several lake models (hydrodynamic and waves) built to 
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characterize the physical environment of coastal ecosystems on an annual, seasonal, and sub-

seasonal (or daily) basis, and projected onto the CWRM grids. Two distinct modelling approaches 

were used to simulate lake surface dynamics, allowing for an accurate two-dimensional 

representation of the physics of both the deep (Ontario and Huron) and shallow lakes (St. Clair 

and Erie). Physical variables responsible for changes in wetland class distribution are estimated 

on a quarter-monthly time step to predict annual wetland classes and invasive plant expansion. 

These variables include a description of the short- and long-term fluctuations that shape the 

structure of wetland ecosystems, accounting for the effect of the episodic and periodic events that 

modulate lake levels. 

For the restricted set of climate scenarios used, the results show that mean lake levels are 

expected to change under global warming, with a minor to moderate decrease for the period 2070 

to 2099 relative to baseline under the lower-bound scenario and a significant increase under the 

upper-bound scenario. Lake Ontario, including the Upper St. Lawrence River, will likely be the 

most affected lake, with a net increase in the mean level of up to ~0.70 m, which is 2.5 times its 

natural variability observed between 1980 and 2009. The interannual variability in le vels is also 

projected to increase by more than 25% by the end of the century in the Lower Great Lakes, 

including the Lower Detroit River. Again, the change in the year -to-year variation is particularly 

pronounced in Lake Ontario and the Upper St. Lawrence River, with a relative increase of 88% to 

94%. No significant change in interannual variability was projected for Lakes St. Clair and Huron. 

Consequently, wetland sites are expected to show an overall increase in their mean annual strictly 

flooded area by 2099. This increase primarily affects sites on Lake Ontario (and Upper St. 

Lawrence), where the relative difference ranges from 6% to 34%, as well as drowned river 

mouths, which show a high upper-bound projection relative to basin-scale values. The transition 

zone, where sub-seasonal wet/dry cycles occur, is also projected to expand by 2070 to 2099 in 

Lakes Ontario wetlands, as well as in riverine systems of Lake Erie, and some sites in Lake Huron. 

Conversely, this zone is projected to decrease significantly in connecting channel sites. In Lake 

St. Clair, the interannual variability of the strictly flooded area and transition zone are both 

projected to decrease, with changes ranging from -80 to -90%. The wetlands of Lake St. Clair will 

likely experience more stable physical conditions in the later decades of the century and, 

therefore, a less dynamic environment that heightens the risk of habitat loss.  

In general, an increase in mean lake levels forces an upland migration of wetland classes, but it 

will likely result in more frequent declines in wetland area in modelled sites. This decrease is 
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primarily due to land use types preventing landward migration (i.e. agricultural land and urban 

zones), especially at the more anthropized southern sites. Lakes Erie and St. Clair sites could be 

among the most affected, with projected changes ranging from significant increases to significant 

decreases (29% to -55%) of total wetland area according to the lower- and upper-bound 

scenarios, respectively. Emergent marshes are likely to be the more abundant classes in Lake 

Erie by 2099 owing to their high ability to move landward or lakeward in response to changes in 

mean lake levels. In Lake Ontario, the submerged aquatic vegetation will likely increase with 

higher water levels and emergent marshes will migrate to higher elevations replacing wet 

meadows and swamps. This will likely result in an 8% to 10% total increase in wetland area, which 

is somewhat opposite to what is projected in Lake Erie and the Huron-Erie Corridor. Increase in 

submerged aquatic vegetation and landward migration of wetlands are also expected to occur in 

some sites of Lake Huron, which will likely offset the loss of wetland area under the upper-bound 

projection. However, changes in this lake will range from a moderate increase in wetland area, 

mainly swamps, to an overall decrease in total wetland area depending on the scenario. Overall, 

the upper-bound scenario projects a decrease in the relative abundance of all wetland classes 

with few exceptions, which could affect wetland biodiversity and functionality. 

With respect to future expansion of the invasive speices cattail (Typha) and common reed 

(Phragmites), a scenario of rising levels in Lake Ontario, including the Upper St. Lawrence River, 

will likely favour both invasive species. Phragmites expansion could even be a threat for wetlands 

where the species is not yet established. In Lake Erie, all projections indicate conditions favorable 

to high cattail abundance by the end of the century, as well as significant Phragmites expansion. 

Climate change will likely trigger common reed growth in this lake, especially if the mean lake 

levels decline. A similar conclusion can be drawn for most sites of the Huron-Erie Corridor under 

the lower-bound scenario, with the exception of Johnston Bay Wetlands at the mouth of St. Clair 

River. However, a large increase in the levels of Lake St. Clair by 2099 will likely reduce the 

expansion of both species, as wetlands will be largely inundated, creating unsuitable conditions  

for Typha and Phragmites. Most sites in Lake Huron are currently marginally affected by invasive 

species. Based on invasive species modelling, this situation is not expected to be exacerbated or 

worsened by projected changes in lake levels. 

Finally, it is worth mentioning that many assumptions and simplifications were employed to make 

the modeling of the various physical and ecological processes incorporated in the CWRM 

possible. As a result, some key elements, such as coastal erosion, sediment transport, nutrient 

loading, ice conditions, chemical exposure, and water clarity, were not considered in this study 
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due to their complexity or the effort that would have been required to model them. Other elements, 

such as land use and site topography, were instead fixed, limiting the scope of the results should 

any of these aspects change in the future. Nevertheless, similar assumptions are unavoidable in 

modelling and allow the conclusions of the study to be limited to the conditions explored, which 

are primarily focused on the impacts of a change in mean level on the composition and distribution 

of wetland classes. Lastly, this study is restricted to 20 wetlands dispersed along the Canadian 

shores of the Great Lakes, with the exception of Lake Superior that was removed from the work 

due to time and computational constraints. It would be appropriate to include sites along the U.S. 

and Lake Superior coasts in the CWRM to provide a more comprehensive view of the potential 

impacts of climate change on wetlands in the Great Lakes basin. 
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1. INTRODUCTION 

1.1. Background 

The Laurentian Great Lakes are an important freshwater resource that accounts for almost 20% 

of the world’s surface freshwater and provides drinking water to more than 35 million North 

Americans (ECCC & EPA, 2021). This basin supports multi-billion dollars per year of economic 

activities, and its ecosystem sustains over 4 000 living species with approximatively 2 695 coastal 

wetlands (>2 ha) covering 216 545 hectares (ECCC & US. EPA, 2021). These valuable habitats 

promote an impressive biodiversity (Brazner et al., 2001) and ensure many ecological services 

(Sierszen et al., 2011) such as critical habitat for most of Great Lakes fish species (Wei et al., 

2004).  

Coastal wetlands are particularly vulnerable to climate change given their location at the dynamic 

land-water interface, and because their structure, composition and distribution are highly 

dependent on air and water temperature, variation in water levels, and wave intensity (Acerman 

et al., 2009; Mortsch et al., 2006). The potential impacts of global warming on wetland health are 

broad as chemical and physical processes (e.g., coastal erosion, thermal habitat, chemical 

reactions), as well as wetland ecology, are likely to be affected. Therefore, the projected changes 

in wetlands are worrying, especially since a significant deterioration of their extent and biodiversity 

can be anticipated, as well as an alteration of their functions and ability to maintain cri tical 

ecosystem services. The effects may be even worse considering the existing anthropogenic 

stresses (e.g. Host et al., 2019) and the threat of invasive species that wetlands currently face.  

The 2012 Great Lakes Water Quality Agreement (GLWQA) and the 2014 Canada Ontario 

Agreement (COA) on Great Lakes Water Quality and Ecosystem Health recognize the impacts of 

climate change as an issue of concern. This reflects the recognition by national, provincial, state 

and local governments, Indigenous Peoples, and key interest groups and stakeholders that 

climate change impacts are already being observed and documented throughout the Great Lakes 

Basin. There is growing consensus that further changes are expected and that imminent actions 

are needed to understand and address ecosystem vulnerabilities, and to identify required 

adaptation options. 

In 2017, Environment and Climate Change Canada (ECCC) announced the Great Lakes 

Protection Initiative (GLPI; 2017-2022), which contains a study to confront the impacts of climate 
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change entitled ‘Assessing and Enhancing the Resilience of Great Lakes Coastal Wetlands’. This 

study supports the GLWQA and COA in their focus on conserving productive wetland ecosystems 

and resilient populations of native species, and it was built on three central objectives: 

1. Assess the vulnerability of coastal wetlands and determine how they are likely to respond 

to future climate conditions;  

2. Recommend adaptation strategies, adaptive measures, and actions to enhance the 

resilience of coastal wetlands to climate change impacts; and 

3. Engage, share information, and build consensus on priorities with partners, stakeholders, 

and rights holders. 

In order to answer these specific points, the GLPI project was structured around an integrated 

framework for assessing vulnerability to climate change (Figure 1). This approach combines 

findings from the literature, field surveys, georeferenced data, and modelling to operationalize the 

theoretical components used to determine the degree to which wetlands are susceptible to, and 

unable to cope with, adverse effects of climate change. Vulnerability assessment seeks to 

describe the character, magnitude and rate of change to which a system is exposed, its 

sensitivity, and its adaptive capacity (IPCC). Exposure defines the degree of climate stress, 

and it is determined, in this case, by key climate variables, including the variability in lake levels 

to which coastal wetlands may be exposed during the 21st century. Sensitivity examines the 

degree to which wetlands distribution and composition are likely to be affected by projected 

climate change. The magnitude of the expected response, which strictly depends on exposure 

and sensitivity, yields the potential impacts or potential response, which can encompass a wide 

range of effects. By combining this potential response with an assessment of the inherent capacity 

for wetlands to cope and persist through disturbance (i.e. adaptive capacity), it is then possible 

to determine how and where coastal wetlands and species are vulnerable to climate change.  

This report summarizes the effort of ECCC-NHS Hydrodynamic and Ecohydraulic Section 

dedicated to analyzing the exposure and sensitivity of the coastal wetlands under a range of 

climate change scenarios.  
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Figure 1: Generalized framework for Great Lakes and coastal vulnerability assessment. 

1.2. Objectives 

To evaluate the wetland exposure and sensitivity to climate change, a Coastal Wetland Response 

Model (CWRM) was built and used to predict the spatial and temporal succession of wetland 

communities. CWRM is a two-dimensional (2D), integrated habitat-modelling platform developed 

by ECCC-NHS Hydrodynamic and Ecohydraulic Section to assess the response of coastal 

wetlands to changes in water levels. In the GLPI study project, this model projects the area, 

structure and distribution of wetland classes and invasive species at 20 selected sites across the 

Great Lakes under past and future physical conditions. 

 The work described in this report can be divided in four main objectives:  

1. Develop 2D lake models (hydrodynamic and wave) to simulate physical conditions near 

coastal wetlands in the recent past (1980–2009) and future (2070–2099) under two 

distinguished climate scenarios; 

2. Gather, transform and integrate geo- and time-referenced information on selected 

wetlands; 

3. Build 2D predictive models of wetland classes and invasive plant distribution; 

4. Estimate the changes in wetland composition in response to the projected climate by the 

end of the current century. 
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The analyses produced by the CWRM are part of a joint effort by several ECCC sections that 

have been working towards the overall goals of the GLPI. For instance, the selected future climate 

simulations are based on work conducted by ECCC-NHS Boundary Water Issues Unit, which 

simulated a range of future Great Lakes water levels under a variety of climate scenarios 

(Seglenieks and Temgoua, 2022). The results extracted from the CWRM in turn supplied key 

information to the National Wildlife Service (CWS), which had to analyze the potential impacts of 

climate change and, hence, helped determine how and where coastal wetlands are likely to 

respond.  

1.3. Scope of study 

1.3.1. Study sites 

For this project, 20 coastal wetland sites were selected in the Canadian Great Lakes along the 

Canadian shoreline of lakes Huron, St. Clair, Erie, and Ontario, and along the shores of two 

connecting channels: the Detroit River in the Huron-Erie Corridor and the upstream portion of the 

Upper St. Lawrence River (Figure 2). Lake Superior, which was originally included in the study, 

is not represented in this project effort. Time and computational constraints made its modeling 

unrealistic for the project timeframe. This lake was therefore removed from the work and retained 

for future investigations  

Figure 2 shows the geographic location of these wetlands and provides the names and acronyms 

used throughout this report. The CWRM approach focused on Areas Of Interest (here after 

referred to as AOI) that cover the terrestrial and lacustrine surroundings of selected wetlands, 

totaling 124 220 hectares. A complete description of the site and area of interest characteristics 

is provided in Section 4.  

While wetland modelling produces results at the site scale, physical modelling must simulate the 

full range of spatial scales involved in the physical processes that modulate water depth and wave 

exposure. Therefore, the simulations performed provide not only a physical description at the 

wetland scale, but also at the lake scale, which implies a considerable amount of data and 

processing capacities.  
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Figure 2: Geographical location of the 20 selected sites. 

1.3.2. Expected changes 

CWRM is an adapted version of ECCC Hydrodynamic and Ecohydraulic Section’s two-

dimensional Integrated Ecosystem Response Model (here after referred to as IERM2D) originally 

developed for the International Lake Ontario–St. Lawrence River Study (LOSLR; Talbot et al., 

2006). Since then, this modelling approach has been adopted in numerous studies led by NHS to 

assess the potential impacts of changes in hydrological regime (Figure 3). Historically, IERM2D 

has been used to compare the state of the system obtained under reference and alternative 

conditions to reflect the possible impacts of fluctuating flows and water levels on various 

environmental and socio-economic factors. For example, alternative conditions may include 

changes in flow regime resulting from new regulation rules or the implementation of flood 

mitigation measures.  
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Figure 3: CWRM type integrated analysis applications 

The novelty of CWRM lies in the use of climate scenarios that provide future projections of the 

state of the system rather than alternatives that seek to reproduce only changes in past conditions. 

Thus, modelling must take into account the particularities of climate change science , especially 

with respect to the interpretation of projected changes, in order to communicate valuable and 

credible information.  

1.3.2.1. Possible future climates 

Since 2011, the Coupled Model Intercomparison Project Phase 5 experiment (CMIP5; Taylor et 

al. 2012) provided climate projections for climate assessment studies. This project includes a set 

of Atmosphere-Ocean General Circulation Models (AOGCMS) that were coupled to 

anthropogenic CO2 emissions scenarios, described using Representative Concentration 

Pathway (referred to as RCP), which provide an ensemble of possible future climates.  

Given the computational effort needed to produce all of the physical variables required by the 

CWRM, two dynamically downscalled AOGCMs were selected to delineate a range of possible 

futures:  

1. CanESM2 (Canadian Earth System Model), representing the low-risk (lower-bound) 

scenario; 

2. GFLD-ESM2M (NOAA’ Geophysical Fluid Dynamics Laboratory Earth System Model), 

accounting for a high-risk (upper-bound) scenario.  
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Both models were driven by a medium emission scenario that projects a pathway for stabilization 

by the end of the century, i.e. RCP 4.5, which results in a decrease in emissions around 2040 and 

a warming of 2.5°C above pre-industrial levels by 2100. The low-risk simulation (CanESM2) 

projects moderate change in future air temperature and precipitation rates, resulting in lower 

projections of mean lake levels relative to historically observed long-term averages, whereas the 

higher-risk simulation (GFLD-ESM2M) projects a smaller change in air temperature and a 

moderate change in precipitation rates, which results in a significant increase in future mean lake 

levels.  

1.3.2.2. Climate change signal 

Owing to the natural variability of the system, a clear climate change signal must be extracted 

from climate data averaged over relatively long periods. Focusing on short-term trends, or even 

annual values, could lead to observations that are the opposite of the expected global climate 

trend. To facilitate results comparison and study coordination, climate centers around the world 

use a standard 30-year timeframe to characterize long-term climatic conditions, which is endorsed 

by the World Meteorological Organization (WMO; Charron, 2016). Since this study aims to 

evaluate changes initiated by global warming, the results presented are extracted from 30 -year 

time series. Furthermore, it is important to note that even the best models do not reproduce the 

exact succession or timing of meteorological events due to the chaotic nature of the climate 

system, which remains difficult to model. Instead, models tend to reproduce the main statistical 

properties of the observed records, such as mean, variance, interannual variability, and 

seasonality, and are therefore used to provide a representation of expected changes in these 

properties given the current state of knowledge. Because they are mathematical representations 

of climate, the models are generally biased and cannot be used as is in opposition to observed 

historical values. The climate change signal is rather determined by comparing results obtained 

from projections produced for the recent past and the future via a given model, and over 

comparable periods. This method, known as the delta method, eliminates model-specific 

parametrization biases while retaining the climate change signal, which quantifies the changes 

projected by a given simulation.  

1.3.2.3. Modelling periods 

Since the current project aims to describe the evolution of Great Lakes coastal wetlands under 

projected climate change scenarios, several modelling periods were used to create the necessary 

output sets. The final CWRM product takes the form of a wetland classes map that gives the most 
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likely spatial distribution of wetland classes in a given year (Figure 4), based on the physical 

conditions encountered during past growing seasons. Because the wetland models required 

calibration and validation to ensure correct prediction of ecohydraulic processes, two types of 

periods were employed: the historical period and the projected periods. While the former refers 

to the recent past period, spanning from 1980 to 2018, the latter is strictly dedicated to climate 

analysis, and is therefore used to provide the projected state of the wetlands under a changing 

climate.  

More explicitly, the simulated periods are: 

1. Historical Period (1980–2018) used for wetland model calibration and validation. For this 

purpose, water levels and waves were simulated with observed data and available 

historical datasets to provide accurate numerical representation of past physical 

conditions. The resulting wetland distribution through the time series gives the reference 

state of the system, i.e. the historical conditions under which changes in distribution of 

wetland classes are observed and measured. As the climate modelling was performed 

over a 30-year window, the reference state is determined based only on the first 30 years 

of the historical time series (1980–2009). The Historical Period is not used to evaluate the 

impact of climate change scenarios on wetlands distribution. This is done by comparing 

the two following periods. 

2. Recent Past Period (1980–2009) is the projected past state of the system, determined 

based on climate change scenarios, which generally follow the observed trends and 

means under the Historical Period without reproducing them entirely. These scenarios 

were obtained under a greenhouse gas emission scenario that seeks to replicate the 

global warming of the recent past. Since projected emissions begin in 2005 in the climate 

scenarios used for this project, the 30-year period is defined, in this case, as the recent 

past encompasses the first years of the projected emission trend (Figure 4). The recent 

past time series is used strictly as a basis of comparison (i.e. baseline), to quan tify the 

expected changes and trends for the current century.  

3. Future Period (2070–2099) gives the projected state of the system in the last decades of 

the century (often referred to as “Horizon 2085”). These 30-year time series are therefore 

simulated using climate scenarios generated under up-to-date greenhouse gas emission 

scenarios, which estimated the rate of harmful gas emissions from 2005 to 2100. These 

series defined the “possible futures” expected under a changing climate. Again, they are 

strictly used to quantify expected changes and trends for the current century, in 

combination with results obtained from the recent past period. 
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Figure 4: Schematic representation of the modelling framework used to produce expected wetland classes for each 

year of the modelling periods.  

1.3.2.4. CWRM Grid 

All layers of information integrated in the CWRM are transposed, via various interpolation 

methods, on a regular 10m x 10m grid that covers the 20 AOI, creating a unique geo - and time-

referenced database with more than 14 million nodes. As a result, all the relevant information to 

predict yearly wetland classes and invasive plants distribution are available at each node of the 

grid, for each time step. Being geo- and time-referenced, all the information from CWRM can be 

easily imported into any GIS software for visualization or further analyses. Finally, results can be 

spatially integrated, for a rapid analysis of a specific region or the entire study area. 

1.3.3. Modelling approach 

Coastal wetlands are highly responsive and dynamic ecosystems (Keddy and Reznicek, 1986) 

that adapt to current and past natural physical factors to which they are exposed, with their plant 
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communities well conditioned to the unstable and unpredictable conditions (and processes) that 

characterize the nearshore zone. In the Great Lakes, wetlands are particularly acclimatized to 

large-lake hydrology and disturbances that play out over multiple temporal and spatial scales. 

These variable hydrological conditions largely control the location, extent, productivity, and 

diversity of these ecosystems, and thus can be considered the primary drivers of change 

(Mortsch, 1998). Level fluctuations experienced by a wetland indirectly incorporate the effect of 

precipitation, evaporation, and topography, which are essential components of their distribution. 

They also reflect the climate variability, including extreme weather events and episodic storms, 

as well as longer-term variations that modulate lake levels over years and decades. Therefore, to 

determine how coastal wetlands change over time, it is essential to identify the disturbance regime 

that defines shoreline dynamics, keeping in mind the different scales of the system (Kenough, 

1990): local (i.e. site-specific) or short-term; lake-wide or annual; and regional or long-term 

(greater than a year). While short-term disturbances primarily affect organisms with daily or short 

lifespan, long-term disturbances can influence perennial plant communities and cause shifts in 

species distribution and population trends (Kenough et al., 1999). In an effort to replicate Great 

Lakes coastal wetland vegetation zones and their hydrological gradient from deep aquatic habitat 

to dry terrestrial areas, two major questions must be answered:  

1. What is the time scale and magnitude of natural disturbances within the wetland, which 

take the form of water depth variations and wave exposure (e.g. Wilcox and Nichols, 2008; 

Uzarski, 2009)?  

2. How do plants move along the hydrological gradient in response to environmental 

disturbances, with migration of wetland classes that follows their inherent dispersal 

capabilities (e.g. Gathman et al., 2005)? 

These questions are the basis of the modelling approach taken for this project, which seeks to 

identify and characterize the physical processes and conditions that modulate  Great Lakes 

nearshore dynamics and how these physical factors shape coastal wetlands across a range of 

possible climates. This effort was accomplished using the CWRM, which is a two-dimensional 

habitat modelling platform that relies on a collection of georeferenced layers to evaluate the effect 

of hydrodynamic time series on plants. This model was used to predict the evolution of 20 selected 

wetland sites under a changing climate. It offers a comprehensive description of expected 

changes in wetland and invasive plant distribution by the end of the century based on scenarios 

that provide assessment of regional climate change due to greenhouse effects.  
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The following subsections give a description of the CWRM, as well as the workflow used to 

integrate the various components into the modelling architecture. Each component of this scheme 

is extensively detailed in a separate section, creating the structure of this document (Figure 5).  

1.3.3.1. Coastal Wetland Response Model (CWRM) Framework 

The CWRM integrates two main modelling components, which are used to define the physical 

(water depth and waves) and ecological (plants and topography) conditions spatially over various 

time steps for specific wetland sites over the Great Lakes. Thus, it is possible to link large -scale 

dynamics, defining the general climate and lake-wide dynamics, to small-scale ecosystem 

processes, which relate changing physical factors to changing wetland composition. Figure 5 

gives an overview of the CWRM. 

 

Figure 5: Coastal Wetland Response Model (CWRM) workflow. 

1.3.3.1.1. Atmospheric modelling 

Atmospheric modelling is used to define the climate to which ecosystems are exposed and hence, 

the climate variables that modulate the natural water-level regime on a seasonal, annual and 
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multi-year basis. Because Great Lakes levels are the integrated sum of water inputs and losses 

from the system, they are directly linked to the weather patterns that control the precipitation and 

the evaporation, as well as the frequency and duration of storm events. When working with 

scenarios, the integration of this information is essential to provide the “climate exposure” that will 

determine basin- and lake-scale dynamics. All information related to this aspect of the CWRM is 

provided in Section 2, which also includes a detailed description of the wind scenarios used. 

Although winds are primarily related to short-term water level fluctuations and have no incidence 

on the overall lake and basin water balance, they are included in the atmospheric components of 

the CWRM as they are extracted from atmospheric models. 

1.3.3.1.2. Lakes modelling 

Lake modelling is used to quantify the physical processes and conditions that drive lake dynamics 

on different time and space scales. This physically based modelling provides an accurate 

description of the various temporal scales that characterize water -level fluctuations. It describes 

well interannual and seasonal water levels change over years or  decades, but also short-term 

disturbances related to processes operating on timescales of days (wind-driven fluctuations), 

hours (surface seiches) and minutes (waves). The different spatial scales of the system are also 

managed by this modeling component using models that translate observed changes in 

hydrology, flow, and winds to the shoreline dynamics that directly influence wetlands.  A detailed 

description of the different physical models used in the CWRM is provided in Section 3, along with 

definitions of the physical variables employed to inform the ecological modelling, which is the final 

modelling component of the CWRM.  

1.3.3.1.3. Ecological modelling  

Ecological modelling integrates the ecological aspects that control the spatial distribution and 

composition of wetlands, including landform, land uses, and wetland classes. It has two major 

components. The first is the Digital Elevation Model (DEM), a precise representation of the 

topographic bare ground surface within the wetland boundaries. It is a three-dimensional digital 

representation used in combination with physical outputs to provide changes in water depth (and 

other physical variables) at fine spatial resolution. It also helps define some of the key terrain 

attributes, such as slope and profile curvature, which influence wetland classes and species 

distribution. A full description of the methodology behind the creation of high-resolution DEMs is 

provided in Section 5. The second major component of ecological modelling is wetland models. 

These models predict the wetland class that should occur at a specific location based on the 
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physical variables extracted from the lake modelling. They rely on historically observed physical 

and biological conditions to elucidate the relationship between these two important ecosystem 

dimensions and allow for a numerical representation of wetland eco-hydrological processes. 

These complex models provide successional processes and spatial distribution of wetland 

classes, as well as the presence and extent of two invasive species (Phragmities and Typha) at 

each site from the recent past to the end of the century according to various climate scenarios. 

Sections 6.1 and 6.2 present this topic. Other aspects of ecological modelling, such as land use 

and vegetation data, are also discussed in Section 4. 

1.3.4. Presentation of results 

All input variables that are processed to predict annual wetland classes and invasive species 

distribution are available at each grid node of the CWRM, for each quarter-month of the recent 

past (1980–2009) and future periods (2070–2099). Thus, for each variable, it is possible to 

generate time series and distribution maps at different time and space scales, or to create 

animations from sequential images. While such products are useful to reflect the spatiotemporal 

components of CWRM modelling approach, they should not be used to represent expected 

changes in a future climate. As mentioned in Section 1.3.2., climate scenario outputs should not 

be interpreted as a representation of reality at a specific point in time, but rather should be 

analyzed based on long-term trends.  

Therefore, in the scope of CWRM study, modelling results are expressed via the lower- and upper-

bounds of projected changes as determined based on the 30-year periods. These bounds give, 

for each variable, the possible range of changes expected by the end of the century under the 

RCP 4.5 emission scenario for a limited set of climate scenarios. These results are available for 

each of the 14 million CWRM grid nodes, allowing a fine representation of expected changes in 

the spatial distribution of properties, whether physical or ecological, as well as the range of 

variations projected by the selected AOGCMs at the basin- and local-scales. 

This report summarizes the effort of NHS to analyze, with the CWRM approach, the exposure 

and sensitivity of coastal wetlands to various physical variables under a range of different future 

climates. The report is divided into sections that describe the different modelling components 

needed to achieve this task. Each of the modelling components are presented with full 

methodology, results and discussion, starting from the broader climate models (atmospheric and 

winds), to lake models (hydrodynamic and waves) and ending with finer scale ecological models 
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(wetland classes and invasive plants). Overall summary, conclusion and key findings integrating 

all modelling components can be found at the end of the report. 
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2. CLIMATE MODELLING 

Author: Caroline Sévigny, Ph.D. 

2.1. Introduction 

Since changes in wetland ecosystems are primarily driven by changes in their physical 

environments, the CWRM framework incorporates climate exposure that is linked to large -scale 

atmospheric systems. This exposure is used to determine how shifts in global weather conditions 

may influence the total amount of water entering or leaving the Great Lakes system and , hence, 

the resulting changes in lake levels. In modelling, climate is usually defined with a set of 

atmospheric scenarios that are intended to replicate conditions experienced in the past, as well 

as future changes expected from global warming. For the current study, these climate scenarios 

are used to (1) project changes in mean lake levels, which respond to changes in large-scale 

weather patterns, and (2) provide wind datasets needed to simulate short -term fluctuations in 

water levels, which are important features of lake and nearshore wetland dynamics. Because 

winds are mainly determined by the synoptic atmospheric circulation, appropriate forcing is 

required to transpose this influence at the basin scale, as well as to the temporal scale of daily 

and sub-daily processes they influence. This section offers a short review of the fundamental 

concepts related to climate modelling, along with a description of the climate models selected for 

this project (Section 2.2) and a general overview of the work achieved to generate the wind 

scenarios (Section 2.3). 

2.2. Atmospheric models 

2.2.1. Atmosphere-Ocean General Circulation Models 

Expected changes in wetlands between the recent past to the end of the century are pr ojected 

using climatic scenarios, which predict the climate system response to various forcings. Since 

2011, the Coupled Model Intercomparison Project Phase 5 experiment (CMPI5; Taylor et al. 

2012) provided a set of climatic projections produced with up-to-date high-resolution, coupled 

Atmospheric-Ocean models, called Atmosphere-Ocean General Circulation Models (or 

AOGCMs, also referred to as GCMs)1. These Earth system models, which have a horizontal 

                                              
1
 The Coupled Model Intercomparison Project Phase 6 experiment was completed in 2021, in parallel to the Intergovernmental Panel 

on Climate Change (IPCC) Sixth Assessment Report (AR6).  
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resolution of hundreds of kilometers, include a representation of all large-scale physical processes 

(atmosphere, ocean, land and sea ice) and, in some cases, various biogeochemical cycles 

(carbon cycle, dynamic vegetation, ozone, etc.; Flato 2011). AOGCMs simulate observed climatic 

conditions from the early modern industrial period to the recent past (1850-2005), as well as 

expected future atmospheric conditions (2006-2100) for an ensemble of projected anthropogenic 

greenhouse gas and aerosol emissions. For the CMPI5 project, the range of possible emissions 

and concentrations was captured by scenarios of radiative forcing, which seek to encompass the 

range of future projections predicted by scientific literature. These scenarios give possible carbon 

emissions (e.g. low, moderate, and high), but did not include explicit socioeconomic pathways as 

would be the case with the use of Shared Socioeconomic Pathways (SSPs) that would provide a 

broader description of feedback between climate change and key factors (e.g. economy, 

technologies, public policies). These forcing scenarios are therefore called Representative 

Concentration Pathway (referred to as RCPs).  

2.2.2. Representative Concentration Pathways  

The RCPs not only provide the time series of emissions and concentrations of harmful gases, but 

also the trajectory2 followed over time to reach a specific long-term concentration level (van 

Vuuren, 2011). They describe a set of possible developments and a range of futures for the 

evolution of atmospheric composition. These scenarios are identified by their radiative fo rcing 

peak expected by the end of the century, relative to pre-industrial conditions (in Wm-2), which 

expresses the (net) energy gain from solar irradiance per square metre of surface per second. 

Three categories of RCPs are used to force the AOGCMs: a low forcing level (RCP2.6), medium 

stabilization scenarios (RCP4.5 and RCP6), and a very high baseline emission scenario 

(RCP8.5). RCP 4.5 and 8.5, the most commonly used scenarios, were selected to estimate the 

evolution of wetlands over time under a changing climate. While the former involves policy 

scenarios that project an initial increase in total CO2 equivalent greenhouse gas emission 

followed by a decrease around 2040 through mitigation (stabilization without overshoot pathway 

to 4.5 Wm-2 at stabilization after 2100), the latter is a no-climate policy scenario that projects a 

steady increase in emissions (rising radiative forcing pathway leading to 8.5  Wm-2). RCP8.5 is 

often referred to as the “business as usual” scenario, and its projection is found to be within 1% 

of the total cumulative CO2 emissions observed for 2005 to 2020 (Friedlingstein et al., 2019). In 

                                              
2
 Without any explicit assumption relating to population or economic development.  
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terms of increase in global average near-surface air temperature, RCP4.5 projects warming of 

2.5°C above pre-industrial levels in 2100, whereas RCP8.5 projects 5 °C, which is beyond the 

3 °C of warming that current policies suggest (Ho et al., 2019; Figure 6). This RCP was selected 

to highlight the possible impact of climate change on wetlands in the absence of any mitigation 

scenario, as well as to provide a comparative view of expected projections. However, and as will 

be explained in Section 3.3, the results obtained for this high emission scenario were considered 

unrealistic and were therefore set aside for this project. 

 

Figure 6: Global fossil-fuel emission under different emission scenarios with projected global warming by 2100 

relative to pre-industrial levels. From Hausfather and Peters (2020). 

2.2.3. Selected AOGCMs: Upper- and lower-bound scenarios 

Given the computational effort required to produce all physical variables needed for the CWRM, 

only a few climate models were selected to project changes in wetlands. Each AOGCM of the 

CMIP5 experiment yields a possible climate future that lies, for a given driving RCP, within a wide 

range of conditions. To account for this uncertainty in climate change projections, it is desirable 
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to choose models that can delineate the span of possible futures: low-risk (lower-bound) and high-

risk (upper-bound) scenarios.  

Byun and Hamlet (2018) tested the performance of the CMIP5 ensemble over the Midwest and 

Great Lakes region, according to its ability to simulate historical climate. They ranked the 31 

(downscaled) AOGCMs3 based on a performance metric that quantifies model skill in terms of 

historical climatology (1950-2005) and extreme temperature and precipitation events. Scenarios 

in the upper half of this ranking were identified as the first subset for the selection of low- and 

high-risk AOGCMs used in this project. The models included in this subgroup project a wide 

variability of annual temperature and precipitation changes over the Great Lakes domain for the 

2080 horizon (2070-2100; Figure 7). Changes in annual surface air temperature over the domain 

relative to 1970-2000 range on average from 3.31 °C and 6.45 °C according to RCP4.5 and 8.5, 

respectively, but significant variations are observed between models. To capture as much 

variability as possible, a first AOGCM included in the inner range of change of the CMIP5 subset 

was selected, CanESM2, and a second in the outer range, GFLD-ESM2M. GFLD-ESM2M is in 

the lower percentiles in terms of projected air temperature change (Figure 7).  

 

Figure 7: Inter-model variability of changes in temperature and precipitation for RCP8.5, for horizon 2080. The 

AOGMs included in the first subset of scenarios used to select the lower and upper bounds are identified b y a circular 

symbol, whereas excluded ones are represented by a diamond. CanESM2 and GFLD-ESM2M are identified in blue 

and yellow, respectively. The inner circle identifies the mean range of expected changes in the CMPI5 ensemble, 

while the outer circle identifies the maximum projected changes. Modified from Byun and Hamlet (2018). 

 

                                              
3
 A Hybrid Delta approach was used by Buyn and Hamlet (2018) to downscale the AOGCMs projections and remove the bias.  
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2.2.3.1. Regional climate models  

Downscaled outputs must be used to force hydrodynamic models, as the horizontal resolution of 

typical AOGCMs is too coarse to resolve sub-grid physical processes that affect climate at a local 

scale (e.g. smaller scale convective storms). Most AOGCMs do not even include any 

representation of inland water bodies such as large lakes (Briley et al., 2021), which can strongly 

modify the structure and transport properties of the atmospheric boundary layer.  

To support impact assessment studies over North America, the Coordinated Regional Climate 

Downscaling Experiment for North America (NA-CORDEX; Mearns et al. 2017) produced 

downscaled regional climate projections of 8 AOGCMs of the CMIP5 ensemble (see https://na-

cordex.org/briefing-document), including CanESM2 and GFLD-ESM2M. The NA-CORDEX 

climate simulations are derived using nested Regional Climate Models (referred to as RCMs) with 

a horizontal resolution of 10 to 50 km. These RCMs admit richer spatial and temporal details and 

improvement over AOGCM simulations that may be important over complex land surfaces (Lucas-

Picher et al. 2012), especially over large lakes (Weiss and Sousounis, 1999).  

Table 1: Driving AOGCMs and Representative Concentration Pathways (RCP) of the selected cl imatic scenarios, with 

their scenario code. 

 

The Canadian Regional Climate Model version 5 (referred to as CRCM5; Martynov et al. 2013; 

Separovic et al. 2013), developed by the ESCER Centre (Centre pour l’Étude et la Simulation du 

Climat à l’Échelle Régionale, Université de Montréal) in collaboration with Environment and 

Climate Change Canada, was selected to downscale the CanESM2 and GFLD-ESM2M outputs 

to a grid of ~25 km of resolution that covers the Great Lakes Basin (Table 1). According to Mailhot 

et al. (2019), these two sets of AOGCM-RCMs are found to satisfactorily reproduce the annual 

cycle of the Great Lakes net basin supply as estimated by the Large Lake Statistical Water 

Balance Model4 (L2SWBM; Gronewold et al. 2016) for the period 1970-2000.  

                                              
4
 L2SWBM combines measurement-based estimates with models while closing the Laurentian Great Lakes water balance. 

https://na-cordex.org/briefing-document
https://na-cordex.org/briefing-document
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2.2.4. Hydrodynamic forcing: Scenarios outputs 

The sets of AOGCM-RCMs provide several physical output variables: precipitation, near-surface 

temperature, total runoff, surface runoff, surface air pressure, surface downwelling short - and 

long-wave radiation, near-surface winds, etc. Most of these variables were used to calculate 

quarter-monthly mean water levels and outflows in the Great Lakes Basin for the baseline and 

future periods5. For the simulation-based projections, these data provide climate forcing for the 

Great Lakes hydrodynamic models by implying a net change in water supply. By doing so, the 

water levels time-series produced by the hydrodynamic models include the combined effect of 

over-lake precipitation, over-lake evaporation and runoff for each of the driving scenarios. More 

details regarding these quarter-monthly mean water-level time-series are given in Section 3.3. 

2.3. Winds 

While the seasonal variation of Great Lakes water levels is obtained through hydrodynamic 

forcing, lake response to atmospheric conditions requires the use of gridded wind datasets. The 

wind inputs must therefore be sufficiently accurate to describe the small-scale atmospheric 

disturbances affecting each lake, which range in size from 311 to 563 km (at their largest 

horizontal dimension), and their smallest basins (North Channel of Lake Huron and Georgian Bay, 

e.g.). Waves modelling also requires high spatial and temporal forcing (3-hour time step, or less) 

to account for the strong non-stationarity of the wave field, as well as to ensure better consistency 

between observed and simulated wave climate (Moeini et al., 2010; Rusu et al., 2009; Schaeffer 

et al. 2011). The choice of a gridded wind dataset is hence crucial, and intensive work has been 

undertaken to characterize the pros and cons of available options. The reference product was 

intended to be used to (1) force historical (observation-based) simulations, and (2) post-process 

wind scenarios extracted from the sets of AOGCM-RCMs, which were employed to create 

projections (hydrodynamic and waves).  

2.3.1. Reference datasets 

Two preselected gridded datasets were included in the analysis of the reference product: an 

atmospheric reanalysis, the Climate Forecast System Reanalysis (referred to as CFSR; Saha et 

al., 2010), and a recent-past climate simulation generated as part of the Climate Change and 

                                              
5
 The simulated mean water level of Lake Ontario takes into account the current regulation Plan 2014 that determines outflows at 

Cornwall, in the Upper St. Lawrence River. No change was applied to this plan to generate the future projections.  
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Hydrological Extremes experiments (referred to as Climex; Leduc et al., 2019). At the beginning 

of the GLPI project, the 10 km North American Precipitation and Land Surface Reanalysis Based 

on the Global Environmental Multiscale Atmospheric Model (GEMR; Gasset et al., 2021) was only 

available for the 2000s, and was therefore not considered as a possible product.  

2.3.1.1. Preselected products 

The Climate Forecast System Reanalysis, produced by NCEP (National Centers for 

Environmental Prediction), is a global reanalysis dataset created by a coupled model of 

atmosphere, land surface, ocean and sea ice. This dataset is generated with a sequential data 

assimilation scheme, under which ground observations are combined with model outputs to adjust 

the simulation trajectory (Fletcher, 2017). Prior estimates are therefore constrained by sea -

surface temperature, sea-ice concentration, snow depth and precipitation, but the wind fields are 

pure forecast and contain no influence or forcing from assimilated observations except in their 

initialization. CFSR offers hourly data with a horizontal resolut ion of approximately 38 km. The 

accuracy of this reanalysis product increases over time, as more observational data become 

available (Saha et al., 2010). 

The Climex experiment is a large ensemble of regional climate simulations at high spatial 

resolution, i.e. approximately 12 km, designed to support impact studies. The simulations, which 

cover the northeastern part of North America, were created with the CRCM5 model forced by 50 

CanESM2 climate change scenarios (RCP8.5) over the period 1950-2099. One additional run 

was performed with the European Centre for Medium-Range Weather Forecasts Interim 

Reanalysis (ERA-Interim), offering a dowscalling product of the initial 80 km dataset (Dee et al., 

2011). This reanalysis simulation spans the historical period, from 1973 to 2013, with outputs 

archived every 3 hours. ERA-Interim provides boundary conditions for atmospheric pressure, 

horizontal wind, temperature and specific humidity to CRCM5 every 6 hours, and spectral nudging 

is applied to the large-scale winds at each time step. This technique constrains the regional 

climate model, which then reproduces the development of the large-scale atmospheric dynamics 

(from the boundary conditions), while allowing the development of regional-scale details (Schaaf 

et al. 2017; Riette and Caya 2002). 

Figure 8 shows the land-sea mask of each preselected product. 



 

68 

 

 

Figure 8: The land-sea mask of the Great Lakes of the Climex and CFSR datasets. The black colour represents the 

grid cells where the surface land fraction is zero (open-lake area). The inset (left panel) shows Climex’ North 

American domain. 

2.3.1.2. Comparison of preselected datasets with observations 

To test the ability of each preselected product to reproduce the recent past wind climate over the 

Great Lakes region, wind speed and direction extracted from the gridded datasets were compared 

with grounded observations. These observations were drawn from the Integrated Surface 

Database (ISD; Smith et al. 2011) of the NOAA’s National Climate Data Center (NCDC; 

https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly), which provides standardized in-situ global 

hourly data of surface variables. Over lake observations were also collected from the National 

Data Buoy Center (NBDC, https://www.ndbc.noaa.gov/), a marine buoys network that includes 

observations for the Great Lakes. Canadian buoys are owned and operated by ECCC, while those 

in the U.S. are mainly operated by the NBDC and the Great Lakes Environmental Research 

Laboratory (GLERL), and, to a lesser extent, private owners. Overall, 106 stations were included 

in the analysis, 26 of them providing open lake conditions (Figure 9). The reference period used 

for the analysis ranges from 1980 to 2010. 

https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
https://www.ndbc.noaa.gov/
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Figure 9: Location of monitoring stations in the Great Lakes region (including buoys). In green, coastal (nearshore) 

stations, and in blue, open lake (offshore) stations. 

2.3.1.2.1. Pre-processing of the observations  

Since the recorded wind data are subject to error, the observations were first processed to:  

1. Correct for the anemometer height when known. Although standard wind speed and 

direction measurements are made at 10 m, stations used in the past may have varying 

anemometer heights that affect the records: the wind speed profile is usually assumed 

semi-logarithmic in the atmospheric boundary layer. Since selected stations are located 

in the nearshore area of the Great Lakes or in open water, the correction applied follow 

the classical 1/7 power law and the formulation of Large and Pond (1981), respectively. 

The latter introduces a modification of the drag coefficient under moderate and strong wind 

conditions for offshore measurements. These corrections ensure equivalent winds at 10 m 

height in all locations. 

2. Correct for surface wave distortion. The anemometer height of the buoys is typically 

between 3 and 5 m above the water surface. The marine wind profile is known to be 

distorted from its logarithmic form due to the instability of the atmosphere-lake boundary 

layer and surface waves (Deardorff, 1968; Large and Crawford., 1995), which are 

accounted for by the Large and Pond (1981) correction. However, wave distortion, which  

can increase wind stress by more than 40% in strong wind conditions, is neglected, 

introducing an important bias in offshore wind measurements. Buoy observations were 

therefore corrected according to Large, Morzel & Crawford (1995).   

3. Correct for heterogeneities. Human intervention at measurement stations (e.g. changes 

in instrumentation, station relocation, introduction of different observing practices) and 

changes in the local environment (e.g. urbanization) may induce sharp or gradual changes 

in time series, as well as gaps and missing data. When comparing long-term in-situ 
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atmospheric climate data, it is therefore important to identify inhomogeneities and adjust 

the observed time series to compensate for the biases they produce. All 10  m wind 

equivalent observations, including offshore measurements (once corrected), were 

therefore processed with the Climatol R package (http://www.climatol.eu/, WMO 

Commission for Climatology), which provides functions for quality control, 

homogenization, and missing data infilling. Daily averaged wind speed observations were 

first homogenized, and then a correction was applied to the sub-daily wind components 

(zonal and meridional). 

2.3.1.3. Climatological means and anomalies distribution 

Time series of wind speed and direction were extracted from gridded products for each selected 

station in the Great Lakes Basin, with time series produced as a weighted sum of the four closest 

grid cells based on station locations. Several characteristics of in situ observations were analyzed 

to determine the capability of the datasets to reproduce the observed climatological means, in 

terms of both annual variability and spatial pattern, and the distribution of anomalies. Anomaly 

distributions are useful for comparing multiple datasets because of their higher spatial correlation 

over a specific region (Hansen and Sato, 2016) compared to the absolute mean, which can vary 

significantly over short scales. The temporal characteristics of the anomalies over a large area 

can therefore be extracted from a limited number of stations. For a specific location, ( 𝑙𝑜𝑛, 𝑙𝑎𝑡), 

anomalies are defined as: 

𝑋′ (𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡) =  𝑋(𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑡) − �̅�(𝑙𝑜𝑛, 𝑙𝑎𝑡) 2.1 

with �̅� , the mean value over the reference period at this specific location, and 𝑋, the local wind 

value at each time t.  

Table 2 summarizes the regional climatological mean wind speed biases over the area for four 

specific ranges of wind intensity, i.e. the low (<3.3 ms-1), moderate (3.3 – 10.7 ms-1), and high (> 

10.7 ms-1) wind conditions that were defined based on the Beaufort scale (respectively 0 -2, 3-5, 

and > 5; WMO 2018). The so-called over-lake statistics refer to stations located in open water 

conditions, such as buoys or stations installed on isolated offshore islands. The bias is here 

calculated as 〈𝑋(𝑙𝑜𝑛, 𝑙𝑎𝑡) − 𝑂𝑏𝑠(𝑙𝑜𝑛, 𝑙𝑎𝑡)〉, i.e. the regional mean of the difference between 

gridded values, 𝑋, and observations, 𝑂𝑏𝑠. 

Table 2: Mean wind speed biases, 〈𝑋(𝑙𝑜𝑛, 𝑙𝑎𝑡) −  𝑂𝑏𝑠(𝑙𝑜𝑛, 𝑙𝑎𝑡 )〉, over each of the Great Lakes for the selected 

reference products, Climex and CFSR. Biases were estimated for low (< 3.3 ms-1), moderate (3.3-10.7 ms-1) and 

http://www.climatol.eu/


 

71 

 

high (> 10.7 ms-1) wind intensity, according to the Beaufort scale. Statistics were calculated considering all nearshore 

and offshore stations (left columns), and all over-lake stations only (right columns). 

 

Climex and CFSR datasets show similar behaviour in terms of wind speed, that is a slight 

overestimate of light winds and an underestimate of higher winds. The gridded products therefore 

smooth out the regional surface wind intensities, which can affect the performance of the 

hydrodynamic and waves simulations in their representation of set-ups and high wave events, as 

observed in larger oceanic systems (Dullart et al., 2020). While the relative biases of CFSR and 

Climex surface winds are quite similar for wind speeds higher than 12.6 ms-1 over the Great Lakes 

Basin, i.e. -15% and -16% respectively, Climex displays small improvements over the lakes, at 

buoy and offshore stations. The relative bias decreases to -11%, compared to -17% for CFSR, 

revealing that Climex is generally in better agreement with open-lake observations (except for 

Lake Michigan). In terms of wind direction, both products show positive bias (not shown), as 
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expected for a representation of the wind direction that favours a clockwise rotation in the Northern 

Hemisphere (Carvalho, 2019). 

A closer look at the station climatology provides a better understanding of the dataset 

performance. Wind roses are particularly useful for this purpose, as they provide a visual 

description of wind intensity in each geographical direction, and thus more easily explain the 

biases associated with the Great Lakes numerical representation. Figure 10 and Figure 11 display 

wind roses for the Rock of Ages station, located at the western end of Isle Royale (Lake Superior), 

and South Georgian Bay station, a buoy moored in the southwestern part of Georgian Bay. In the 

first case (Rock of Ages, Figure 10), spring winds (March, April and May) show a dominant 

northeasterly component, which is consistent with winds coming from the Thunder Bay area with 

unobstructed fetch6 of about 70 km. This NNE wind component can be seen in the Climex data, 

whose horizontal description (12 km) is fine enough to resolve the bay, but mostly absent from 

CFSR, which only roughly describes the northern coast of Lake Superior (Figure 10a). A similar 

artefact due to the lake configuration is observed in the climatology of South Georgian Bay ( Figure 

11). At this station, CFSR data show a predominance of southwesterly winds in summer (June, 

July and August) that are not observed in in-situ measurements, except for a general persistence 

of westerly winds, between SW and NW. Again, Climex shows better agreement with 

observations, which can be attributed to the finer resolution of the Bruce Peninsula ( Figure 11a) 

that separates Georgian Bay from Lake Huron and limits the wind fetch from this large body of 

water. 

                                              
6
 [Def.] The distance traveled by wind across open water. 



 

73 

 

 

Figure 10: (a) Land-sea mask of Climex (left) and CFSR (right) datasets with the position of the Rock of Ages station, 

in Lake Superior (white star). (b) Climatology of the 16 sectors wind rose for observed near -surface winds (left panel) 

during March, April and May (MAM) at Rock of Ages station, for the period 1980-2010. Idem for Climex (middle 

panel) and CFSR (right panel) datasets. 

 

Figure 11: (a) Land-sea mask of Climex (left) and CFSR (right) datasets with the position of the South Georgian Bay 

buoy, in Lake Huron (white star). (b) Climatology of the 16 sectors wind rose for observed near-surface winds (left 
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panel) during June, July and August (JJA) at South Georgian Bay station, for the period 1980-2010. Idem for Climex 

(middle panel) and CFSR (right panel) datasets. 

To provide a summary of the performance of Climex and CFSR for the Great Lakes region, the 

wind speed and direction anomaly distributions of the two datasets were compared with 

observations via two score metrics: the Kuiper goodness-of-fit metric (Kuiper 1960) and the 

Perkins metric (Perkins et al. 2007). The Kuiper metric is used to compare two sample 

distributions by measuring the distance between their respective cumulative empirical distribution 

function, and is defined as:  

𝐷𝑘 = max
−∞<𝑥<∞

[𝐸𝐶𝐷𝐹𝑘(𝑥) − 𝐸𝐶𝐷𝐹𝑜𝑏𝑠(𝑥)] + max
−∞<𝑥<∞

[𝐸𝐶𝐷𝐹𝑜𝑏𝑠(𝑥) − 𝐸𝐶𝐷𝐹𝑘(𝑥)] 2.2 

with 𝐸𝐶𝐷𝐹𝑘 and 𝐸𝐶𝐷𝐹𝑜𝑏𝑠, the cumulative empirical distribution function of dataset k and recorded 

datasets, respectively. A Dk value of zero refers to a perfect match between the two distributions, 

while a value of one indicates no overlap. Instead, the Perkins metric uses the empirical probability 

distribution function, EPDF, to characterize the similarity between distributions:  

1 − 𝑃𝑆𝑆𝑘 = 1 − ∑ min(𝐸𝑃𝐷𝐹𝑘(𝑥),𝐸𝑃𝐷𝐹𝑜𝑏𝑠(𝑥))

𝑛

𝑥=1

 2.3 

with n, the number of 𝑥 bins used to calculate the normalized histograms, and 𝐸𝑃𝐷𝐹𝑘 and 

𝐸𝑃𝐷𝐹𝑜𝑏𝑠, the density of the normalized histograms at bin 𝑥. The EPDFs were evaluated over fixed 

bin sizes of 0.1 ms-1 and 5° for wind speed and direction respectively. A 1 − 𝑃𝑆𝑆𝑘 score of 0 

indicates perfect overlap and inversely for a score of 1, as for Kuiper metric.  

Figure 12 shows the difference in Kuiper score for the five Great Lakes and each season, 

including the period from April to November, which covers most of the growing season used in 

the modelling (cf. Section 3.7.2.2). The difference was calculated as 𝐷𝐶𝑙𝑖𝑚𝑒𝑥 − 𝐷𝐶𝐹𝑆𝑅  for ease in 

interpretation, a negative result being representative of a better performance of the Climex 

dataset. Scores were computed on all stations (Figure 12a), as well as on open-lake stations only 

(Figure 12b) to highlight the capability of both products to reproduce wind climate anomalies in 

open-lake conditions, conditions critical to lake dynamics modelling. As can be seen (Figure 12, 

left panels), the simulation-based wind speeds outperform the reanalysis winds for all seasons 

except spring (MAM) for lakes Erie, Michigan and Ontario when the full set of stat ions is 

considered. Climex’s performance remains superior for Lakes Ontario and Erie, the two smallest 

lakes modelled, when the analysis is restricted to the over-lake stations. Overall, both products 
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are effective in simulating the anomalies distribution, with a score generally less than 0.2 (all 

stations) or 0.25 (over-lake stations), excluding the winter months for which few observations are 

available (buoys are generally removed for the winter to avoid ice conditions). For wind direction 

(Figure 12, right panels), CFSR is overall better, except for the summer months (JJA) and the 

period covering the growing season (April-November) for Lakes Erie and Ontario. Similar results 

for wind speed and direction were obtained for the Perkins metric (not shown).  

 

Figure 12: Heat maps comparing the performance of Climex and CFSR for wind speed (left panels) and direction 

(right panels) anomalies distribution based on the Kuiper metric for each Great Lake, for the period 1980-2010. (a) 

For all coastal and offshore stations, and (b) for offshore (open-lake) stations only. A negative value indicates that 

Climex outperforms CFSR (better skill). 

Finally, the climatological spatial pattern was assessed using the Reduction of Variance (RV) 

metric, which compares the mean square error (MSE) between the mean of a dataset and the 

spatial variance of the observed climatological mean for a specific region (or lake):  

𝑅𝑉𝑘 = 1 −
𝑀𝑆𝐸(𝑘, 𝑂𝑏𝑠)

𝑠𝑜𝑏𝑠
2 = 1 −

∑ (�̅�𝑘𝑖 −𝑂𝑏𝑠̅̅ ̅̅ ̅
𝑖)

2
𝑁
𝑖=1

∑ (𝑂𝑏𝑠̅̅ ̅̅ ̅
𝑖 − 〈𝑂𝑏𝑠̅̅ ̅̅ ̅〉)

2𝑁
𝑖=1

 2.4 
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with �̅�𝑘𝑖 and 𝑂𝑏𝑠𝑖
̅̅ ̅̅ ̅̅ , the climatological mean of dataset 𝑘 and recorded data for station 𝑖, 〈𝑂𝑏𝑠̅̅ ̅̅ ̅〉, the 

spatial mean over the lake, and N, the number of stations. For a positive 𝑅𝑉𝑘, the MSE value of 

the dataset is smaller than the observed spatial variance. 

 

Figure 13: Heat maps comparing the performance of Climex (left panels) and CFSR (right panels) for climatological 

mean wind speeds based on the RV metric for each Great Lake, for the period 1980-2010. (a) For all coastal and 

offshore stations, and (b) for offshore (open-lake) stations only. A positive RV value indicates a good performance (or 

skill). 

In general, both Climex and CFSR show good performance in reproducing climatological means 

(wind speed, Figure 13, and direction, not shown), for inland (Figure 13a) or over-lake stations 

(Figure 13b). Only Lake Huron shows negative RV values, and this is with the Climex simulation, 

for most seasons (DJF, MAM, and JJA). This lake appears more problematic for the simulation-

based product, both for the anomalies distribution and the mean. However, and similarly to other 

lakes, the wind speeds and directions extracted from this dataset are generally within the first and 

third quartiles of the observed climatological distributions for most sites (e.g., Figure 14, Western 

Island in the southeastern part of Georgian Bay), which is desirable for a reference product.  
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Figure 14: Wind speed climatology for the Western Island station, in the southeastern part of Georgian Bay (Lake 

Huron, offshore station), for the period 1980–2010. The climatology is given for each day-of-year (doy). The shaded 

area specifies the first and third quartiles of the observed distribution. 

In summary, both products display similar behaviour in terms of wind speeds and directions in the 

Great Lakes Basin: overestimation of light winds, underestimation of strong winds, and a positive 

bias in wind direction, consistent with a clockwise rotation of atmospheric systems in the Northern 

Hemisphere. However, Climex shows a smaller bias at open-lake stations for winds > 10.7 ms-1, 

which may help to correctly represent set-ups and high wave events. According to Kuiper and 

Perkins metrics, the simulation-based product performs better than the reanalysis in its 

representation of the anomalies distribution, particularly at open-lake stations of Lakes Erie and 

Ontario, which are the two smallest lakes modelled. As the GLPI project focus on Lakes Ontario, 

Erie and Huron, this observed benefit to the lower lakes becomes important. The good 

performance of Climex datasets on smaller lakes may be a direct result of the grid resolution 

(~12 km), which allows for better representation of the lakes, their shorelines, and their connecting 

bays and channels. As illustrated by the wind roses (Figure 10 and Figure 11), the grid resolution 

may alter the wind climate in specific areas of the Great Lakes, where the coastline displays 

complex features that are not well defined by a horizontal scale of ~38 km. The realism of the 

Great Lakes in the gridded product thus becomes a decision criterion as it can likely improve the 

quality of subsequent modelling. The main limitation of Climex is the lack of any form of data 

assimilation, which could correct for model discrepancy. However, this design specificity does not 

translate into an overall inferior performance to CFSR when simulation data are compared to 

grounded observations. For these reasons, Climex was considered the most adequate reference 

product, and was therefore used to simulate the historical period. 
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2.3.2. Post-processing 

Climatic scenarios produced by AOGCM-RCMs are generally biased, i.e. all climate variables 

provided by them show differences between the modelled and observed historical climatology. 

Bias-correction techniques are therefore used to adjust the scenarios and correct their 

inaccuracies based on a reference product that covers the recent past period. The “10-m wind” 

components extracted from the selected driving scenarios (c.f. Section 2.2.3) were debiased 

using the chosen reference product, Climex, over the period 1980-2013. The debiasing technique 

utilized is a sophisticated quantile mapping algorithm, which contains an optional bivariate 

shuffling procedure that, when activated, forces the simulations to adopt the local inter -component 

rank correlation coefficients of the reference product (Vrac, 2018; Guo et al., 2019). While the first 

post-processing step involves a standard univariate (single-variable) debiasing scheme, the 

second allows for bias adjustment of two variables simultaneously, which is based on the inter-

variable statistical dependencies. This multivariate technique was tested on the zonal, 𝑢𝑎𝑠, and 

meridional, 𝑣𝑎𝑠 , near-surface wind components. Since wind is a vector field, debiasing 𝑢𝑎𝑠 and 

𝑣𝑎𝑠  separately can lead to a bias in wind direction, as univariate debiasing does not account for 

the existing dependencies between these two components. Although there is no risk of physical 

inconsistency related to bias adjustment when the time steps are taken separately, as the two 

components can take any value without being linked by a mathematical relationship, multivariate 

debiasing can potentially introduce biases in the daily sequence. 

The objective of this section is to present the debiasing technique adopted for the winds extracted 

from the selected AOGCM-RCM scenarios. A more detailed description of this work can be found 

in Grenier and Music (2020).  

2.3.2.1. Multivariate debiasing 

The debiasing technique was applied to the data extracted from the driving scenarios (c.f.  Table 

1) in a domain that encompasses the Great Lakes and their surrounding lands (Figure 15). While 

the spatial resolution of the RCM outputs is approximately 25 km, the climate change simulations 

were first interpolated, using a cubic procedure, to a 12 km resolution grid that fits the Climex 

reference product. The temporal resolution of the wind scenarios is 3 hours, similar to the Climex 

series, and the calibration and future periods cover the years 1980-2013 and 2067-2100 

respectively.  
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Figure 15: The Great Lakes domain for debiased wind scenarios (coloured areas). 

As stated previously, the post-processing technique used is a two-step approach:  

1. A univariate step. This step refers to the standard univariate debiasing, which is based on 

the commonly used quantile mapping technique (Agbazo and Grenier, 2019). In quantile 

mapping (QM), a transfer function is applied to adjust the distribution of modelled climatic 

variables to match its corresponding reference distribution. Each time step of the day is 

treated as an independent daily index and each day-of-year (DOY), considered 

separately. The transfer function was designed with a 31-day moving window, centered 

on a DOY, to avoid climatological discontinuities between two successive months. While 

the adjustment is strictly applied to the residuals (i.e. deviations from the trend), the long-

term trend extracted from the modelled data was added once the univariate step 

completed to preserve simulated trends. 

2. A shuffling step. This optional step is introduced before the trend adjustment on the 

residuals. Although this shuffling is inspired by Vrac et al. (2018), it was adapted to 

introduce additional univariate considerations (i.e. trend preservation and moving 

window). The multivariate debiasing first considers a master variable and a slave variable7, 

both being the residuals of the wind components once QM applied. The shuffling of the 

slave variable, e.g. 𝑣𝑎𝑠  (𝑢𝑎𝑠 being the master variable), is performed so that the master-

slave Spearman rank-order correlation coefficient (or 𝑟𝑟𝑎𝑛𝑘
8) of the scenario replicates the 

master-slave 𝑟𝑟𝑎𝑛𝑘 of the reference product for a specific DOY.  

                                              

7 The reader should note that the master/slave terminology had been adopted at the moment of writing the preliminary report and 
producing most of the figures (March-April 2020), only by analogy with some traditional descriptions in electronics theory, in informatics 

and in other scientific fields (e.g.: Bugg, D.V., 1991, Electronics. Circuits, Amplifie rs and Gates. Institute of Physics Publishing). In no 
manner this choice of terminology was intended to emphasize any historical or societal events. Eventually, such terminology could be 

replaced, and subsequent work based on the current report could rathe r adopt the unshuffled/shuffled terminology. 
8 The Spearman rank-order correlation coefficient measures the strength and direction of the monotonic relationship between two 

variables. 
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Debiasing was performed once with 𝑣𝑎𝑠  as a slave variable, once with 𝑢𝑎𝑠. Three sets of debiased 

outputs were thus produced: unshuffled 𝑢𝑎𝑠  (master) and shuffled 𝑣𝑎𝑠  (slave; bivariate), unshuffled 

𝑣𝑎𝑠  (master) and shuffled 𝑢𝑎𝑠 (slave; bivariate), and unshuffled 𝑢𝑎𝑠 et 𝑣𝑎𝑠 (univariate). 

2.3.2.2. Overview of results  

Several statistical analyses were conducted on the debiased simulations to evaluate the 

performance of the bias adjustment technique. They demonstrated that debiasing does what was 

a priori expected: adoption of the properties of the reference product distribution, preservation of 

the long-term simulated trends, and debiasing of the local inter-component correlation coefficients 

when the shuffling procedure was activated. The results also indicated that shuffling does not 

generally improve the debiasing wind speed compared to univariate technique alone: no 

additional bias adjustment on the monthly mean value of the zonal and meridional near -surface 

winds was observed (Figure 16). The univariate QM already shows a good correction on the mean 

values and most of the scenarios have a relatively small initial bias. The impact of debiaising on 

wind direction has not been investigated.  
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Figure 16: Maps of the mean wind speed during 1980-2013 for July in: a) the Climex run (reference product); and b) 

the raw SIM01 run (cf. Table 1)). Maps of corresponding biases (rank relative to the reference product rank) 

considering: c) the raw SIM01 run; d) the univariate debiased time series (unshuffled 𝑢𝑎𝑠  and unshuffled 𝑣𝑎𝑠 ); e) the 

debiased time series using 𝑢𝑎𝑠  as the master variable (𝑣𝑎𝑠  is shuffled); and f) the debiased time series using 𝑣𝑎𝑠  as 

the master variable (𝑣𝑎𝑠  is shuffled). The violet-to-green colorbar corresponds to direct wind speed values in panels a) 

and b), whereas the red-to-blue colorbar corresponds to biases in the four other panels (after Grenier and Music, 

2020). 

A detailed inspection of the results further showed that the shuffling removes much of the 

interannual variability of the shuffled (slave) variable, as well as lag-1 auto-correlation of the 

shuffled components and wind speed (Figure 17a). Debiasing values of the slave variable are 

exchanged between years, and no parallel procedure was used to preserve the temporal 

sequences (Figure 17b), which also leads to a loss of spatial correlation (not shown). Both of 

these consequences are problematic for the intended use of the debiased simulations, namely 

atmospheric forcing of physical models. With a change in the daily sequence and spatial pattern, 

the realism of the wind forcing is not guaranteed: the wind set-ups are a direct result of the action 

of the wind on the lake surface, and therefore strongly depend on the duration of the events, as 

well as on the atmospheric systems trajectories. Finally, any long-term changes in correlation 

coefficients projected by the climate simulations are not retained in the bivariate scenarios. For 
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any application period (here 1980-2013 and 2067-2100), the climatic scenarios are forced to 

adopt the correlation coefficients of the reference product. Some information regarding the 

change in wind climate between baseline and future periods may therefore be lost.  

 

Figure 17: (a) Zonal wind (uas) lag-1 auto-correlation (Spearman) coefficients for a specific grid tile (“middle” of Lake 

Huron) for simulation SIM03 (cf. Table 1). For each month-of-the-year, four distributions of coefficients are shown: for 

the reference product (Climex, in grey), for the raw simulation (red), for adjusted simulation without shuffling (blue) 

and for the adjusted simulation with shuffling (orange). Each distribution is made of 34 values, one for each year of 
the calibration period (1980-2013). For any distribution, the box plot shows the minimum and maximum values 

(coloured vertical thin line) as well as the 25th and 75th percentiles (coloured central box ) and the median (black 

horizontal line). Dashed vertical lines are between-month separators (for better visual appreciation only), whereas 

dashed horizontal lines are the zero lines (no auto-correlation). (b) SIM03 uas 3-hourly time series for the first month 

of the calibration period (January 1980). The raw simulation is presented in red, the adjusted simulation without 

shuffling in blue, and the adjusted simulation with the supplementary shuffling procedure in orange. Numbers 

presented in the legend box are the respective lag-1 auto-correlation (Spearman) coefficients. The concerned grid tile 

is located in the middle of Lake Huron (after Grenier and Music, 2020). 

Although the multivariate shuffling procedure is the most promoted technique in the current 

literature, alternative approaches that use successive conditional univariate applications (e.g. 

Piani and Haeter, 2012) and principal component transformations (e.g. Hnilica et al., 2017) also 

exist. Since these alternatives were not tested, it is difficult to determine the actual improvements 
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of multivariate debiasing for wind speed and, ultimately, wind direction over the more conventional 

treatments. Since the objective of the bias adjustment method here is to provide corrected wind 

inputs for the physical models, the use of the bivariate wind scenarios is not recommended due 

to the deterioration of the auto-correlation coefficients. Therefore, for the project, simple univariate 

wind scenarios were used. 

2.4. Projected changes: 2070-2099  

Projected changes in over-lake, near-surface winds were assessed using debiased wind 

scenarios, with changes defined as the difference in annual distributions between the future 

period (2070–2099) and reference (1980–2009) periods. As the wind climate experienced by the 

lakes and its Interannual Variability (hereafter referred to as IV) may be impacted, both the 

difference in the mean and standard deviation of daily wind speeds were estimated.  

The year-to-year variability of low-level winds over the Great Lakes is thought to have some links 

to synoptic-scale weather systems, such as the Southern Oscillation (i.e. SO) that brings lower 

mean wind speeds and more frequent lulls during El Niño events (or positive El Niño -Southern 

Oscillation or ENSO; Li et al., 2010). According to the 1979–2008 climatology (Li et al., 2010), the 

location of the Great Lakes relative to the typical atmospheric circulation pattern over North 

America (i.e. the polar jet-stream position; Shabbar et al., 1997) would also play an important role 

in the development of these variations. Nevertheless, the response to different phases of ENSO 

(positive or negative) is not directly opposed, and interactions between several modes, including 

North Atlantic Oscillation and Pacific–North American teleconnection pattern, also drive variability 

(Schoof and Pryor, 2014).  

2.4.1. Future changes in wind speed 

Table 2 presents the changes in annual mean “10-m wind speed” calculated for the daily average 

and daily maximum distributions, the latter being representative of the extreme gusts that blow 

over the lakes. Only the climate simulations performed under the RCP4.5 emission scenario were 

analyzed, i.e. SIM01 and SIM03 (cf. Table 1), as only these scenarios were used to project 

wetland distribution in the future (cf. Section 3.3). To quantify the significance of the estimated 

future changes for each individual climate scenario, the significance confidence level was 

evaluated using statistical tests. 
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2.4.1.1. Tests of significance and autocorrelation 

To ensure robustness of the projected changes, the U-test was applied to determine whether the 

recent past and future distributions obtained for a climatic parameter differ or, in other words, 

whether the climate change signal is significant. This test, also known as the Mann-Withney-

Wilcoxon test (Wilcoxon, 1945; Mann and Withney, 1947; Pettitt and Siskind, 1981), assesses if 

the rank of the data samples is altered between the past and future climate, resulting in a positive 

or negative climate change. To test the hypothesis of change, the two samples are combined into 

a single order sample and ranks are assigned to each value without regard to the underlying 

populations. The test statistic is then evaluated as the sum of the ranks assigned to the samples 

in one specific population relative to the other. If the sum is too small (or too large), there is an 

indication that populations differ, and the null hypothesis of no difference between populations 

can be rejected (at a predetermined significance level, here 10%, which corresponds to a 𝑝 value 

of 0.10). 

For the current purpose, the 30 years contributing to each period are compared, using mean 

annual values. The U-test is nonparametric and especially dedicated to right-skewed distributions, 

which is the case for wind speed (e.g. Jung and Schindler, 2019), and it is commonly used in 

climatic studies to compare means (e.g. Rodionov, 2005).  

2.4.1.1.1. Lag-1 Autocorrelation 

The U-test assumes that the data are statistically independent within each sample, which requires 

testing for serial dependence. The existence of positive autocorrelation in time series increase 

the number of unjustified shift detections (Wang, 2008), i.e. significant differences are found more 

frequently than expected while there may not actually be any. The structure of serial correlation 

can be adequately described by the lag-1 autocorrelation coefficient (Cunderlik and Burn, 2004). 

Although strong lag-1 autocorrelation is very uncommon in mean annual climate model outputs 

(Decremer et al., 2014), and it is a standard procedure to relax this assumption for annual climatic 

series (Costa and Soares, 2009), serial dependence was tested.  

The lag-1 autocorrelation coefficient is the correlation between the first 𝑁 − 1 observations of the 

time series 𝑋𝑡 , with 𝑡 = 1,2 ,3 . . , 𝑁 − 1, and the following 𝑋𝑡+1 observations: 

𝜌1 =
∑ (𝑋𝑡 − 𝑋)𝑁−1

𝑡=1 (𝑋𝑡+1 − �̅�)

∑ (𝑋𝑡 − 𝑋)2𝑁
𝑡=1

 2.5 
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where upper bar denotes simple average. Serial dependence is tested for significance at the 10% 

level according to the probability limits of the two-tailed test as defined for an independent series: 

𝜌1(90%) =  
−1 ± 1.697× (𝑁 − 2)1/2

𝑁 − 1
 2.6 

Serial correlation is assumed when 𝜌1 lies outside the confidence interval. Each 30-year time 

series was tested for the autocorrelation before the Mann-Withney-Wilcoxon test was applied. 

None revealed statistical serial dependence at lag-1. 

2.4.1.1.2. Equality of variance 

The significance of the difference between the past and future interannual variability was tested 

with the modified Levene’s test (Levene, 1960; e.g. Ahmed et al., 2013; Ozturk et al., 2015), which 

is a non-parametric test used to determine whether the variances of two sample populations are 

equal. This method considers the distance between the sample values and their population 

median rather than the mean, which provides robustness when the underlying data have a 

skewed distribution. 

To perform Levene’s test, the time series of size 𝑁 is divided into 𝑘 subgroups, with 𝑁𝑖 the sample 

size of the 𝑖th subgroup (𝑖 = 1,2,… 𝑘), and the test statistic is defined as: 

𝑊 =
(𝑁 − 𝑘) ∑ 𝑁𝑖 (𝑍�̅� − �̅�)2𝑁

𝑖=1

(𝑘 − 1)∑ ∑ (𝑍𝑖𝑗 − 𝑍�̅�)
2𝑁

𝑗=1
𝑘
𝑖=1

 
2.7 

and 

𝑍𝑖𝑗 = |𝑋𝑖𝑗 − 𝑋�̅� | 2.8 

where 𝑋�̅� is the median of the 𝑖th subgroup, 𝑍�̅� are the group means of the 𝑍𝑖𝑗, and �̅� is the overall 

mean of the 𝑍𝑖𝑗. The Levene’s test rejects the null hypothesis that the variances are equal if 𝑊 >

𝐹(𝛼,𝑘−1,𝑁−𝑘), the critical value of the 𝐹 distribution with 𝑘 − 1 degrees of freedom at a 𝛼 significance 

level (here 10%). In addition, to obtain unbiased estimate of the IV, the linear trend was removed 

from the time series before calculating the STD for a given 30-year period (Räisänen, 2002). 
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Results are presented in Table 3, with missing values (or dash, –) when the statistical tests did 

not satisfy the 10% significance level. Shaded colours indicate relative changes that reach at least 

5 or 25% and reveal clear climate change signal, i.e. when both scenarios agree on the sign of 

the projected changes (positive, in orange, or negative, in green; Mastrandrea et al., 2011). 

2.4.1.2. Annual mean near-surface wind speed 

The data in Table 3 show projected changes averaged over all grid points located in open-lake 

conditions, i.e. excluding land areas. Results were broken down by seasons and by annual mean.  

Based on data compiled for the baseline period (1980–2009), annual mean wind speed values 

range from 6.3 to 6.8 ms-1 depending on the lake, with strongest winds observed in fall and winter, 

where mean daily maximum can reach ~10 ms-1. The interannual variability ranges from 0.2 to 

0.4 ms-1, with lower year-to-year variation in summer due to weaker overall wind speeds observed 

between June and August, when the region is influenced by high-pressure systems. Conversely, 

greater IV is observed in winter during period of stronger winds, when the wind climate is more 

sensitive to the changes in synoptic-scale weather systems (Eichenlaub, 1978). 

Table 3: Reference conditions and projected changes for near-surface winds. The changes in means and standard 

deviations are provided, with missing values (or dash, –) when the statistical tests did not satisfy the 10% significance 

level (i.e. U-test for the mean and Levene’ test for the variability). Shaded colours indicate relative changes that reach 
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at least 5 or 25% and reveal clear climate change signal, i.e. when both scenarios agree on the sign of the projected 

changes (positive, in orange, or negative, in green). 

 

For all lakes, the annual climate change signal remains unclear for mean daily and mean daily 

maximum wind speed values, with difference in means ranging from (-0.24, 0.10) ms-1 and (-0.33, 

0.11) ms-1 respectively. With the exception of Lake Superior, which exhibits similar absolute 

differences for both bound scenarios, the projected decrease in near -surface wind speeds is more 
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pronounced but stays less than 5% in relative difference. This ambiguity in projection is likely 

driven by the fall winds (i.e. SON), which have a large uncertainty in the sign of the expected 

changes by the end of the century, with mean annual values that are highly variable. Instead, 

there is a significant decrease in winter and summer wind speeds for all lakes, excluding Lake 

Superior, as well as a decrease in extreme wind climate in all months except fall.  

This decline in the magnitude of mean and strong near-surface wind speeds is consistent with 

the results reported for CMPI5 AOGCMs over a large part of the United States by Jung and 

Schindler (2019), under RCP8.5 forcing, and across the Northern Hemisphere (NH) midlatitudes 

by Karnauskas et al. (2018), under RCP4.5 and RCP8.5 scenarios. The values listed in Table 3 

indicate negative changes that are around -2%, which is within the range predicted by Breslow 

and Sailor (2002) for the US continental, where a reduction in wind speeds of 1.4 to  4.5% is 

expected over the century. A decrease in annual maximum wind speed in 2074–2100 relative to 

1979–2005 was also reported over much of the United States (Kumar et al., 2015), in agreement 

with current data for all seasons except fall. Nevertheless, the literature reveals the existence of 

a large discrepancy between the predictions of models for the US (Solaun and Cerda, 2019), 

particularly among the different RCMs of the NA-CORDEX project (Chen, 2020). Clear 

conclusions are therefore difficult to draw from the current set of scenarios.  

2.4.1.3. Interannual Variability (IV) 

The IV of mean annual daily maximum wind speeds, as measured by standard deviations 

calculated from 30-year annual means, is likely to increase over the 2070–2099 period relative to 

baseline conditions for most lakes, with changes up to 64% in Lake Erie (0.10 ms-1). Only Lake 

Superior shows a decrease in the year-to-year variation, with a negative change of up to 34% 

(29%) of the standard deviation projected for average (strong) conditions. This variability in wind 

speeds is primarily observed in fall (i.e. SON), when projected changes in wind speeds are highly 

variable according to the AOGCMs. Based on climatology (1950–2005; Schoof and Pryor, 2014), 

this season is characterized by a predominantly negative ENSO phase (La Niña conditions), 

which is associated with significantly stronger 10-m wind speeds over most of the US. Although 

further investigations should be conducted to describe the role of large-synoptic systems on the 

projected wind climate, current results suggest that the increased wind IV may be associated with 

the increased variability in large-scale circulation features projected by AOGCMs (e.g. Klink, 

2007; Schoof and Pryor, 2014).  
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2.4.1.4. Change in spatial distribution 

Figure 18 and Figure 19 show the spatial distribution of changes in mean annual daily wind 

speeds on the Lower and Upper Great Lakes, respectively, as well as the reference condition for 

the 1980–2009 period.  

As observed in the baseline conditions (left panels of Figure 18 and Figure 19), high wind speed 

gradient is detected between land and open-lake areas, with winds > 7 ms-1 over lake points. The 

decrease in wind intensity projected by the lower bound of changes mainly affects the surface of 

lakes, with a variation that ranges between (-0.26,-0.08) ms-1, (-0.27,-0.16) ms-1, 

(- 0.24,- 0.11) ms -1 and (-0.16,-0.03) ms-1 in Lakes Ontario, Erie, Michigan-Huron and Superior, 

respectively (2.5th and 97.5th centiles). Lower values are less predominant in Lake Superior, where 

wind intensity is expected to decrease by less than 2% on average by the end of the century 

based on the lower-bound value. The climate signal for this lake is unclear, with projected changes 

ranging from -2% to 2%. Lake Superior remains the region in the Great Lakes where the greatest 

uncertainty in future wind climate can be expected, as shown in Figure 19. Similar conclusions 

regarding the spatial distribution of changes can be drawn for extreme winds and interannual 

variability (not shown). 
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Figure 18: Left panels: Climate reference map for annual mean wind speed for the period 1980–2009 obtained from 

the reference product (Climex, cf. Section 2.3). The violin plot shows biases in grid points close to in-situ stations 

located near Lakes Ontario and Erie, and Mean gives the mean observed wind speed in stations. Right panels: The 

upper and lower bound of the projected change in annual mean wind speed for the period 2070–2099. Results are 

provided for the Lower Great Lakes. 
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Figure 19: Idem as Figure 18, but for the Upper Great Lakes. 
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3. GREAT LAKES PHYSICAL MODELLING 

Authors: Caroline Sévigny, Ph.D.; Rémi Gosselin, Ph.D.; Jean Morin, Ph.D. 

3.1. Introduction 

Lake modelling is used to inform wetland models on the spatial and temporal scales that 

characterize water level fluctuations on shorelines, where plants thrive. In this modelling 

approach, water levels are defined as the primary drivers of change for wetland distribution and 

species composition, as they integrate changes in environmental conditions, such as 

precipitation, evaporation, or air temperature (e.g.), which can trigger shifts in ecosystems. 

Because several aspects of lake dynamics are considered in this approach, this chapter is divided 

into sections that provide a detailed description of the physical processes observed in the Great 

Lakes (Section 3.2) and how they were parametrized in the CWRM framework (Sections 3.3 to 

3.7). The modelling encompasses the observed annual and inter-annual variations in water levels 

at the basin (or lake) scale, as well as any fluctuations that modulate dry and wet cycles at local 

scales, over a period of days or less, which influence plant growth and survival. Thus, Sections 

3.3 to 3.6 give a wide overview of the approach adopted to model changes in mean lake level 

(Section 3.3) and how this information is used to provide valuable knowledge regarding changes 

in short-term water level fluctuations and waves at the wetland scale (Sections 3.4 and 3.7). This 

includes the modelling approaches chosen to generate hydrodynamic and waves simulations, as 

well as the physical variables extracted from these simulations to instruct wetland models on 

nearshore dynamics. The final subsection (Section 3.8) is devoted to a broader description of the 

expected changes for the 2070–2099 period under the atmospheric scenarios used to create 

water level projections, which provide insights into possible future climate-related changes in the 

Great Lakes Basin in terms of physical variables.  

3.2. Physical processes in the Great Lakes 

The Great Lakes systems are dominated by their coastal nature. In this sense, they are often 

described as inland seas, since they share common physical processes with coastal oceans and 

are large enough to be influenced by the Earth rotation. Nevertheless, the Great Lakes remain 

closed basins, which strongly constrains the motion and gives rise to physical dynamics specific 

to large enclosed water bodies, namely the propagation of long, standing waves. The objective of 

this section is to describe the main physical processes that influence the water level fluctuations 
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in the Great Lakes and the approximations underlying the two-dimensional hydrodynamic 

modelling. 

3.2.1. Surface motions 

Horizontal motions in the Great Lakes are governed by an equilibrium between external forcing, 

Coriolis force and density gradients. When the focus is on the displacement of the free surface 

under forced motion, away from the lateral boundaries, bottom friction can be neglected. The 

Coriolis force is also much smaller than the frictional forces acting on the lake surface, the ratio 

between the two being inversely proportional to the square of the depth. In mid-latitudes, the 

Coriolis number, 𝑓, is about 10-4s-1, which induces a correction of the mean horizontal surface 

motions of scale larger than 100–200 km (which is reduced to a few kilometers for internal 

motions). 

3.2.1.1. Wind set-ups and storm surges 

A persistent, steady wind acting on a lake will generate a force on the surface well-mixed layer 

that is proportional to the frictional stress: 

𝜏 =  𝜌𝑎𝑖𝑟𝑢2𝐶𝐷 3.1 

which depends on the square of the wind speed, 𝑢, the drag coefficient, 𝐶𝐷~1 × 10−3, and the air 

density at the lake-atmosphere interface, 𝜌𝑎𝑖𝑟. Since the water is constrained within the basin by 

the boundary conditions, a slope is created at the lake surface that is in equilibrium with the 

applied force at the ends of the lake. This generates a tilt that describes a decrease in water level 

along the upwind end of the lake and an increase (or set-up) along the downwind end (Figure 20). 

Under stable stratification, the surface layer moves freely over the subsurface waters, with 

stratification suppressing the transfer of the wind energy below the thermocline9. Onshore 

transport generated by the winds is therefore restricted to the upper layer , which is known as the 

Ekman transport.  

                                              
9
 When wind blows across a stratified lake, an opposing motion is created in the subsurface waters to compensate for the density 

gradient generate by the ti lt of the thermocline (following initial surface waters displacement; Stevens and Lawrence, 1997).  As 

nearshore waters are generally well mixed, this balancing transport occurs primarily in deeper basins. 
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A spontaneous change in atmospheric pressure can also generate a change in the surface slope. 

While the effect of wind is generally an order of magnitude greater than the pressure effect in 

coastal waters (typically 0–20 m) and in shallow lakes (e.g. Lake Erie), both effects are of equal 

importance in deeper parts of the lakes, where the depth exceeds 100 m. However, and apart 

from resonance effects10 (i.e. meteotsunamis; Donn, 1952, and Bechle et al., 2016), the effect of 

the pressure gradient cannot exceed the water barometer, i.e., 10 cm of water for each 10 hPa of 

pressure. Typical large amplitude events (or storm surges) over the Great Lakes are associated 

with strong disturbances travelling from southwest to northeast, comparable in size to the lakes, 

so that the disturbance speed is just right to excite a wave of speed (𝑔ℎ)1/2 in water of depth ℎ, 

with 𝑔 the gravitational force.  

 

Figure 20: Steady wind set-up (in m) for a wind stress of 1.0 Pa in Lake Erie. Left panel: longitudinal response. Right 

panel: transverse response. After Hamblin (1987). 

While the Great Lakes tend to be stratified in late summer (except for Western Lake Erie and 

Lake St. Clair), with a distinct thermocline in the upper 30 m (Rao and Schwab, 1976), they are 

predominantly unstratified during the winter-time, when cooling at the surface forces convective 

overturning motions. The absence of stratification and the higher wind speeds observed in late 

fall and winter generate large set-ups as the wind energy penetrates deeper into the water column 

and sets in motion a greater volume of water. According to Oort and Taylor (1969), the Great 

Lakes are characterized by a 2-day storm cycle, which is consistent with the typical mid-latitude 

cyclone passage period (2–4 days; Trigo et al. 1999). Since large lakes take several days to fully 

adapt to atmospheric forcing, and transit from one steady condition to another, the observed state 

                                              

10
 Resonance occurs when the dominant frequencies of the external forcing match the eigen frequencies of the basin . 
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of motion is the sum of previous wind events and the response to current  ones. Only rare, large 

events occurring after a long period of calm can therefore be directly related to a specific wind 

episode. 

3.2.1.2. Surface seiches and tides 

Once the wind stress at the origin of the set-up stops, the relaxation of the lake surface generates 

a number of propagating disturbances or wave-like modes called seiches. These forced 

oscillatory motions are basin-scale barotropic standing waves with spatial patterns and periods 

dependent on basin geometry, water depth, and oscillatory resonance (Wilson, 1972). They can 

be visualized as constructive reflection of long, free-surface gravitational waves in a closed canal: 

when the waves are reflected at each end of the canal, only the waves whose incoming and 

outgoing components are in phase survive. Exclusively discrete values of wavelengths and 

(eigen) frequencies occur, while the amplitude of the oscillation varies in space, with zero-surface 

displacement at the nodes (called amphidromic points) and maximum amplitude at antinodes 

(Figure 21). While the frequencies and modal structure of the seiches are independent of the 

exciting force, their magnitude exhibits stochastic temporal variations depending on fetch, winds, 

barometric pressure, and time since the initial set-up. The restoring force of the seiches is 

provided by the gravity, which seeks to return the fluid surface to its equilibrium state. 

 

Figure 21: First gravitational normal mode for Lake Ontario, with one amphidromic point (black dot). The dashed lines 

indicated the relative amplitude of the free surface height, and the plain lines, the phase lag. For a nominal period of 

~5h, a phase of 90° corresponds to a lag of 1.25h. After Rao & Schwab, 1976. 

In the Great Lakes, the free gravitational, barotropic waves are dominated by Poincaré and Kelvin 

modes, with frequency less or greater than 𝑓 respectively. In narrow, deep lakes11, rotation has a 

negligible effect on the period of the modes (Rao & Schwab, 1976) and the main disturbances 

are mainly longitudinal: pure transverse oscillations are only apparent for higher modes (Table 4). 

                                              

11
 Lakes with mean depth ℎ for which the Rossby radius of deformation, √𝑔ℎ/𝑓, is much larger than their breadth.  
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The Earth rotation produces a cross-basin oscillation that lags behind the longitudinal motion, 

creating a counter-clockwise rotation of the disturbance around the amphidromic points (Figure 

21). The relative importance of surface seiches thus varies within the basin and their maximum 

amplitude is not reached simultaneously from one point of the coast to another following a single 

wave disturbance. As for wind set-ups, several long-standing waves generated by distinct events 

may travel through the lake, generating complex constructive or destructive interferences. The 

free surface disturbances last several inertial periods, i.e. 1/𝑓 , even days (Wilson, 1972; 

Csanady, 1968), before fading due to bottom frictional effects and stratification when internal 

gravitational motions are present (Cushman-Roisin et al., 2005). Their amplitude decays at a rate 

of 50% per cycle (Bolsenga and Herdendorf, 1993), which reduces their detectability over time. 

Table 4 gives the period of the main seiche oscillation modes for the five Great Lakes. The 

fundamental mode, which is the mode with the lowest frequency or longest period, is usually the 

main disturbance that explains the amplitude of observed surface seiches in the major Great 

Lakes’ basins. 

Table 4: Published seiche oscillation modes (in hours) for the five Great Lakes. After data compiled by Trebitz  (2006).  

 

The Great Lakes have complex shorelines, with multiple small adjoining bays, gulfs, inlets, and 

harbours. The main-basin oscillations are affected by, and drive oscillations in, these small 

extents of water. These zeroth-mode oscillations, also known as Helmoltz modes (Rabinovich, 

2009), are characterized by nodes near the entrance of the partially enclosed water bodies and 

peak amplitude toward their ends. These specific modes, which are similar to the fundamental 

tone of an acoustic resonator, may be imperceptible in the main basin when the attached bay is 

small relative to the lake. Green Bay in Lake Michigan (Rao et al., 1976), Georgian and Saginaw 

Bays, and North Channel in Lake Huron (Schwab and Rao, 1977; Suzuki et al., 1995), as well as 

Frenchman’s Bay in Lake Ontario (Hlevca et al., 2015), display similar oscillation signatures. 
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Trebitz et al. (2006) conducted a thorough examination of the detectable frequency components 

in measured water levels for the five Great Lakes, at each of the gauging stations located on the 

Canadian and US shores. Their analysis reveals perceptible non-tidal spectral peaks that 

correspond to the published seiche oscillation modes (with exception of the peak below a 2h 

frequency, which remain undetectable with hourly data). The seiche signature is generally strong 

in Lakes Erie and Superior at most stations, but generally weak in Lakes Huron, Michigan and 

Ontario.  

Although not as significant as in larger seas, astronomic tidal motions (mainly diurnal and 

semidiurnal) are also present in the Great Lakes, with amplitude of only few centimetres. As their 

importance is much less than other long-term or short-term physical processes that modulate the 

water levels, the Great Lakes are generally considered non-tidal.  

3.2.2. Water levels: Interannual variability, long- and short-term variations 

Over the past decades, Great Lakes mean water level has shown major interannual variations 

related to weather-scale processes and potential climatic connections, which are responsible for 

long-term precipitation and evaporation patterns, as well as stage-dependent outflow (Hanrahan 

et al., 2010; Watras et al., 2014; Assani et al., 2016; Ghanbari et al., 2008; Fu and Steinschneider, 

2019). Since the beginning of the official period of records in 1918, Great Lakes experienced 

extremely low levels in the late 1920s and the mid-1960s and extremely high levels in the 1970s 

and 1980s. Historic highs have been reached in recent years, however, with historic highs 

observed in 2017 and 2019 (Lakes Ontario, Erie, St. Clair and Superior) and 2020 (Lakes 

Michigan and Huron), following the increasing trend seen in the basin since 2013 

(https://www.lre.usace.army.mil/Missions/Great-Lakes-Information/). Over the past 100 years, 

annual mean water levels have varied by up to 2 m on the lakes below Superior, with cycles of 

several years (near‐ decadal oscillation; Figure 22). 

https://www.lre.usace.army.mil/Missions/Great-Lakes-Information/
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Figure 22: Observed average annual lake levels for the period 1918–2020. From the NOAA Great Lakes 

Environmental Research Laboratory (GLERL) Dashboard ( 

https://www.glerl.noaa.gov/data/dashboard/data/levels/1918_PRES/). 

3.2.2.1. Observed water levels: High- or low-frequency components 

On an annual basis, water level fluctuations in the Great Lakes exhibit long- and short-term 

variations that are related to physical processes unique to these large, enclosed water bodies. 

The long-term, annual and seasonal variation of the free-surface elevation is primarily controlled 

by the net basin supply, which is the balance between basin runoff to the lake, over-lake 

precipitation, over-lake evaporation, and inter-basin inflow and outflow from connecting channels 

(or inter-basin diversion). Any change in the water storage explains the variations experienced by 

the lake over a year, which typically range from 20 to 40 cm, with the maximum level being 

reached in July–September and the minimum at the end of winter, in February–March 

(https://glisa.umich.edu/). This monthly and seasonal variation can be highlighted in the recorded 

water levels using a low-pass filter (Butterworth), which allows the extraction of long fluctuations 

of a 30-day period or more. The top panel of Figure 23 shows the result of this filtering for the 

Lake Erie water level time series, with the green line indicating the seasonal cycle (i.e. trend 

extracted by using a low-pass filter). 

https://www.glerl.noaa.gov/data/dashboard/data/levels/1918_PRES/
https://glisa.umich.edu/
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Figure 23: Recorded water levels in 2017 at station Toledo, Lake Erie. The top panel gives the water level as 

recorded (in blue), as well as the long-term, seasonal trend (in green). The bottom panels explicit the anomalies, i.e. 

the low- (red; periods > 2 days) and high- (purple; periods < 2 days) frequency components extracted from the 

recorded signal. Details are given in the text. 

Once the seasonal cycle is removed from observed water levels (i.e. subtracting the seasonal 

cycle from the original time series), the remaining anomalies reveal variations that are 

characteristic of the Great Lakes hydrodynamics and can result in amplitude of up to a meter. 

These episodic and periodic events can be classified into two specific categories according to the 

temporal scale of their main features: 

1. Fluctuations of period > 2 days: The low-frequency components of the anomalies are 

generated by the atmospheric forcing, i.e. winds or atmospheric pressure changes that 

generate set-ups and storm surges. The characteristic period of these anomalies is longer 

than two days, which is consistent with the typical period of midlatitude storms (Figure 23, 

middle panel). 

2. Fluctuations of period < 2 days: The high-frequency components of the anomalies include 

all events with a period of less than two days, which generate the shortest detectable 

variations in water level records. Several events can be listed in this category, such as 

tides, surface seiches, waves, and any local disturbance that can modulate the observed 

water levels. However, since time series are generally recorded on a temporal scale of 

several minutes and filtered to a period of 1 hour to remove any undesirable noise, waves 

and short-term disturbances are not present in the water level time series (Figure 23, lower 

panel). 
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The close correlation between atmospheric events and low-frequency anomalies are revealed by 

the spectral signature of the observed wind speeds and water levels at a specific location. 

Examples are given in Figure 24 for data recorded at station Toledo, in Lake Erie, between June 

and September 2017 (Figure 24, top panel inset). As shown in the middle panel of Figure 24, the 

wind speed observed at the meteorological station (black line, positive axis pointing downward in 

Figure 24) is well in phase with the low-frequency water level anomalies (green line), i.e. spectral 

components with periodicity greater than two days. Abrupt changes in wind intensity and direction 

can initiate local water level fluctuations, but are unlikely to transfer sufficient energy to the surface 

mixed layer to establish a basin-scale motion. Only large, synoptic-scale atmospheric systems 

that cross the Great Lakes area and generate strong wind speed are prone to trigger a set -up. 

Smaller atmospheric disturbances, smaller in scale than the lake, are observed as “noise” or 

interference superimposed on the basic anomalies pattern (Harris, 1953).  

 

Figure 24: The low-frequency water level anomalies (top panel) recorded at station Toledo (Lake Erie), in 2017. The 

anomalies observed between June and September are shown in the middle panel (green line), as well as zonal wind 

component along the main axis of the lake, 𝑢𝑝(black line). The bottom panel highlights set-ups events of amplitude > 

5 cm (black dots) detected from anomalies (blue line) and computed wind stress (green line).  
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The wind speed in Figure 24 refers to the magnitude of the zonal wind component along the main 

axis of the lake, 𝑢𝑝 (i.e. along an axis that joins the western and eastern ends of the lake; image 

at top of Figure 24), which better describes the winds blowing across the lake in the direction of 

maximum fetch. A positive 𝑢𝑝 is observed under easterly winds. In such conditions, the wind 

stress, 𝜏 =  𝜌𝑎𝑖𝑟𝑢𝑝
2𝐶𝐷, acting on the lake surface generates a decrease in water levels at the 

western end of the lake, which is detected at station Toledo (i.e. negative anomalies)12. The 

spectral coherence derived from in-situ time series displays statistically significant amplitude for 

periodic components with a period of two days or more (frequency of 0.5 day-1; Figure 25), 

attesting to the intrinsic temporal scale of the lake response to wind forcing. Inspection of the 

choice of the principal axis used to calculate the zonal wind component shows an increase in 

coherence amplitude for a rotation of the coordinate system of ~18.6° (winds blowing to 71.4°; 

inset Figure 25b), close to the rotation angle of the axis that joins the two ends of the lake (18.2°).  

 

Figure 25: (a) The spectral coherence computed from low frequency anomalies and zonal winds recorded in station 

Toledo, in 2017 (cf. Figure 24). The black, horizontal line gives the 95% confidence level for coherence amplitude 

significance. (b) Coherence amplitude map for a variable principal axis, i.e. the angle of rotation of the c oordinate 

system used to compute the zonal component of the wind, 𝑢𝑝 . The angle refers to a counter-clockwise rotation of the 

coordinate system by an angle of 90 − 𝜃, with 𝜃 the wind vector azimuth (i.e. the direction towards which the wind is 

blowing). 

                                              
12

 Conversely, an increase in water levels at the eastern end of the lake generates positive anomalies at station Toledo. 
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Since winds and low-frequency anomalies are well correlated, wind set-up events can be detected 

in the time series of all stations in the Great Lakes Basin. A set-up is identified at a gauging 

location if the winds recorded at a nearby weather station show an increase (decrease) that is in 

phase with the fluctuations observed in the low-frequency water level anomalies. To do so, a low-

pass Butterworth filter is applied to the observed time series to remove periodic components with 

a period of two days or less (i.e. high-frequency anomalies). Since phase-lag (or time-lag) is 

observed at periods of significant coherence amplitude, the maximum time allowed between the 

detected winds/anomaly maxima is 24 hours. A short analysis was conducted on several gauging 

stations in Lakes Ontario, Erie, and Huron to quantify the characteristic set-up amplitude for the 

reference period, i.e. 1980 – 2010. The results are summarized in Table 5 (left columns), with 

detailed statistics of the monthly range and annual maximum amplitude of the events identified in 

the 30-year period. The maximum was chosen rather than mean since it is these occasional, but 

significant, events that carry enough energy to initiate significant surface seiches (discussed 

below). Georgian Bay and the North Channel of Lake Huron (referred to as NC in Table 5) were 

considered separately as several complex oscillation modes exist in these connected bays.  

Table 5: Statistics of the observed wind set-ups and surface seiches for 17 stations in the Great Lakes Basin, for the 

period 1980 – 2010. The mean amplitude of the maximum set-ups is given (left columns), as well as the mean 

amplitude of the free surface oscillations, i.e. half the mean of the log-normal distribution of daily-range values (right 
columns). The monthly range provides the minimum and maximum monthly means, while annual values prove the 
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annual mean of the distribution, with first and third quantile in brackets. All values are in centimetres. Details are 

given in the text. 

 

As expected, the maximum set-up amplitude is observed at the ends of the lake major axis, with 

the largest events recorded in Lake Erie (up to 27 cm), the shallowest lake. Mackinaw City, which 

is the northern end of Lake Huron, is the exception. The fetch in the Straits of Mackinac, which 

connects the northern portion of Lakes Huron and Michigan, is limited and unfavourable to the 

development of water level disturbance (Donn, 1959; Mason et al., 2018). Essexville (Saginaw 
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Bay) and Parry Sound, located at the end of semi-enclosed shallow bays in Lake Huron, show 

major events, with anomalies of up to 19 and 13 cm, respectively. The dynamics of these small 

bays are highly complex and respond to local winds (Saylor and Danek, 1977) as well as lake 

motion, which acts as an additional forcing term for the set-up (in addition to the wind stress and 

atmospheric pressure gradient; Harris, 1953). Although there is evidence of transverse (north-

south) displacement of surface waters in Lakes Ontario and Erie (i.e. at stations Cleveland and 

Rochester), the corresponding rise (or fall) in water level is rather small, especially in Lake Erie. 

An interesting observation is the detection of set-up events in the Detroit River, at station 

Amherstburg (Huron-Erie Corridor). Water level rises (or declines) in this connecting channel are 

correlated with westerly (easterly) winds: the set-ups generated in Lake Erie are thus felt beyond 

the mouth of the river, which creates a dynamic that is reminiscent of maritime channels. This 

signal is no longer perceptible in Lake St. Clair, which is itself subject to the effect of wind stress, 

with typical events of 5.3 cm. 
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Figure 26: The amplitude of the wind set-ups detected at Cleveland (a) and Toledo (b), in Lake Erie, between 1980 

and 2010, versus the magnitude of the winds responsible for the water level rise/fall (i.e. the maxima observed in the 

low-frequency anomalies). The dot color indicates the months in which the events were observed, while the black 

lines describe the linear (a, and b, left panel) or cubic (b, right panel) relation between set-ups and wind speeds. Gray 

dots are outliers, i.e. events that do not follow the linear trends in (a) and (b). For Toledo (b), all detected events, 

regardless of the month, are shown in the left panel, while only events detected during the fall and winter seasons are 

kept in the right panel. 

At most stations, a linear correlation can be observed between the zonal (or meridional for stations 

Cleveland and Rochester) wind component and the low-frequency anomalies, which is obvious 

for stations showing the largest events (e.g. Toledo; Figure 26). For Lake Erie stations, the 

correlation between wind and set-up deviates from its linear trend when recorded wind speeds 

rise above 10 ms-1. The anomalies amplitude then exhibits an exponential (or quadratic) 

behaviour, which is especially noticeable during the fall (September–November) and winter 
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seasons (December, January, and February; Figure 26b, right panel) when strongest winds occur 

(Zhong et al., 2010). Figure 27 shows the monthly change in set-up amplitude for two stations of 

Lake Erie. The more intense the winds (Figure 27, top panels), the deeper the frictional force (or 

wind stress) acting on the lake, creating a deep upper Ekman layer in which forced motions are 

constrained. Typical values of Ekman depth (or depth of frictional influence) in mid-latitude range 

from 50 to 100 m for wind speed of 10 and 20 ms-1 when the stratification is weak or absent (Pond 

and Pickard, 1983). Strong winds set in motion a deeper portion of the surface waters, resulting 

in large wind set-ups, such as those observed in December at the Toledo station (Figure 26 and 

Figure 27; with maximum events of ~1 m). Severe and long-lasting storms can also generate a 

deepening of the well-mixed surface layer, allowing greater penetration of wind energy into upper 

layers13. When the lake is shallow, as is the case for Lake Erie, the entire water column can be 

moved under extreme wind conditions. The lake then acts as a single-layer system, which may 

explain the behaviour observed when nearshore winds reach a nominal speed > 10 ms-1 (Figure 

26b). 

                                              
13

 As stated by Monistmith (1985), it is the relative magnitude of mixed-layer acceleration induced by the wind stress and deceleration 

due to the developing baroclinic pressure gradient (internal modes of motion) that determines the fluid motion.  
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Figure 27: Monthly wind set-ups and surface seiches amplitude statistics for two Lake Erie stations, Toledo (a) and 

Erieau (b). From top to bottom: distribution of monthly wind speed observed during maximum (purple) and mean 
(brown) set-up events, at nearshore stations; distribution of monthly mean (red) or maximum (green) set-up 

amplitude; and mean and standard deviation of the log-normal distribution of daily range values for the period 1980–

2010. The amplitude of the oscillation can be estimated as twice the daily variation. 

Since the high-frequency anomalies observed in the recorded time series are primarily related to 

surface seiches, an analysis similar to that conducted for the set-up events can be used to quantify 

the importance of these free surface oscillations. In this case, a high-pass Butterworth filter is 

applied to in-situ water levels to extract all fluctuations with periods less than two days. Because 

basin-scale oscillations are not directly initiated by winds and may last several days after the initial 

surface water displacement, it is impossible to isolate single events. An approach similar to that 

used by Trebitz (2006) was therefore adopted, i.e. estimating the daily range fluctuations of high-

frequency anomalies, defined as the difference between the maximum and minimum value on 

any given day. As the daily anomalies range distribution follows a right-skewed, log-normal shape 

(with few large anomalies related to major events), the mean and the standard deviation of the 
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log-n distribution for each day-of-year were estimated for the time series ranging from 1980–2010. 

Table 5 and Figure 27 show the results obtained, with the seiches amplitude, estimated as half 

the mean daily range, reported in Table 5 instead of the daily range statistics for ease of 

comparison. 

As illustrated in Table 5, the amplitude of free surface oscillations in the Great Lake Basin is 

consistent with the amplitude of the observed set-ups: the largest surface seiches are 

predominantly detected at the head of the lakes and in shallow coastal embayments. While the 

former can be explained by the spatial pattern of the dominant seiches mode (e.g. Figure 21), the 

latter is due to harbour mode, which acts as a Helmholtz harmonic resonator that amplifies the 

basin-wide oscillations. Lake Erie shows the most striking empirical evidence of free-surface 

oscillations, with a mean surface seiche amplitude of up to 16 cm, resulting in a daily water level 

change of over 30 cm. Again, fall and winter are the more active seasons, but with a slight 

decrease in magnitude of high-frequency anomalies in February and March during the peak ice 

cover period (Wang et al., 2012; Farhadzadeh, 2017; Figure 27). The lake’s ice cover promotes 

turbulent friction at the ice-water interface that dissipates the kinetic energy carried by the long-

period waves and dampens oscillations (and modifies seiche periods; Zyryanov, 2011). As for the 

wind set-ups, typical Lake Erie seiches (period of ~14 h) are detectable in the Detroit River 

(Amherstburg; Table 5), with an amplitude of 5.6 cm. Lake St. Clair, which acts as a damper for 

oscillations coming from the St. Clair (Lake Huron) and Detroit Rivers (Lake Erie; Jackson, 2016), 

reveals only small oscillations that remain less than 2 cm (Table 5). 

Finally, the water level fluctuation associated with the anomalies is the sum of wind set-up and 

surface seiches, resulting in an overall daily variation of up to ~16, 80, and 40 cm in Lakes Ontario, 

Erie, and Huron, respectively (excluding Saginaw Bay and Parry Sound). In contrast to the 

seasonal variation in lakes, which induces a fluctuation of 20 to 40 cm on average, these 

combining effects can have major influence on wetland dynamics, especially for wetlands located 

in the lower reach of tributaries that are mainly affected by major changes in lake level (called 

freshwater estuaries; Brant and Herdendorf, 1972; Herdendorf, 1987).  

3.2.3. Two-Dimensional hydrodynamic modelling 

The Great Lakes hydrodynamics behavior is primarily three-dimensional, with basin-scale 

processes influenced by stratification as observed in coastal oceans. The lakes’ thermal structure, 

however, is highly variable by time of the year, ranging from nearly well-mixed waters in winter 
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(November–April) to progressively stratified waters in summer (May–October). While vertical 

gradients are negligible in winter, and the circulation is almost entirely wind-driven, several density 

layers can form in summer and favour baroclinic processes. The dominant processes also differ 

between nearshore areas, defined as the region between the wave-breaking zone and the open 

lake, and deep, central basins. In the former, frictional forces are the main physical components 

of motion, and wind is the primary driving force. This shallow area tends to be well-mixed due to 

wind action (and frequent upwelling or downwelling events along the coasts), which rarely 

displays long-term persistence and generates a highly transient coastal state. In the latter, 

pressure gradients and Earth rotation (i.e. Coriolis force) are important, and several complex 

processes can emerge following initial movement of surface waters and persist over several days 

(e.g. internal seiches, gyres circulation). The distance between the nearshore and offshore 

dynamics depends on wind stress and bathymetry (Csanady, 1981) and is typically on the order 

of 3 to 5 km (Rao and Schwab, 2007).  

When focusing on water level fluctuations, without attempting to detail general circulation patterns 

and vertical transport, the primary concern is on active processes in the surface well-mixed layer. 

While wind stress moves the surface waters on a time scale of hours to days, stratification 

counteracts any displacement at the thermocline depth, and the surface layer can be considered 

as moving freely. Wind set-ups and surface seiches can hence be modelled using a single-layer, 

homogeneous model, reducing the modelling approach to a two-dimensional problem (neglecting 

the vertical dimension). The interference that develops at the base of the well-mixed layer by 

differential motion of the lower waters (i.e. internal seiches; Cushman-Roisin et al., 2005) is 

considered negligible, although it may influence the damping of long-standing, surface oscillations 

to some extent14. The deepening of the surface mixed layer under sustained and intense winds 

that promote mixing of denser water below the thermocline is also neglected. The surface layer 

depth is kept equal to the water column depth (except in the special case of scenario-based 

modelling, c.f. Section 3.4.2.3): atmospheric forcing acts from the surface to the bottom in 

nearshore and offshore areas, and water displacement is obtained by considering vertically 

integrated quantities. While this assumption is reasonable to a first approximation in shallow lakes 

such as St. Clair (which averages ~3 m in depth, respectively), it becomes unreliable for deeper 

lakes during periods of strong stratification. A similar two-dimensional, vertically integrated 

approach has been used in the past to model surface seiches (and wind set-ups) in large lakes, 

                                              
14

 Primary damping of surface seiches is due to frictional effects between the water mass and the lake bed . 
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e.g. Zacharias and Ferentinos (1997; Lake Trichonis, Greece), Cueva et al. (2019; Lake Chapala, 

Mexico), and Roberts et al. (2019; Lake Tahoe, USA). 

3.2.4. Surface gravity waves 

A wind acting upon the water surface generates several classes of waves with a typical period of 

less than one minute. Under small atmospheric pressure fluctuations and wind friction, the surface 

is first disrupted by small ripples called capillary waves for which surface tension is the main 

restoring force. Their periods are shorter than 1/4 s and wavelengths, less than 10 cm. As soon 

as the wind has a stronger effect on the water, which depends on the wind speed and surface 

roughness, wavelets covering a wide range of wavelengths are produced (from 0.1–1500 m in 

deep water). The latter have a period of more than 1/4 s and their prime restoring force is gravity, 

which is why they are called gravity waves. When generated by local wind, these waves have an 

irregular, short-crested form, creating a sea state often referred to as wind sea (Figure 28). Once 

they leave their generation zone, the waves take on a regular, long-crested shape, forming the 

swell that can be encountered in the ocean. Swells are fast-travelling waves that disperse across 

the basin with little attenuation (Kantha, 2006). 
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Figure 28: Top panel: Definition of wave parameters. Adapted from https://opentextbc.ca/geology/chapter/17-1-

waves/. Bottom panel: Generation of surface waves. Adapted from Garrison (2012). 

The Great Lakes are semi-enclosed basins with relatively shallow depth compared to the oceans. 

The wave dynamics of these large inland lakes are therefore slightly different from that generally 

observed in coastal areas. First, the fetch15 size and propagation distance are limited, which 

significantly constrains the development of lower frequencies (or long periods) and give a 

prominent role to short waves. The Great Lakes are thus characterized by a wind-sea-dominated 

wave climate, with moderate swell contributions (Hands, 2018), and wave periods that rarely 

exceed 10 s (Thompson, 1980). Under similar conditions, waves grow quite rapidly, forming what 

is known as young sea state where waves remain underdeveloped (except in light winds). 

Second, the average wind stress experienced by lakes is higher than that typically observed in 

oceans, which is a direct consequence of the (young) wave state (Donelan, 1982; Boyce, 1989): 

the longest waves in an undeveloped sea are much steeper than their fully developed 

counterparts, which increases the roughness of the wind sea. The wave spectrum, which 

describes how the variance in lake-surface elevation is distributed over the frequencies of the 

                                              
15

 In open-sea conditions, wave generation is l imited by the extent of the atmospheric disturbances, which determine the fetch length. 

https://opentextbc.ca/geology/chapter/17-1-waves/
https://opentextbc.ca/geology/chapter/17-1-waves/


 

112 

 

waves that create the surface fluctuations (Holthuijsen, 2010), hence shows an enhanced peak 

amplitude at higher frequencies than the commonly used spectral form. The energy transfer 

between wind and sea can account for a significant fraction of the total stress at the spectral peak 

(Donelan, 1990). Finally, because shallow water areas occupy an important portion of the Great 

Lakes, wave dynamics are significantly affected by the depth-induced (surf-)breaking mechanism 

that becomes dominant over all other processes in the surf zone (as opposed to white -capping, 

which primarily affects wave dynamics in deep water; Mao et al., 2016). The monthly variation in 

lake levels in the system may be a non-negligible factor for the dissipation in nearshore areas 

(water depths 10–20 m), i.e. in the surf and swash zones where waves break, and water rushes 

over the land. 

3.2.4.1. Wave transformation: From offshore to nearshore 

Waves undergo several transformations as they travel from the deep-water areas to the 

nearshore zone, where water depth comes into play, altering the properties of the waves and 

ultimately causing them to collapse. The transition between the two occurs when the water depth, 

𝐷, is roughly less than half the wavelength, 𝐿, which is the distant between two successive crests 

(Figure 28). By following the displacement of a wave generated in open sea to its final stage, i.e. 

breakers dissipating their energy on the shoreline, three main zones can be defined (Figure 29): 

1. Deep-water (𝐷 > 𝐿/2): In deep-water, waves travel without being affected by the bottom. 

Their propagation speed depends only on the wavelength (or frequency), which is why 

these waves are called dispersive. Waves with longer wavelengths move at a higher 

speed than shorter ones, creating more regular wave field with low frequencies in the lead 

and high frequencies in the trailing edge. Wave dynamics are dominated by wind 

generation, wave-wave interactions, and white-capping, which is the process describing 

the wave breaking in deep water. On average, the dissipative effect of white-capping on 

waves is rather weak. 

2. Shallow water (𝐷 < 𝐿/20): As the water depth decreases, the interaction between the 

waves and the bottom becomes important. In very shallow water, the propagation speed 

is no longer frequency dependent and the waves are said to be non-dispersive. Instead, 

they travel at a speed that is related to water depth: the shallower the water, the slower 

the wave speed. Since the period of the waves remains constant, the wavelength 

decreases with depth and wave height increases to maintain to total amount of energy 16 

flux carried by the wave field: this is the shoaling effect (also referred to as energy 

bunching). Active processes in this area also include bottom friction, which involves wave 

                                              
16

 The wave energy is proportional to the square of the wave height 
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energy dissipation, and refraction, which is a change in wave direction due to depth or 

current.  

3. Surf and swash zone (𝐻/𝐿 > 1/7): As the water depth decreases further, the waves 

become unstable and break. The limit is reached when the wave steepness, defined as 

the ratio of wave height to wavelength, becomes greater than 1/7 (or when the wave height 

reaches roughly 80% of the water depth; Dally, 2019). Depth-induced breaking is the 

dominant process in the surf zone, although wind also affects breaking, causing waves to 

spill sooner or later, and leading to compression or widening of the surf zone (Douglass, 

1990). As the waves approach the shoreline, they collapse to form the characteristic 

uprush and downrush in the swash zone, which depends on the prevailing wave conditions 

in the surf zones (and the underlying beach). Wave reflection, which causes wave energy 

to bounce back (e.g. from a barrier), can also interfere with incoming waves and play a 

role in nearshore wave dynamics. 

The table in the upper right corner of Figure 29 provides an overview of the relative importance 

of the various processes affecting wave evolution in deep and shallow water (after Battjes, 1994). 

 

Figure 29: Wave transformation from deep water to the shoreline, and orbital motion of the water particles under the 

waves. The table in the upper right corner gives the relative importance of the various processes affecting the wave 

evolution. Adapted from https://opentextbc.ca/geology/chapter/17-1-waves/ and Battjes (1994). 

https://opentextbc.ca/geology/chapter/17-1-waves/
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3.2.4.2. Bottom orbital velocity 

Waves are said to feel the bottom when the water depth is less than half their wavelength. This 

expression refers to the displacement induced by the surface gravity waves in the water column, 

which can be perceptible within this depth limit.  

A water particle entrained by a long-crested, harmonic wave propagating in the x-direction 

experiences a motion with zero velocity in the y-direction. The motion draws a closed, circular or 

elliptical orbit, and the particle travels along this path at a speed called the orbital velocity (Figure 

29, upper left corner). The velocity at the wave crest is always oriented in the down-wave direction 

of propagation and inversely in the trough, with faster motion below the wave crest, causing a 

small horizontal drift for any object carried by the wave. In deep water, the wave-induced velocities 

decrease exponentially with the distance to the surface and can be observed down to a maximum 

depth of about half the wavelength (below the still water surface; Figure 29). At the surface, the 

motion follows a circle whose radius is equal to the wave amplitude, while negligible water 

movement due to waves is perceivable at depth 𝐿/2. As the waves approach the shoreline and 

move into shallower water (𝐷 < 𝐿/2), the motion describes ellipses growing that flatten toward 

the bottom, and the frictional interaction of waves with the seabed stretches the orbits as wave 

energy is dissipated, slowing the motion at the bottom of the wave. In very shallow water, the 

ellipses maintain their horizontal length through the water column. When the waves break, the 

remaining wave motion becomes a chaotic surf until the water spreads onto the beach as swash, 

dissipating the residual energy. Orbital velocities decrease with decreasing water depth in the surf 

zone as a response to decreasing wave height and wave collapse (Raubenheimer et al., 2002).  

3.2.4.3. Wave energy and wetlands 

Wetland plants can hardly establish in a high wave environment, as the shear stress generated 

by the waves destroy plant tissues, in addition to causing severe erosion and sediment transport 

that disrupt the habitat. Only a few emergent plants, primarily bulrushes or spike rushes 

(Eleocharis spp.), can survive in an active wave climate. Such plants can migrate into the 

underlying bed or extend sidewise due to their strong rooting system, and their annual evolution 

allows them to exploit new habitats. However, this vegetation is restricted to a narrow offshore 

fringe, outside the influence of extreme waves that characterize the physical lake environment of 

open shoreline wetlands, large open embayments, or even deltas. 
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Given that the Great Lakes region is exposed to intense and consistent storms with complex 

evolution patterns, the wave climate is dominated by rapidly changing wind fields and intense 

wind gradients that can have a pronounced effect on a site’s plant diversity, depending on its 

exposure. Waves are therefore an important physical attribute of wetland types (Albert et al., 

2005), and wave exposure is commonly used in modelling to assess wetlands extent and 

communities shaping (e.g. Angradi et al., 2013; Weller and Chow-Fraser, 2019). Wave energy 

can also be used as a surrogate for the substrate when the latter is not considered in modelling. 

Sand and bare rock are primarily found in erosive coastal environments subject to substantial 

wave action, outside of the usual extent of submerged aquatics and free-floating plants that are 

more commonly associated with silty and clay soils (Johnston et al., 2007). In order to incorporate 

this physical factor into the wetland models, the near-bottom orbital velocity, 𝑢𝑏𝑜𝑡, is used to 

quantify the wave-generated shear stress (Jonsson and Carlsen, 1976). This velocity is a 

common output of nearshore wave models.  

Finally, it is worth noting that wave dissipation over vegetation canopies is related not only to 

wave characteristics, but also to plant density, stiffness, and submergence (Anderson and Smith, 

2014). Wave attenuation increases with the first two factors and decreases with the latter. Under 

certain circumstances, living, mixed marshes are able to withstand large wave force without 

substantial erosion, increasing the resilience of wetlands to changing wave climate (Möller et al., 

2014). Wave energy shapes the vegetation cover, and the vegetation cover controls the wave 

energy along the coastline: it is a two-way process.  

3.2.4.4. Wave Climate: 1980–2010 

To characterize the wave climate in the Great Lakes Basin for the period 1980–2010, historical 

measurements collected by the NDBC were used, which come from wave buoys operated by the 

NOAA and ECCC, among others. These buoys have been in operation since the early 1980s and 

are mainly located offshore in the deep-water areas of lakes, far from coastal zones where the 

wave characteristics are altered by nearshore processes. Wave data are recorded during the 

open-water season, generally from April to December, as the buoys are decommissioned in 

wintertime due to ice cover. Since surface waves modelling efforts were restricted to the lower 

lakes, i.e. Lakes Ontario and Erie, only the latter will be discussed in the following paragraphs. 

The climatology of surface waves is analyzed through long-term statistics, considering stationary 

conditions of the wave field, i.e. the significant wave height or peak wave period estimated from 

short time series (with the duration of 15 or 30 minutes) at each 1-hour interval. The significant 
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wave height, 𝐻𝑆, is calculated as the average of the highest one third of the wave heights during 

the 15–30 minute sampling period, and it is related to the mean wave energy, �̅�: 

𝐻𝑆 ≈ 𝐻𝑚0 ≡ 4√�̅�/(𝑔𝜌) 3.2 

with 𝐻𝑚0, the energy-based significant wave height, calculated from the wave spectrum 

(Holthuijsen, 2010). The peak wave period, 𝑇𝑝, is the period with the maximum wave energy. 

These wave parameters are measured by an accelerometer mounted on a vertically stabilized 

frame in the buoy. All buoys in the NDBC network also report wind speed and direction at 3–5 m 

above the lake surface. 

The long-term significant wave height distribution can be fit by a three-parameter Weibull 

probability distribution, which defines the probability of non-exceedance of each observed value: 

𝑃𝑟{𝐻𝑆 ≤ 𝐻𝑆} = {
1 − exp [− (

𝐻𝑆 − 𝛼

𝛽
)

𝛾

]  for 𝐻𝑆 > 𝛾

0     for 𝐻𝑆 ≤ 𝛾

 3.3 

The parameters ,  and  are the location, scale, and shape of the distribution, respectively. 

Wave climate can therefore be determined based on the best-fit distribution, which gives 

estimates of the mean and variance of the significant wave height, as well as the maximum 

expected wave height, defined here as the 99 th percentile of the distribution, 𝐻𝑆 99. The Figure 

30a shows the best-fit Weibull distribution for wave data collected by the buoy located in the 

Central Basin of Lake Erie, 45132 (Port Stanley), for the period 2002–2010. Significant wave 

heights were classified based on the observed wind direction at the station, depending on whether 

the winds came from the north (NW–NE), east (NE–SE), south (SE–SW), or west (SW–NW). 

Since the Great Lakes are dominated by wind-sea, the wave climate should be highly correlated 

to the local winds, resulting in distinct wave characteristics under dominant wind patterns, if any. 

In Figure 30a, the westerlies were isolated from the observed values to highlight the influence of 

prevailing winds on the waves generated in the Central Basin. 
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Figure 30: Data recorded at buoy 45132, in Lake Erie (Central Basin), for the period 2002–2010. (a) The long-term 

Weibull distribution of significant wave heights, for wave parameters recorded under westerly winds (red), or other 

wind directions (blue). Each black dot gives the binned observations for the 2002–2010 distributions, while the 

straight lines show the best-fit candidate distributions (maximum likelihood). (b) The joint distribution of significant 

wave height, 𝐻𝑆, and peak wave period, 𝑇𝑝 . Observations were classified by local wind direction: westerly winds 

(SW–NW; red lines), or others (gray lines). The dashed black line gives the wave steepness, 𝐻𝑆/𝐿, 1:40. The inset on 

the right shows the probability distribution of wave height. 

Table 6: Wave statistics for Lakes Erie and Ontario, for the period 1980–2010. Data were classified according to local 

winds observed at the time of recording, i.e. north (NW–NE), east (NE–SE), south (SE–SW), or west (SW–NW) 
winds. The blue lines indicated wind direction associated with major wave events for each of the lake sub -basins. 

Columns indicate: water depth at buoy locations; lake sub -basins in which the wave buoy is moored; period or record; 

percentage of data available during the period of record; percentage of data recorded under calm conditions (𝐻𝑆 <

0.05 m); the wind direction; the percentage of occurrence of a specific wind direction in the dataset; the mean (and 

variance) of the significant wave height (based on the best-fit Weibull distribution); the 99th percentile of the wave 
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height distribution (and the absolute maximum value); and the median peak wave period (with the 2.5 th and 97.5th 

percentiles). 

 

Table 6 presents long-term statistics of buoy-observed waves for six offshore locations in Lakes 

Ontario and Erie, with each moored buoy being representative of a sub-basin of the lake. Although 

the NDBC has maintained instrumented buoys in the Great Lakes since the early 1980s, the 
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buoys were not deployed at the same time, and the available data are generally sparse with no 

persistent temporal coverage. To avoid annual irregularity in the wave statistics that would 

preferentially weight some months over others, only years with 60% temporal coverage for the 

period April–November were retained, thus eliminating incomplete years from the analysis. The 

long-term average wave climate for the reference period (1980–2010) therefore included wave 

measurements recorded prior to 2010, with year-varying contribution. 

In Lake Erie, the major wave events are generated by westerly winds (SW-NW), with an upper 

limit for the significant wave height (99 th percentile) of 2–2.5 m and maximum absolute observed 

values of 4–5 m. These waves are mainly detected in the Central and Eastern Basins, and benefit 

from longer fetches and deeper bathymetry, which allow wave propagation. The mean wave 

climate remains relatively gentle, with a mean 𝐻𝑆 of 0.26–0.67 m, the highest nominal condition 

experienced in the Western Basin. The western part of the lake appears to be influenced by 

complex wave dynamics with no preferential wind direction. Overall, the mean peak period, which 

corresponds to the 50th percentile, is within the range of 3.2 and 4.3 s, well below the swell period 

observed in Great Lakes (10 s; e.g. Tsanis and Brissette, 1992), with a higher value of 6–7 s that 

appears typical of the Eastern Basin (97,5th percentile). The joint distribution of significant wave 

height and period (Figure 30b) reveals that the largest events are associated with higher wave 

periods, consistent with wind-wave growth in the deep portion of the lake, where wave-breaking 

processes are not dominant and mean wave energy and frequency depend on wave age (Badulin 

et al., 2005).  
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Figure 31: Wind roses for winds observed between April–November at buoys 45139 (Niagara Basin) and 45135 

(Rochester Basin) in Lake Ontario, for the period 1980–2010. The winds were extracted from the homogeneized 

dataset (cf. Section 2.3.1). 

In Lake Ontario, wave characteristics are essentially similar to those observed in Lake Erie: wind-

sea, with a nominal period of 2.7–4.3 s and gentle significant wave height, with a mean value 

0.28–0.74 s. The main difference comes from the extreme values, especially in the Mississauga 

(mid-lake) and Rochester (eastern end) Basins, where the maximum significant wave height 

reaches 5.9 and 5.3 m, respectively, under a predominant west-to-east wind fetch. These values 

are close to the 99.9th percentile wave height events impacting Eastern Lake Ontario shorelines 

based on the 36-year climatology wave heights provided by the Wave Information Study (WIS; 

Grieco and DeGaetano, 2019), a model-derived dataset published by the US Army Corps of 

Engineers (http://wis.usace.army.mil). The Niagara Basin displays a more specific wave climate, 

primarily influenced by easterly winds associated with periodic storms (Figure 31) and 

distinguished by swell waves of period > 10 s (95th percentile; Table 6). These long waves do not 

necessarily follow the local wind direction, but rather the longer fetch direction (Tsanis and 

Brissette, 1992), and were likely generated in the eastern part of the lake. 

http://wis.usace.army.mil/
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Figure 32: The joint distribution of significant wave height and wind speed for buoy 45132, in Lake Erie (Central 

Basin). The insets at the right and top show the respective probability distributions. Observations were classified by 

local wind direction: westerly winds (SW–NW; red lines), or others (gray lines). 

In both lakes, there is evidence of reset phases: as soon as the wind starts to calm, short and 

long waves decay, leaving a quiescent basin (𝐻𝑆 < 0.05 m; % calm in Table 6). Lakes Erie and 

Ontario are therefore devoid of swell energy. Wave activity is directly linked to observed wind 

conditions, as illustrated in Figure 32, with extreme wave events typically occurring in early spring 

(March–April) and fall (September–November; e.g. Niu et al., 2016; Grieco and DeGaetano, 2019; 

Angel et al., 1995), consistent with seasonal variations in surface winds (e.g. Figure 14 in Section 

2.3.1). Anderson et al. (2015) showed that changing wind direction is responsible for interannual 

variations in wave climate in Lake Superior, which was found to be equally important for Lake Erie 

(Niu et al., 2016). A strong correlation between periods of high wave energy and high lake levels 

was also denoted by Meadows et al. (1997). This causal relationship appears to be related to 

significant changes in the cyclone climatology of Great Lake Basin. The eastern Great Lakes were 

identified as an area of maximum storm frequency and deepening, with storm tracks varying in 

response to the El Niño-Southern Oscillation (ENSO; Colucci, 1976), a large-scale atmospheric 

circulation feature.  

Although the buoy data mainly report deep-water wave conditions, which limits the description of 

wave climate to the offshore area, the observed wave conditions can be used as an indicator of 

local nearshore dynamics. Incoming wave energy is crucial for shallow-water waves, as local 

wave height is a function of deep-water wave characteristics: they set the initial conditions that 
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will subsequently evolve as a function of wind, bathymetry, and coastline. Exposed shorelines, 

such as the northern shores of Lake Erie and the eastern shores of Lake Ontario, are more likely 

to be subject to extreme wave steepness, 𝐻𝑆/𝐿 (∝ 𝐻𝑆/𝑇2 in deep water) than protected areas.  

3.3. Mean lake level modelling 

Lake modelling must consider both long- and short-term fluctuations that modulate water levels, 

both being very important to wetland ecosystems although they do not operate on the same time 

scale. The former refers to seasonal and interannual variations that follow the change in net basin 

supply, while the latter responds primarily to physical processes that set the water surface in 

motion. To properly simulate change in levels over time, lake models must therefore rely on 

inflows/outflows, tributary discharges, as well as overlake precipitation and lake evaporation that 

collectively determine the overall variation in water storage for a specific basin. While the historical 

period can be modeled using observations and reanalysis gridded data sets, which provide good 

estimates of past climate conditions, the past and future levels projected by climate scenarios 

must be obtained from simulation results. Work is hence needed to determine, from the general 

output variables provided by the AOGCM-RCMs, all components of net basin supply (hereafter 

referred to as NBS), including runoff and connecting channel flows, which are typically used in 

hydrodynamic modelling. NBS is defined as: 

𝑁𝐵𝑆 = 𝑃𝑙𝑎𝑘𝑒 − 𝐸𝑙𝑎𝑘𝑒 + 𝑅 3.4 

where 𝑃𝑙𝑎𝑘𝑒 and 𝐸𝑙𝑎𝑘𝑒 are the overlake precipitation and evaporation, respectively, and 𝑅, the 

runoff, i.e. the sum of the water flowing into the lake from all surrounding rivers, excluding inflow 

from upstream lake if any. The change in storage, Δ𝑆 (in m3s-1), which can be converted in change 

in lake-depth, Δ𝐻 (in m), using lake surface area and time, is related to the NBS through the 

budget equation of the lake,  

Δ𝑆 = 𝑁𝐵𝑆 + 𝐼 − 𝑂 ± 𝐷  3.5 

with 𝐼 and 𝑂, the inflow from the upstream lake and outflow from downstream lake, respectively, 

and 𝐷, any diversions into and out the lake. The AOGCM-RCMs provide direct projections for 

precipitation and evaporation, but all other components of the above equations must be estimated 

based on model outputs, using a routing model to track tributary and connecting channel flows. 
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The change in mean lake level is obtained from the change in Δ𝐻, which is typically calculated on 

a quarter-month basis in the Great Lakes system, which is roughly one week (cf. Section 3.7.2.1). 

Depending on the hydrodynamic model, mean lake level, inflow/outflow, diversion, or river 

discharge were used to constrain the two-dimensional simulations. These force annual and 

seasonal fluctuations that are determined by observed or projected climatic conditions, depending 

on the period considered. In the second case, i.e. projections, these conditions were extracted 

from the work done by Seglenieks and Temgoua (2022), who analyzed hydroclimatic variables 

and future Great Lakes levels from 5 dynamically downscaled CMIP5 AOGCMs, which include 

the models selected for this study (i.e. CanESM2 and GFLD-ESM2M, downscaled with CRCM5). 

The following paragraphs provide a general description of the method used by these authors to 

generate lake levels and connecting channel flows for the past (1980-2009) and future (2070-

2099) periods, as well as a brief presentation of the resulting time series. 

3.3.1. Component Net Basin Supply and projections 

For this project, Seglenieks and Temgoua (2022) estimated mean lake levels and connecting 

channel flows from the net basin supply.  

First, each component of the NBS was extracted or calculated from model outputs. As explained 

earlier, overlake evaporation and precipitation are directly provided by the AOGCM-RCMs, while 

runoff must be estimated from a routing scheme designed to follow water from land to river 

network, ensuring proper timing and mean outflow. The WATFLOOD model (Kouwen et al., 1993; 

Wijayarathne and Coulibaly, 2020), which is a semi-empirical physical based model, was 

employed to calculate runoff in each lake from temperature and precipitation datasets extracted 

from the AOGCM-RCMs. This hydrological model is commonly used in the Great Lakes, and a 

set of validated calibration parameters already exist for the entire basin (Pietroniro et al, 2007).  

Second, precipitation, evaporation and runoff were debiased on a monthly basis using a 

multivariate bias adjustment function (Cannon, 2016), and the NOAA Great Lakes Environmental 

Research Laboratory (GLERL) hydrometeorological database (1961–2000; Hunter et al., 2015), 

which was selected as the reference dataset. The three components were adjusted individually, 

with correction factors estimated from the 1961–2000 period and subsequently applied to the 

entire time series (1961–2099) before being summed to obtain the projected NBS for each lake.  
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3.3.1.1. Mean lake levels and connecting channel flows 

The resulting debiased NBS components for past and future periods were finally used to estimate 

projected mean lake levels and connecting channel flows for the Great Lakes Basin, including 

Lakes St. Clair and Michigan-Huron, the latter being considered as a single entity in terms of 

water storage. Since the regulation plans control outflows from Lakes Superior and Ontario, 

specific models must be employed to calculate levels according to rules adopted (e.g. Clites and 

Lee, 1998). These models use projected NBS as inputs and provide quarter -month mean lake 

levels and connecting channel flows that meet the fixed regulatory measures. For their analyses, 

Seglenieks and Temgoua (2022) generated data based on regulation plans currently used by the 

International Lake Superior Board of Control and the International Lake Ontario St. Lawrence 

Regulation Board, which are responsible for regulating outflows on the St. Marys River and at 

Moses-Saunders Dam in the St. Lawrence River. These plans, known as Plan 2012 (Lake 

Superior) and Plan 2014 (Lake Ontario), were implemented in 2014 and early 2017, respectively. 

Since there is no way to predict future changes to the regulation plans, lake levels were projected 

assuming that both plans will remain in place under future climate change. As explained by 

Seglenieks and Temgoua (2022), this hypothesis may be violated if extreme climatic conditions 

bring more (or less) water into the system than ever seen in the past.  

3.3.2. Projected time series 

Projected time series for the mean levels of the Lower Great Lakes, including Lake Michigan -

Huron and St. Clair, are presented in Figure 33 and Figure 34. They include the set of AOGCM-

RCMs analyzed by Seglenieks and Temgoua (2022), following the NBS debiaising technique 

previously explained, and the two commonly used representative concentration pathways, i.e. 

RCP4.5 (left panels) and 8.5 (right panels). Observed levels for each lake are also plotted in black 

for the reference period (1980–2010). Additional graphs for connecting channel flows are also 

available in the report published by Seglenieks and Temgoua (2022). 
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Figure 33: The projected past and future mean levels for Lakes Ontario (upper panels) and Erie (lower panels). The 

two selected AOGCM-RCMs are highlighted in each graph, with dashed lines for CanESM2 (or SIM01 and SIM02 for 

RCP4.5 and 8.5, respectively), and solid lines for GFLD-ESM2M (or SIM03 and SIM04 for RCP4.5 and 8.5, 

respectively). The grey lines provide the results obtained from other CMPI5 AOGCMs included in the NA-CORDEX 

project, while the black lines give the observed historical time series. One of the Lake Ontario time series illustrates 

doubtful results obtained under the regulation rules for the high emission scenario (RCP8.5). ). Note: the GFLD-

ESM2M time series is missing for Lake Ontario, since this scenario was removed from the study due to unrealistic 

projections. Details are given in the text. 
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Figure 34: Idem as Figure 33, but for Lakes St. Clair (top panels) and Michigan-Huron (bottom panels). 

The projections obtained for the two selected AOGCMs, namely CanESM2 (or SIM01 and SIM02, 

according to RCP4.5 and 8.5) and GFLD-ESM2M (or SIM03 and SIM04, according to RCP4.5 

and 8.5; cf. Table 1) are highlighted in the graphs presented, with dashed lines representing the 

CanESM2 time series and the solid lines, its counterpart. 

3.3.2.1. The case of Lake Ontario  

Based on the results obtained by Seglenieks and Temgoua (2022), some climate models project 

a significant increase in Lake Ontario levels in the last decades of the century (Figure 33). One of 

them, the GFLD-ESM2M downscaled by the CRCM5 and forced by RCP8.5 scenario, even 

projects a monotonic increase in mean lake levels beyond 2070, which seems unrealistic given 

the interannual variation normally expected (not shown). This behavior appears to be directly 

related to the assumption of fixed regulation rules, which are not designed to handle the extreme 

high amounts of water entering the Great Lakes system as projected by some of the AOGCMs. 

In its current form, Regulation Plan 2014 limits the maximum Lake Ontario outflow to ~10.7-

11.5×103 m3s-1 (IJC, 2014), which is likely not sufficient to manage extremely wet years, when 
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inflows from the upper lakes far exceed any historically observed values. However, given the rarity 

of such inflows, the physical characteristics of the St. Lawrence River, the duration of outflows in 

excess of 11×103 m3s-1 that would be required to significantly reduce similar Lake Ontario levels, 

and the levels of forecasting expertise required to effectively manage such situations, it appears 

unlikely that a regulation plan could effectively mitigate such extreme conditions. In addition, the 

validity of routing is questionable under extreme flows since connecting channels, which have a 

limited capacity, may respond differently than normally expected by regulation. As a result, and 

due to the large uncertainty in future Lake Ontario levels under the higher emission scenario 

(RCP8.5), only simulations forced by the RCP4.5 scenario were retained to project future Great 

Lakes conditions and wetland evolution in the decades 2070s to 2090s. For the same reasons, 

some AOGCMs were removed from the analysis conducted by Seglenieks and Temgoua (2022). 
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3.4. Hydrodynamic modelling 

This section provides a general overview of the different numerical approaches used to model the 

Great Lakes system.  

3.4.1. Numerical solver 

The hydrodynamic simulations performed in this project were carried out using the H2D2 software 

(version 19.04p2; Secretan, 2013), which is a two-dimensional finite element model that allows 

for robust, distributed, and shared-memory computation of large systems and non-stationary 

problems. This model solves the two-dimensional Navier-Stokes equations, which describe 

shallow water motion, using an implicit time scheme and a special treatment of the drying -wetting 

zones to compute the temporal evolution of the wetted surface area and discharges (Heniche et 

al., 2000). The parameterization used by H2D2 relies on several assumptions, namely 

incompressibility, hydrostatic pressure, and stable bathymetry (e.g., Bois, 2000). For more 

information on the finite element discretization, the reader is referred to Heniche et al. (2000) and 

Dhatt et al. (2005). Further details on the implementation of the H2D2 model can be found online 

(http://www.gre-ehn.ete.inrs.ca/H2D2), including the conceptual description of the drying-wetting 

model.  

3.4.2. Two-dimensional modelling and assumptions 

3.4.2.1. 2D Saint-Venant equations 

The description of the fluid motion in shallow-water environments is derived from the Navier-

Stokes equations by assuming that the water column is well mixed, and the displacement roughly 

two-dimensional, i.e. that horizontal motion is much larger than vertical motion, so that the vertical 

derivatives can be ignored. Therefore, the vertical acceleration is assumed negligible (i.e. 

hydrostatic assumption) and the flow, strictly 2D, resulting in the depth-integrated formulation of 

the equations of motion, which in final form are known as the St-Venant equations. These 

equations govern the mass and momentum conservation through two variables, the discharge (or 

flow rate), 𝒒(𝑞𝑥 ,𝑞𝑦), and water level, ℎ, and are respectively defined as: 

𝜕𝑝𝐻

𝜕𝑡
+

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
= 0 3.6 

and 

http://www.gre-ehn.ete.inrs.ca/H2D2
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𝜕𝑞𝑥

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑞𝑥𝑞𝑥

𝐻
)+

𝜕

𝜕𝑦
(

𝑞𝑥𝑞𝑦

𝐻
) = ∑ 𝐹𝑥 3.7 

𝜕𝑞𝑦

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑞𝑥𝑞𝑦

𝐻
) +

𝜕

𝜕𝑦
(

𝑞𝑦𝑞𝑦

𝐻
) = ∑𝐹𝑥 3.8 

where 𝑥, 𝑦 are the Cartesian coordinates, 𝑡, the time, 𝐻 (= ℎ − 𝑧), the water depth, with ℎ and 𝑧 

the water surface level and the bed level, respectively, and 𝐹𝑥 ,𝐹𝑦 are the external forces in the 𝑥 

and 𝑦 directions.  

 

Figure 35: 2D Quadratic element and its interconnection with adjacent cells  

In the H2D2 solver, various external forces can be considered to determine the equilibrium state 

at each cell of the mesh, ensuring conservation of mass and momentum. The main terms in the 

equations include: gravitational acceleration; bottom friction, which depends on the Manning 

roughness coefficient; surface friction, which is related to ice cover, if any, and surface wind 

stress; and viscous forces, which control turbulence and mixing. Additional source terms that 

account for over-lake precipitation and evaporation can also be included in the first mathematical 

description above to add or remove mass on specific mesh elements (Figure 35 and Figure 36).  

These equations cannot be solved explicitly, except under very large hypothesis that are 

unrealistic in most situations, and numerical schemes are normally used resolve the 2D surface 

dynamics, i.e. the spatial distribution of water levels and velocities.  
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Figure 36: External forces on a 2D mesh cell  

3.4.2.2. Single-layer assumption and surface Ekman layer 

The 2D assumption is reasonable in rivers, where along-channel (and cross-channel) gradients 

are high, and in shallow lakes, where surface motion can be approximated using a homogeneous, 

single-layer model in which surface stress is felt from the surface to the bottom. However, when 

dealing with deeper lakes and periods of strong stratification, this approximation is no longer valid, 

and three-dimensional (i.e. baroclinic) effects become important. For hydrodynamic modelling, 

this can lead to inaccurate estimation of water-level fluctuations since the main physical 

processes (i.e. wind set-ups) can be misrepresented. While the depth-integrated St. Venant 

equations consider that the entire water column is set in motion by a wind acting on the surface, 

only the well-mixed layer is affected to a depth that depends on the wind intensity. The motion is 

then constrained to the so-called upper Ekman layer (cf. Section 3.2.2), which has a typical 

thickness in mid-latitudes of 50 m to 100 m for wind speeds of 10 ms-1 to 20 ms-1 when the 

stratification is weak or absent (Pond and Pickard, 1983; Figure 37). An important note here is 

that the Ekman-layer formulation assumes no vertical density stratification (e.g. Cushman-Roisin 

and Beckers, 2011). Stratification is a major factor as it can hinder vertical movements, thereby 

reducing mixing momentum by turbulence initiated by the wind-driven flow and, thus, the depth 

of penetration of wind energy into the upper layers (e.g. Price and Sundermeyer, 1999). 

Consequently, the vertical density gradient reduces the thickness of the Ekman Layer, and only 

severe, long-lasting storms can counteract this effect by generating a deepening of the well-mixed 

surface layer, thus reducing the stability of the water column. The occurrence of storms is 
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therefore particularly critical to the dynamics of the Great Lakes during the summer months, as 

the latter are highly stratified between May and October, especially in their deep, central basins. 

 

Figure 37: The surface Ekman layer generated by a wind stress (adapted from Cushman-Roisin and Beckers (2011). 

While shallow lakes are well approximated by the 2D assumption, this is not the case for Lakes 

Ontario and Huron, where the depth reaches more than 200 m and the single-layer hypothesis is 

no longer valid at the basin scale. Since the displacement is restricted to the surface Ekman layer, 

an alternative modelling approach that artificially constrains the calculation to the upper layers 

was developed to obtain reliable estimates of the surface dynamics.  

3.4.2.3. Deep lakes and 2D modelling 

To approximate the deep lake dynamics with a 2D numerical scheme, the depth of the surface 

layer was artificially modulated to mimic the action of winds on the water surface, allowing for 

greater penetration of wind energy into the water column under strong, sustained atmospheric 

conditions. This idea relies on the inherent dynamics of wind set-ups that are generated by the 

displacement of the surface layer, which is considered as moving freely over the thermocline 

when subjected to surface stress. In this description, the motion modelled is that which could be 

observed from the surface mixed layer alone, regardless of the dynamics of the underlying layers 

that may respond oppositely to the wind stress. The depth of this ‘active’ layer varies according 

to the wind intensity, which means that the bathymetry used by the model in its parametrization 

of the lake must be modified to suit the imposed atmospheric forcing (Figure 38). Several 

calibrations must then be performed to provide valid solutions for any wind, whether low, 

moderate, strong, or even extreme. The set of depth-wind solutions thus created is used to 
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determine, at any time step, the state of the system, which is assumed the equilibrium state 

reached by the lake under static conditions, i.e. under a wind of constant intensity blowing on the 

surface of the lake for a time long enough to be considered infinite. The static hypothesis is critical 

here as a change in water depth implies a change in volume, which may lead to a violation of 

mass conservation if this situation occurs between two successive time steps of a simulation.  

Although a true steady state is extremely unlikely, since adjustment (or set-up) time scale is longer 

than the time that large wind events usually last (Simons, 1971), this hypothesis is postulated in 

first approximation as will be discussed below (cf. Section 3.4.3.2). In reality, the lake responds 

to any change in winds when fresh injection of energy forces free surface motion, and a slow 

adjustment of the basin-scale circulation ensues that seeks to counteract the new wind-force 

distribution. If change in wind speed and direction occurs before the full basin -wide adjustment, 

no steady state is reached and the lake remains in transient state. The wind set -ups therefore 

rarely attain their full equilibrium amplitude, except in the case of strong, slow-moving storms. 

 

Figure 38: Illustration of the effect of limiting depth on the wind setup in a 2D model  

3.4.3. Modelling approaches: Complex vs. scenario-based  

Two modelling approaches were adopted to simulate long- and short-term fluctuations in water 

levels as a function of the lake being modelled, whether it can be considered as a single -layer 

model or not. 

3.4.3.1. Shallow lakes modelling: Complex physics 

Lakes Erie and St. Clair are the shallowest lakes in the Great Lakes system with average depths 

of 19 m and 3 m, respectively. Lake Erie is a special case, since its Central and Eastern Basins 

(maximum depth of 25 m and 64 m, respectively) can be stratified as early as May, and retain a 

vertical thermal structure that is almost absent in its western part. However, this lake is very 
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susceptible to strong wind impulses, especially during the early stage of the stratification when 

the water column stability is relatively low. Basin-scale oscillations, internal waves, upwelling, and 

inter-basin advection also promote enhanced mixing of the upper water column (Bouffard et al., 

2012; Liu et al., 2014; Beletsky et al., 2012; Boegman et al., 2001; Lin et al., 2021; Bocaniov et 

al., 2014), and increase the sensibility of thermal structure to atmospheric forcing (Austin and 

Allen, 2011). Spring and summer storms can therefore cause momentary mixing of the deeper 

basins and weaken their stratification, which causes a deepening of the thermocline (Beletsky et 

al., 2013) and leave a nearly uniform surface to bottom temperate profile in mid-September and 

mid-October (Schertzer et al., 1987). Because the influence of a strong, shallow stratification in 

Lake Erie remains limited, this lake can be approximated by a one-layer model. Although this 

assumption may be violated under certain circumstances, particularly in the deep eastern basin, 

wind-induced surface motions modelled at the basin scale are not expected to be significantly 

affected. 

The single-layer assumption is therefore valid in first approximation for lakes Erie and St. Clair, 

and the 2D numerical scheme can be used to simulate the free-surface motions, as well as the 

general dynamics of Lake Erie and the Huron-Erie Corridor, which includes the St. Clair River, 

Lake St. Clair and the Detroit River. Simulations were therefore performed under time-varying 

conditions to account for the transient nature of these systems (Figure 39), providing real-time 

solutions that offer a complete description of the wind-induces physical processes, i.e. wind set-

ups and surface seiches (cf. Sections 3.2.1.1 and 3.2.1.2). This approach offers a realistic 

numerical representation since all forcing fields are dynamic, which is necessary to simulate an 

unsteady and highly stochastic phenomenon. However, this method is by far the most demanding 

in terms of computational and storage resources since each time step of a simulated perio d is 

calculated once at a time, providing one- to three-hour gridded time series. For one year of 

simulation, this means over 5000 lake level maps in Lake Erie (e.g.).  
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Figure 39: Complex physics approach, using unsteady simulations. 

3.4.3.2. Deep lakes modelling: Scenario-based approach 

The second modelling approach seeks to reproduce the physics of free-surface motions as 

observed in the mixed layer of a stratified system by assuming that the upper layer moves freely, 

with no frictional effects at the thermocline. This assumption is often used in oceanography to 

describe surface motions in a two-layer system when strong stratification reduces turbulent 

frictional coupling between the upper and lower layers (e.g. Pond and Pickard, 1983). This 

approximation has been applied to the modelling of deep lakes, when the vertical structure cannot 

be assumed homogeneous and three-dimensional dynamics neglected. This is the case for Lakes 

Ontario and Huron, which have a maximum (mean) depth of ~244 (86) m and 230 (59) m, 

respectively. 

As explained earlier, the motion initiated by the atmospheric forcing is restricted to the surface 

Ekman layer whose depth varies with the wind intensity. To mimic this depth-varying process, the 

adopted numerical scheme simulates only the surface layer dynamics by artificially modulating 

the lake bathymetry since the water column depth is used to estimate the wind effect in 2D 

parametrization. To provide a good representation of the wind set-ups amplitude, a calibration of 

the ‘effective’ depth under different wind conditions must be performed, considering both direction 
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and speed, as the wind origin modifies the fetch and, hence, the lake response. In this approach, 

only static solutions can be obtained to avoid a violation of conservation of mass as mentioned 

previously. In order to reproduce the transient water level fluctuations, the time series is 

reconstructed from precomputed solutions rather than simulated on an hourly basis, as is the 

case for the classical non-stationary method.  

3.4.3.2.1. Steady-state solution space  

The use of 2D steady-state solutions to approximate the transient state of the lake presupposes 

the existence of a set of precomputed solutions, which are sufficient to reproduce all 

hydrodynamic (i.e. mean lake level) and atmospheric (i.e. wind intensity and direction) conditions. 

Since it is not realistic to model all possible forcing combinations, a solution space was developed 

and used to estimate the state of the system, i.e. the tilt of the lake surface once in equilibrium 

with the wind (Figure 38). In this representation, only the initial deflection of the lake surface is 

modelled: the surface seiches initiated by the relaxation of the lake surface are not parametrized 

since it is an oscillatory process resulting from an instability. Part of the energy will be therefore 

missing from the final time series reconstructed with the steady-state solutions. 
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Figure 40: The solution space, with its several mean lake level and wind classes. 

Because long-term fluctuations are an important component of the simulated physics, the mean 

lake level must follow realistic trends. The solution space is therefore composed of ten discrete 

levels that span the range of variability observed in the past and expected from climatic projections 

(e.g. from 73.75 m to 77.0 m in Lake Ontario, with an average increment of 0.5 m; Figure 40). For 

each lake level, several simulations were run under varying atmospheric conditions to provide a 

set of possible tilts and, from these, a representative spatial distribution of wind set-ups in each 

grid cell. The wind compass rose was divided into 16 equal subdivisions, offering a resolution in 

wind direction of 22.5°. The sub-directions included the eight principal winds (i.e. N, NE, E, SE, 

S, SW, W, NW, and N), as well as the eight half-winds (i.e. NNE, ENE, ESE, etc.). For wind speed, 

five to seven wind classes were selected based on the wind climatology behind the observed 

1980–2010 set-up events in Lakes Ontario and Huron (e.g. Figure 41). The first class, which 
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includes wind speeds below 2.78 ms-1 (or 10 km h-1), is defined as the no-wind category, meaning 

that any wind speed below 2.78 m s-1 is considered too weak to generate significant surface 

deflection. This is the so-called “still water” case.  

 

Figure 41: Empirical distribution of observed wind speed during identified wind set-ups in Kingston, Lake Ontario. 

Wind values refer to observations recorded offshore, at the Prince Edward buoy ( in blue; cf. Section 2.3.1), or values 

extracted from the regionally averaged Climex series (in orange). Solid line gives the estimated PDF, while empirical 

is provided by the shaded boxes. The left panel shows results obtained from 2days-filetred time series, while the right 

panel, from unfiltered series. Details are given in the text. 

Hence, for each combination of lake level, wind speed, and wind direction, only one 2D steady 

solution is simulated. Depending on the wind speed used, the bathymetry of the lake is adapted 

to provide a correct estimate of the displacement in the surface mixed layer, independent of the 

motion experienced in the lower part of the water column. The system is therefore reduced to a 

single-layer model, with an effective depth that changes with the atmospheric forcing used. The 

effective depth to be used was set during the model calibration, which is discussed below. 

Although the mixed layer is also affected by meteorological forcing that forces surface heat fluxes, 

and causes a deepening or shallowing of the surface layer, this influence was neglected in the 

scenario-based modelling approach. First, because no concurrent simulations were performed to 

project changes in lake surface temperature, any estimates of changes in surface heat flux and 

its consequences would have been speculative. Second, based on previous studies conducted 

on the response of the thermal structure to changes in air temperature and wind speed (Huang 

et al., 2012; Liu et al., 2014), the thermocline depth is more sensitive to winds, which is mainly 

related to the enhanced influence of upwelling events when wind speeds increase. Changes in 
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air temperature primarily affect the time of onset and breakdown of the stratification (Robertson 

and Ragotzkie, 1990; Huang et al., 2012), with increasing air temperature leading to earlier onset 

and later breakdown, which is not accounted for in the solution space calibration. However, wind 

speeds also have a strong effect on this aspect (Liu et al., 2014; Huang et al., 2010; Austin and 

Allen, 2011). 

3.4.3.2.2. Filtered winds: Atmospheric forcing and wind set-ups 

To generate steady-state scenarios, the lake models must be forced with a constant wind field, 

i.e. wind blowing in one direction, with a given wind speed. Since the main objective here is to 

simulate the short-term water level fluctuations associated with set-ups, i.e. the tilting of the lake 

surface under constant surface forcing, local variations in the wind field are assumed negligible 

for the lake dynamics and only basin-wide perturbations are considered. Furthermore, it has been 

shown (cf. Section 3.2.2) that the response of the lake is in phase with atmospheric systems with 

a return period greater than 2 days, which is the typical period of synoptic-scale systems (or storm 

track) in mid-latitudes (e.g. Blackmon et al., 1977). Therefore, only large-scale, long-lasting 

atmospheric disturbances are assumed significant for basin-scale dynamics, and only similar 

disturbances were used to force steady-state solutions. These perturbations can be extracted 

from the low-frequency components of the wind time series, which includes all fluctuations with 

period > 2 days. In the scenario-based approach, the wind used to trigger a basin-scale motion is 

thus the wind field obtained by filtering out all high frequency fluctuations in the zonal, 𝑢, and 

meridional, 𝑣, components (here after referred to as 2days-filtered or 2D-filtred time series). 

Figure 41 shows the observed wind speed during set-up events for the filtered and unfiltered time 

series, while Figure 43 displays a snapshot of the time series (2days-filtered in blue). 

This distinction between filtered and unfiltered winds is important because the events to be 

modelled have a period that matches the periodicity of large-scale synoptic systems. This is 

directly related to the high inertia of lakes, which adjust slowly under the action of a surface 

constraint. Since the scenario-based approach relies on steady-state solutions, any wind event is 

assumed sufficiently long to generate basin-scale motion, which is not the case when a rapid 

change in the wind field occurs. The unfiltered, hourly time series typically used to force the 

hydrodynamic models include temporal and spatial variations that do not generate any tangible 

lake level response other than local scale disturbances. Therefore, using these time series would 

result in unrealistic short-term fluctuations that do not replicate the expected lake behavior.  
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3.4.3.2.3. Regionally averaged winds 

In the complex hydrodynamic approach, the lake models are forced with gridded wind data, which 

give the detailed wind field at a horizontal spatial resolution of ~12 km, a resolution small enough 

to allow representation of some mesoscale features and local variations that induce basin-wide 

gradients. With the scenario-based approach, the use of similar wind data is impossible as the 

2D solutions are precomputed based on specific wind conditions (Figure 40). The lake models 

are forced with a constant wind field, which has no variation in space and time, restricting  the 

atmospheric forcing to one speed and direction. Realistic short-term fluctuations are nevertheless 

expected, as if the models were run with a gridded dataset, extracting the significant influence of 

wind from the spatial distribution at each time step. 

In order to provide a realistic forcing that properly reproduces the non-steady behavior of the 

lakes, a single point time series was used for each simulation period. This time series was created 

from the gridded datasets by reducing the spatial distribution to a regional description of the wind, 

which is intended to be representative of the predominant wind condition, experienced (on 

average) by the basin. Since wind is a vector field, the averaging procedure used must take into 

account the spatial distribution of the two wind components, zonal and meridional, and thus obtain 

a representative wind speed and direction for each gridded map in the dataset. Such averaging 

is not straightforward because there is a correlation between the two wind components, which 

must be maintained to avoid unwanted changes in the atmospheric pattern.  

 

Figure 42: The conceptual ellipses used by Harris and Cook (2014) to define the joint PDF of wind speed and 

direction. Details given in the text. 

To extract prevailing weather patterns over a given region, model-based clustering can be applied 

(e.g. Clifton and Lundquist, 2012; Kazor et al., 2015). This technique assumes that the 
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observations are generated from a mixture of probability distribut ions, each of which represent a 

different cluster or, put another way, one of the components of spatial wind variability. The data 

can therefore be classified into several subsets according to their probability of belonging to one 

or the other, and a mixture model can be used to characterize the set of solutions thus obtained. 

For wind regimes, joint probability density functions (PDF) of wind speed and direction can be 

used. This distribution follows the description of Harris and Cook (2014), which describes the 2-

dimensional wind distribution as ellipses in a rotated reference frame aligned with the principal 

axes of the wind (Figure 42). In this description, the two orthogonal wind components, 𝑢 and 𝑣, 

are uncorrelated. The PDF can therefore be defined as (Cook, 2019):  

𝑝(𝑢, 𝑣) =
1

2𝜋𝜎𝑢 𝜎𝑣
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with overbar denoting means, and 𝜎, standard deviations. The distribution is now a joint Gaussian 

distribution, where the standard deviations give the axis of the ellipse, and ( �̅�, �̅�), the position of 

the ellipse in geographical space. When the wind field is clustered into mult iple ellipses according 

to the individual vectors in the gridded map, the joint PDF of the mixture is the sum of the 𝑁 

component PDFs, each weighted by its relative frequency, 𝑓:  

𝑝(𝑢,𝑣) = ∑𝑓𝑖 × 𝑝𝑖 (𝑢, 𝑣)

𝑁

𝑖=1

 3.10 

This model can therefore be used to extract, from a number of clusters, the frequency (or weight) 

of a specific subset of characteristic winds, along with their mean components, (�̅�, �̅�), which 

provide wind speed and direction. These variables can then be used to define the regional wind 

regime of a 2D spatial distribution at any time step.  
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Figure 43: Example of a regionally averaged wind time series (upper right panel), along with the clustering results 

obtained for the presented 2D spatial wind distribution (upper left panel). The clusters, shown as ellipses in the 𝑢, 𝑣 

space, display shaded colors that refer to their frequency (or weight) in the mixture model. Filtered and un-filtered 

time series are also presented. 

In the scenario-based approach, the time series of lake level fluctuations is reconstructed based 

on the single-point wind time series obtained by the Gaussian Mixture Model explained here, 

using a fixed number of three clusters to describe the lake-wide spatial variation. Figure 43 shows 

an example of a regionally averaged time series, along with a snapshot of the spatial distribution 

and clustering results. As previously mentioned, 2D-filtered data are used, a filtering process that 

was applied once the averaged time series was produced. For each simulated period, a new wind 

time series is therefore generated for Lakes Ontario and Huron separately. For this purpose, only 

grid points included within the geographical boundaries of the lake are retained to force each 

model with over-lake atmospheric conditions only (Figure 43, upper left panel). 

3.4.3.2.4. Interpolation: Creating the time series 

The creation of a continuous series of 2D maps of simulated levels relies on the use of the solution 

space, which provides the set of precomputed solutions, and the point series of winds and mean 

lake level, which give the hydrological and atmospheric forcing that determines the state of the 
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lake at each time step. The idea is to select from the precomputed solutions the one that best fits 

the conditions under which the lake evolves, and to recreate artificially the chronological sequence 

that provides the change in lake dynamics through time. Since the number of lake level and wind 

classes is limited, the best solution is determined from four candidate solutions, using a bilinear 

interpolation technique (Figure 44).  

The candidate solutions share a common wind direction, which corresponds to the wind origin at 

time 𝑡 according to the regional wind time series, but have different wind speeds and mean lake 

levels. These wind and level conditions are selected to restrict, using lower and upper bounds, 

the solution space to four possibilities, which offer simulated solutions with conditions (wind speed 

and mean level) slightly lower or higher than those imposed at time 𝑡. For example, if the wind 

speed at time 𝑡 is 27 km h-1, the 2D maps computed under a wind of 20 and 35 km h-1 (cf. Figure 

40) in the solution space will be selected as candidate solutions.  

 

Figure 44: The bilinear interpolation process. Details given in the text. 
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The final solution is therefore the result of the bilinear interpolation performed using these four 

candidate solutions, which is computed at each time step of the simulated period. Since time 

series of mean lake level is a prerequisite for the interpolation process, these time  series are 

either calculated from observations recorded during the historical period (1980–2018) or provided 

by the climate projections (cf. Section 2.3.1 and 2.3.2; 1980–2009 and 2070–2099). For the 

historical period, the stations used by the NOAA Great Lakes Environmental Research Laboratory 

were selected to calculate lake-wide average levels, i.e. stations Rochester, Oswego, Port Weller, 

Toronto, Cobourg, and Kingston in Lake Ontario, and Ludington,  Mackinaw City, Harbor Beach, 

Milwaukee, Thessalon, and Tobermory in Lake Michigan-Huron. 

3.4.3.2.5. Wind and depth calibration 

Initialization and calibration of lake models in the scenario-based approach require more work 

than is typically required to parametrize a 2D hydrodynamic model, since multiple models must 

be calibrated and validated for a single lake. Each wind condition available in the solution space 

must be associated with a specific basin-wide effective depth to artificially increase (or decrease) 

the surface layer in which wind-driven flow is constrained. The calibration should then use the 

observed data to adjust the bathymetry for each wind speed and direction, as the origin of the 

wind can influence the fetch length and hence, the wind stress acting on the lake surface (e.g. 

Richards et al., 1966). 

This calibration was realized in several steps: 

1. Creation of a database that includes the observed set-ups and wind amplitude. This 

database is created following the identification process explained in Section 3.2.2, which 

is designed to detect lake level anomalies that correspond to wind events in the filtered 

time series. All gauge stations were included in the database, and the set -up amplitudes 

were extracted for the 16 binned wind directions to capture any asymmetry in the lake 

dynamics along the fetch direction.  

2. Creation of several lake models with varying bathymetry, or depth, for use with the different 

wind classes in the solutions space (cf. Figure 40). 

3. Creation of the optimal depth-wind set, which identifies the effective depth to be used 

under a specific wind speed and direction to reproduce events included in the database 

created in 1). For this step of the calibration, the mean lake level was kept constant. The 

variation of the mean level is negligible for the dynamics of the surface layer, which 

depends on the depth of the water column considered.  

4. With the optimal set of depth-wind combinations, the solution space was completed by 

varying the mean lake level (cf. Figure 40). 

More details on the specific lake models are given in Sections 3.5.1 through 3.5.5. 
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3.4.3.3. The Upper St. Lawrence River: A specific case 

The Upper St. Lawrence River (here after referred to as USLR) is the second connecting channels 

modelled in this project, apart from the St. Clair–Detroit system. It is located at the outlet of Lake 

Ontario, and is largely influenced by the dynamics of the lake that modulates the outflows and 

hence, the flow of the river. This portion of the Great Lakes Basin is therefore characterized by a 

significant change in water level that describes a slope between the lake, near Kingston (Ontario) 

and Cape Vincent (New York, USA), and the downstream portion of the USLR, near Cornwall 

(Ontario), where Lake Ontario outflows are regulated. 

The Upper St. Lawrence could have been successfully modelled by either modelling approach, 

as no three-dimensional dynamics are involved and conventional 2D modelling is well designed 

to simulate river flow regimes. However, due to the influence of Lake Ontario levels at the mouth 

of the USLR, the scenario-based method was chosen to facilitate the simulation process, using 

the simulated water level at Kingston, as well as the observed or projected discharge values as 

inputs. For this specific section of the Great Lakes, the contribution of atmospheric forcing to water 

level fluctuations is therefore assumed negligible compared to the lake itself, which force the flow 

in the upstream part of the river. As stated by Paturi et al. (2012), the northeastern section of the 

Upper St. Lawrence is preliminary hydraulically driven, with both long- and short-term 

disturbances induced by lake dynamics. It is only during strong, easterly storms (~10 m s-1 or 

36 km h-1) that the influence of wind cannot be excluded, as similar conditions genera te flow 

reversal near Kingston (Paturi et al., 2012). Such events are not captured by the interpolation 

process used to model the USLR, as no wind was considered, which represents a limitation of 

the modelling. More details regarding this specific model are given in Section 3.5.1.  

3.4.4. Summary table: lake-specific approaches and water level 

uncertainties 

Table 7 below shows the post-calibration uncertainties on water level and the approach used for 

each water body of the system. More details on the calibration process for each lake are given in 

Section 3.5. 
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Table 7: Summary table for the different lake models. 
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3.5. Lake models 

This section presents the methodology used to create reliable water level scenarios for the 

historical and projected time periods, as well as the accuracy of the models developed for each 

lake and connecting channels considered in this project. 

3.5.1. Upper St. Lawrence River 

3.5.1.1. Bathymetry and modelling approach 

Only the western part of the Upper St. Lawrence River was modelled for the project, which 

provides the physical conditions in the vicinity of Hill Island, near Alexandria Bay (New York, 

USA), the only selected site located in this connecting channel (cf. Figure 2). The model therefore 

covers the northeastern portion of Lake Ontario, between Kingston (Ontario) and Cape Vincent 

(New York, USA), and the upstream section of the Upper St. Lawrence River ending at the 

Iroquois Dam, 46 km west of the Moses-Saunders Dam, where Lake Ontario outflows are 

regulated. The section of the river between Kingston and Iroquois Dam, in the middle of the USLR, 

was directly derived from the St. Lawrence Seaway model, which was calibrated and validated 

for operational use in 2020. 

The river is generally shallow (Figure 45) and has alternating sections with rapids, where flow 

velocities are high, and quiet sections. Consequently, the slope of the river is not constant, and 

velocities vary greatly with river discharge. As previously mentioned, the effect of wind on the 

local dynamics is considered negligible, and the USLR is defined as a system essentially forced 

by hydraulics, which include the effect of wind on Lake Ontario itself . The scenario-based 

modelling approach was adopted for this connecting channel, and static solutions were generated  

with an imposed lake level at the Lake Ontario outlet and a fixed discharge at Iroquois Dam 

(Figure 45). The outflows used as boundary conditions are either from observed values, which 

are consistent with the regulation history of Lake Ontario (1980–2018), or those projected by 

mean lake level simulations (cf. Section 3.3), which are in accordance with Plan 2014 guidelines.  

3.5.1.1.1. Interpolation: Lake Ontario levels and outflows 

Since no atmospheric forcing was included in the Upper St. Lawrence modelling scheme, the 

steady-state solutions that fill the solution space were generated with a bilinear interpolation that 

accounts for Lake Ontario levels and outflows, the unique dimensions of the solution space, which 

are reduced to two. The Lake Ontario levels used here are the observed and simulated levels 

obtained from the lake model (cf. Section 3.5.2), time series that include all long- and short-term 
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fluctuations that drive changes in discharge, with both seasonal fluctuations and wind  set-ups. 

The St. Lawrence model thus depends on the Lake Ontario model for climate projections.   

Inset in Table 8 shows the gauging stations in the USLR that historically recorded water levels, 

i.e. Brockville (Ontario), and Alexandria Bay (New York, USA).  

 

Figure 45: Bathymetry of the Upper St. Lawrence River and boundary conditions used for the modelling. 

3.5.1.2. Computational grid 

The computational grid used for the USLR contains 748k nodes and 370k quadratic elements, 

which allows for a good parametrization of the numerous islands that shape the topography of 

the upstream section of the river, namely the Thousand Islands. The resulting mesh is composed 

of more elements than the entirety of Lake Ontario, and it is characterized by a marked change 

in bathymetry in the along-channel direction.  
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Figure 46: Modelled water levels obtained for the RMA2 model and the calibrated USLR model. The x-axis gives the 

distance from the mouth of the Niagara River, representing water levels along an axis that follows the course of the 

Upper St. Lawrence. 

3.5.1.3. Calibration and validation 

The calibration of the Upper St. Lawrence River was performed with two datasets: (1) results 

obtained from a pre-existing calibrated and validated model, using the RMA2 solver (Thompson 

and Moin, 2003; Thompson, 2006); and (2) observations collected from two distinct time periods, 

i.e. April and October 2019, for which accurate discharge measurements were available. The 

results of this calibration process are presented in Table 8 and Figure 46. Although Figure 46 

shows results obtained for the entire Upper St. Lawrence River, from Lake Ontario to  Moses-

Saunders Dam, only the upstream section is considered for this project.  
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Table 8: Calibration results for the USLR model. 

 

3.5.2. Lake Ontario 

3.5.2.1. Bathymetry and modelling approach 

The morphology of Lake Ontario is characterized by its elongated shape, which runs from west 

to east, and its deep eastern Basin (i.e. Rochester Basin), where the depth reaches over 240 m 

(Figure 47). The scenario-based approach is therefore the modelling technique adopted for this 

lake.  

The Lake Ontario model ends at the entrance of the Upper St. Lawrence River, between Kingston 

(Ontario) and Cape Vincent (New York, USA). Toward the east, the dynamics are mainly 

described by a river-like flow as water levels are primarily determined by discharge, resulting in 

high current velocities. This section was modelled separately as described in Section 3.5.1. In its 

western part, the model was forced with mean discharge data at the downstream end of the 

Niagara River, which controls the outflow from Lake Erie (via the Niagara Falls) and , hence, one 

of the main water supplies to the basin (5000–7000 m3s-1). In its eastern part, water levels were 

imposed between Kingston and Cape Vincent, and this boundary condition was used to generate 

the different static solution space scenarios. The mean lake level used in the interpolation process 

is therefore the average water level obtained under this set of static forcing (cf. Section 3.4.3.2).  
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Figure 47: Mesh details (upper panel) and bathymetry (lower panel) used for the Lake Ontario model. Boundary 

conditions are also defined. 

3.5.2.2. Computational grid 

As with other lakes in the Great Lakes system, the Lake Ontario model displays relatively low 

mesh density in its center, but an increasing number of elements near the coasts and islands, 

bringing the total number of nodes and triangular cells to 590k and 286k, respectively (Figure 47).  
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Figure 48: Observed (grey dots) and modelled (orange dots) wind-driven set-ups at Kingston, Lake Ontario. The 

black and red lines show the linear regression obtained from the detected events, i.e. the relationship between event 

amplitude and wind speed for the zonal (left panel) and meridional (right panel) wind components. 

3.5.2.3. Calibration and validation 

Several gauging stations are located on either side of Lake Ontario, as shown in Table 9. 

Historical water levels observed in these locations, along with offshore wind data recorded in the 

central portion of the basin, at Prince-Edward buoy (station 45135), were used to populate the 

database of set-up events needed to calibrate the scenario-based approach (cf. Section 2.3.1). 

The calibration period extends from 1990 to 2010, which encompasses the operational period of 

the moored buoy. 

Figure 49 shows a comparison between the amplitude of observed and modelled set -up events 

for Kingston (Ontario) following the calibration process. These results were obtained with the 

optimal depth-wind combination, i.e., the combination that provides a good representation of the 

surface layer dynamics under different wind intensities and directions. Some adjustments were 

necessary to reduce the overall root-mean square error (or RMSE) of the water level estimates, 

which remains under 3 cm for the 1990 series reconstructed with the bilinear interpolation 

technique explained earlier (cf. Section 3.4.3.2; Table 9 and Figure 49).  
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Figure 49: Upper panel: Observed (blue) and modelled (green) seasonal water level fluctuations for year 1990 at 

Kingston, in Lake Ontario. Lower panel: Idem, but for the short-term fluctuations, which include only the set-up events 

for the 2days-filtered time series (orange and red). The grey line gives the full detailed series of observed short-term 

disturbances, including surface seiches (which are not modelled) and set-ups. 

Table 9: The errors (RMSE) obtained for the long- and short-term fluctuations in Lake Ontario, according to the 

calibrated model. 
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3.5.3. Lake Erie 

Past modelling effort dedicated to Lake Erie have mainly focused on three -dimensional 

simulations, which are used to predict seasonal water levels, as well as large-scale circulation, 

thermal structure, and ice cover (e.g. Bai et al., 2013; Dupont et al., 2012). Reasonable 

agreements between simulated and observed hourly water levels were obtained with the Lake 

Erie Operational Forecast System (LEOFS-FVCOM, NOAA) over a two-year period, including 

seiche representation following strong wind events (Kelley et al., 2018; Xu et al., 2018). However, 

the amplitude and timing of extreme set-up events were interpreted as deficient, with RMSEs 

ranging from 4 to 18 cm, with the largest errors at the lake ends. Few attempts have been 

conducted with two-dimensional hydrodynamic models, although these can improve the depiction 

of nearshore dynamics, especially with respect to currents in shallow water areas. It is possible 

to mention the high-resolution model implemented by Dibling (2012) for Lake Erie, which is based 

on ADCIRC-SWAN (ADvanced CIRCulation Simulating WAves Nearshore), a coupled 

hydrodynamic and wave model that provides a fine scale description of coastal dynamics, 

including flooding.  

3.5.3.1. Two-Dimensional Lake Erie model 

The Lake Erie model, which includes the downstream portion of the Detroit River and the 

upstream portion of the Niagara River, is based on an unstructured, finite element mesh grid that 

allows for good definition of shorelines, shallow water areas and harbours. The grid has a 

resolution of ~10 m to 3 km and includes over 323k nodes (150k triangular elements; Figure 50). 

Lateral boundaries were placed at Fort Wayne (Detroit River) and Fort Erie (Niagara River), in 

line with known gauging stations. The downstream course of major tributaries was also included 

in the mesh to provide adequate runoff forcing for historical modelling. River discharges can be 

significant to the overall net basin supply, especially during the spring freshet when total river flow 

rate can episodically reach 1000 m3s-1. Main tributaries include the Maumee River (Ohio, USA) 

and the Grand River (Ontario, Canada), which are by far the most significant inflows outside of 

the Detroit River. 
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Figure 50: The mesh (top) and the bathymetry (bottom) of the Lake Erie hydrodynamic model. Insets show details of 

the lake’ inlet (Detroit River) and outlet (Niagara River). 

The bathymetry was constructed using a linear interpolation method, which uses a priority-based 

ranking process to avoid overlapping (and conflicting) datasets and ensure that the best available 

depth measurement is used at each grid node. The datasets employed comprise high -resolution 

bathymetry of the Detroit17 and Niagara Rivers, hydrographic surveys collected by the NOAA 

along the southern shores of the lake and in the Buffalo area 

(https://maps.ngdc.noaa.gov/viewers/bathymetry/), as well as the official Lake Erie bathymetric 

grid distributed by the NOAA (https://www.ngdc.noaa.gov/mgg/greatlakes/). Some bathymetric 

LiDAR and high-resolution sounding data were also added at specific locations on the lake, near 

and within the wetland sites included in the project. The uplands and beaches observed at Long 

Point, located on the northeast shore of the lake (Figure 2), were added to the mesh to allow for 

                                              
17

 The bathymetry used for the Detroit River was first created for the Detroit River and Lake St. Clair waterways hydrodynamic model, 

which included 2000 surveys collected by the NOAA. 

https://maps.ngdc.noaa.gov/viewers/bathymetry/
https://www.ngdc.noaa.gov/mgg/greatlakes/
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(potential) flooding of the land under an extreme high water levels scenario. Figure 51 shows the 

final bathymetry grid obtained after the interpolation process.  

 

Figure 51: The Manning’s coefficient in the lake, and in the Detroit and Niagara Rivers. 

The Manning’s coefficient, or bed roughness, was determined based on the substrate as defined 

by the Great Lakes Aquatic Habitat Framework dataset (https://www.glahf.org/data/), with a 

varying coefficient for sand, mud, gravel, rock, or clay (Figure 51). A more specific calibration was 

realized within the lake inlet/outlet, where bottom friction greatly influences the amount of water 

entering or leaving the basin, the mean annual discharge of the Detroit and Niagara Rivers being 

close to 6000 m3s-1. For the Detroit River, the roughness applied replicates that used in the pre-

existing Huron-Erie corridor hydrodynamic model (Holtschang and Koschik, 2002), as it has 

already been calibrated to ensure proper flow rate through the waterways (CHC, 2009). The 

Manning’s coefficient in the headwaters of the Niagara River was calibrated over a one-year 

period to preserve the seasonal trend in lake levels and prevent long-term deviation. A depth-

related coefficient was selected, with three different values that follow bank topography (Figure 

51). While the simulated water levels are consistent with observations, non-negligible errors are 

obtained in the outflows at Fort Erie, which are highly variable depending on the period simulated 

(Figure 52). Published discharge data, however, are subject to known errors. Uncertainty in 

headwaters flow measurements has been estimated to 4% (200 to 250 m3s-1) at a 95% confidence 

level (Bruxer, 2010). The Ontario Power Corporation River Controllers, who are in charge of the 

Robert Moses Niagara Power Plant, also apply correction factors to the observations, based on 

downstream gauges and actual power plant flows, to account for losses due to weeds and ice 

https://www.glahf.org/data/
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(pers. comm.). Therefore, no further calibration was attempted to correct for the flow discrepancy 

at the Lake Erie outlet, and, as explained in the following sections, this error has no direct impact 

on the long-term simulated water levels due to the simulation strategy chosen for the project.  

 

Figure 52: Top panel: Discharge simulated (orange) and observed (red) in 2013, at Fort Erie station (Niagara River). 

Bottom panel: relative error (%) between the simulated and observed discharge (blue), and relative mean error (black 

line) computed for the period April–November 2013. The relative error ranges from 86–107 % according to the 2.5 

and 97.5 centiles, for this specific year. 

The Lake Erie model was run with a 6-minute time step, which was found to be optimal for rapid 

convergence and reliable modelling of the lake’s response to winds. The simulations provide 

water level estimates from April through November only, to cover the growing season  and avoid 

any ice cover that is not accounted for in the modelling.  

3.5.3.2. Hydrodynamic forcing: Seasonal cycle and Interannual Variability 

To create the historical time series, which covers the period 1980–2018, the hydrodynamic forcing 

included all components of the net basin supply that control the water level seasonal cycle: 

overlake precipitation, overlake evaporation, runoff, inflow/outflow, and diversion (through the 

Welland Canal, which connects Lake Erie to Lake Ontario). Several datasets were used to p rovide 

adequate forcing throughout the recent past period, based on the best available products (cf. 

Table 11).  
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3.5.3.2.1. Inflow/outflow, diversion and runoff 

Lateral boundary conditions for the Lake Erie model were specified using real-time measurements 

recorded at the lake inlet and outlet: discharge at Fort Wayne, in the Detroit River (USGS station 

04165710; Michigan, USA), and water level at Fort Erie, in the Upper Niagara River (CHS station 

02HA013; Ontario, Canada). In the first case (Detroit River), high-resolution discharge data (6-

minute time scale) were available for the last decade of the calibration period (2008–2018). Prior 

to these dates, only daily average flow (1990–2007) or daily flows estimated through the stage-

fall-discharge equations developed by Fay and Kerslake (2009), with wintertime adjustment for 

ice retardation, were obtainable.  

 

Figure 53: Top panel: Water level observed time series at Buffalo (black dots) and Fort Erie (green line), at the mouth 

of the Niagara River. The reconstructed Fort Erie time series, estimated using a Gradient Boosting regression 

algorithm, is shown by the red dots. Bottom panel: Absolute bias calculated from the estimated and observed water 

level time series at Fort Erie.  

In the second case (Niagara River), continuous water level measurements at Fort Erie have only 

been recorded since 2009. Missing data (1980–2008) were reconstructed based on historical 

water levels observed at Buffalo (station 9063020; New York, USA), using a Gradient Boosting 

regression algorithm that employs a machine learning technique to obtain the best least-squares 

regression estimates. One regression estimate was obtained for every day-of-year, using a 31-
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day moving window18, to provide values that reflect the seasonality observed in the (water levels) 

correlation, which is related to weed growth and change in bed roughness. The regression was 

performed over the low-frequency components of the time series, which include seasonal 

variability and wind set-up events. Comparison of predicted and observed water levels at Fort 

Erie on a sample dataset revealed a RMSE of ~5 cm, with a maximum absolute bias of 14 cm 

observed in winter (97.5 centile; Figure 53). 

 

Figure 54: The Lake Erie watershed, with details of some of its secondary and tertiary watersheds, and the location of 

one hydrometric (gauging) station (adapted from https://w ww2.erie.gov/environment/index.php?q=lake-erie-

w atershed-protection-alliance and ECCC-OMECC, 2018). 

The drainage basin of Lake Erie covers parts of Indiana, Michigan, Ohio, Pennsylvania, New York 

and Ontario, and it includes numerous small rivers that drain one of the secondary watersheds. 

Overall, 61 000 km2 of the land surface contribute to the runoff, most of which is provided by the 

Detroit River that controls the water flows from Lake Huron through the St. Clair River, Lake St. 

Clair, and Detroit River system. As previously stated, the downstream course o f 18 tributaries of 

the lake’s sub-basins were included in the grid, and inflow at tributary boundaries was used to 

ensure adequate drainage from surrounding land to the lake and capture peak flows. To do so, 

all secondary and tertiary watersheds were inventoried and associated with stream gauging 

                                              
18

 The use of a moving window avoid the creation of discontinuities from month to month.  

https://www2.erie.gov/environment/index.php?q=lake-erie-watershed-protection-alliance
https://www2.erie.gov/environment/index.php?q=lake-erie-watershed-protection-alliance
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stations where available (Figure 54), and then the gauged drainage areas were estimated. A 

correction factor was computed for each available stream gauge to obtain accurate estimates of 

total streamflow for a secondary watershed based on the associated gauging stations. The 

ungauged basins, which are primarily located on the northern shores of the lake (Table 10), were 

quantified with the drainage-area ratio method, i.e. the ungauged flow is estimated according to 

the nearby gauging station. Table 10 lists the gauged and ungauged secondary watersheds, their 

major tributary, which includes the tributaries used as boundary conditions in the hydrodynamic 

model (indicated by a star in Table 10), and the percentage of the gauged drainage area. The 

inventoried watersheds contained two drainage areas located in the downstream portion of the 

Detroit River (i.e. Cedar Creek and Detroit watersheds), as their flow is not captured by 

measurements recorded at Fort Wayne. For the historical period (1980–2018), the correction 

factors used to compensate for the ungauged drainage fraction change based on data availability, 

as some stations have only been operating for the last decade(s) (e.g. Black River, USGS station 

04200500).  
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Table 10: Lake Erie secondary watersheds, their major tributary, including tributaries used as boundary conditions in 

the hydrodynamic model (indicated by a star, *), their associated gauging station, as well as the drainage (in km2) 

area and percentage of the gauged area. 

 

The Welland Canal, which connects the lower lakes for navigat ion, diverts annually about 

260 m3s-1 of water from Lake Erie to Lake Ontario. This canal was included in the grid to account 

for diversion, and daily discharge was used (CHS station 02HA019) to provide a good estimate 

of the outflow through this canal.  

The temporal resolution of boundary conditions, whether it is river outflows, inflows/outflows or 

diversion, varies with the available observations, ranging from 6-minute data to daily values. 
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3.5.3.2.2. Overlake precipitation and evaporation  

Two different gridded datasets were used to provide the overlake precipitation, which  is maximum 

in late summer and early fall according to the climatology. The Canadian Precipitation Analysis 

(CaPA) was selected first, as it provides the best possible estimate of 24-h accumulated 

precipitation over the North American domain. Several complementary CaPA products were 

available at the beginning of the project, including the Regional Deterministic Precipitation 

Analysis (RDPA-10 km; Lespinas et al., 2015), which covers the period 2002–2021, and the 

Regional Deterministic Reforecast System (RDRS-10 km; Gasset et al., 2021), which covers the 

period 2010-2014. The latter offers surface reanalysis, which assimilates additional 24-h total 

precipitation observations to improve precipitation analysis. 

Prior to 2002, a complementary dataset was selected to fill in the missing years in the CaPA 

analysis, which does not cover the entire historical period. Since a gridded source was needed, 

the Multi-Source Weighted-Ensemble Precipitation (MSWEP) was identified as a potential 

product. MSWEP V1.1 (1979–2015; Beck et al., 2017), which is a global-scale precipitation 

dataset at high spatial (~30 km) and temporal resolution (3-h), produces estimates based on daily 

gauge observations, satellite remote sensing data, as well as reanalysis datasets, in addition  to 

including automatic bias-correction for gauge under-catch and orographic effects. This product 

showed good performance in estimating daily precipitation values over the period 2008 –2017 

compared to a set of 10 other gauge-corrected precipitation datasets (Beck et al., 2019). A rapid 

comparison of the quality obtained from RDPA-CaPA and MSWEP over the Great Lakes region 

against a gauge-adjusted precipitation dataset, the CPC global unified daily analysis 

(https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html), showed similar performance for 

years 2002–2010. The observed biases were comparable over the March–November period, with 

the greatest dissimilarity noticed during the summer months (June, July and August), when 

RDPA-CaPA displays significant underestimation of daily precipitation accumulation over the 

southwestern portion of the Great Lakes Basin compared to MSWEP (not shown). However, 

RDPA-CaPa is known to be less efficient in summer due to its difficulty in correctly reproducing 

convective precipitation (Lespinas et al., 2015). When used to force the Lake Erie hydrodynamic 

model, both products (RDPA-CaPA and MSWEP) show good performance when combined with 

other dynamic forcings, i.e. runoff and evaporation (Figure 55; blue and orange lines). The long-

term, seasonal trend obtained under realistic transient forcing will be discussed in Section 3.5.3.5 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
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Figure 55: Simulated water levels obtained for Fairport, between May– September 2013, obtained using various 

evaporation and precipitation datasets: CaPA, the Canadian Precipitation Analysis, MSWEP, the Multi -Source 

Weighted-Ensemble Precipitation, and LLTM-1D, the Large Lakes Thermodynamics Model, and Climex. 

The primary gap in dynamic forcing comes from overlake evaporation, which is a key component 

of the Great Lakes water balance: on an annual time scale, the latter is roughly equivalent to the 

sum of overlake precipitation and tributary runoff (Gronewold et al., 2013; Spence et al., 2013). 

Although evaporation is expected to vary temporally and spatially, as spatial patterns tend to 

follow synoptic-scale air masses travelling over the lakes (Spence et al., 2011), spatially 

distributed estimates of evaporation are rare and almost non-existent for long, extended periods. 

Promising findings have been obtained using model-simulated latent heat flux, which can be 

translated into a total lake-wide evaporation estimate (Gronewold et al., 2019), but this use is still 

recent and no data currently cover the entire histor ical period. Only seven monitoring stations 

adapted to evaporation rate measurements are installed at offshore locations as part of the Great 

Lakes Evaporation Network (GLEN), which further limits any spatial analysis of over -lake 

observations.  

For the current project, the over-lake evaporation extracted from the NOAA model developed by 

Croley (1989) was used, the so-called Large Lakes Thermodynamics Model (LLTM). This one-

dimensional fixed-parameter model includes schemes for wind mixing (Croley, 1992) and ice 

thermodynamics (Croley and Assel, 1994). It is used in the NOAA Great Lakes Advanced 
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Hydrologic Prediction System (AHPS), which provides reasonable forecasts of net basin supplies 

and water levels (Croley, 2005; Gronewold et al., 2011). Daily lake-wide values obtained from the 

NOAA for the period 1980–2018 (in mm; person. comm.) were therefore employed to specify a 

homogeneous, evaporation rate over the lake (in m s -1) in the hydrodynamic model.  

3.5.3.2.3. Recent past and future periods: Mean lake level and inflow 

projections 

Under climatic scenarios (recent past and future periods), the Lake Erie simulations were strictly 

forced with mean lake levels and Detroit River outflow projections. The mean lake level, which 

encompasses all the water balance components, obviates the need for separate surface forcing 

fields and river inflow boundary conditions. As with the historical time series, the Fort Erie level 

was estimated using a Gradient Boosting regression algorithm, utilizing the projected mean lake 

level as the explanatory variable rather than the observed level at Buffalo. Tested over the same 

historical period (2009–2018; cf. Figure 53), and using the levels obtained from Port Stanley, Port 

Colborne, Toledo and Cleveland gauging stations as the observed mean lake levels 

(https://www.tides.gc.ca/C&A/historical-eng.html), the goodness of fit of the predicted Fort Erie 

levels is slightly lower than otherwise obtained from the Buffalo time series: a RMSE of ~9 cm, 

and a maximum absolute bias of 26 cm (97.5 centile). The use of a mean smooths the observed 

water levels at stations, which have significant fluctuations related to wind set-ups. The increase 

in errors is mainly due to the absence of these events in the predicted values. Since water level 

and outflow times series provided by the net basin supply analysis are only on a quarter -month 

scale (cf. Section 3.3), and are not intended to reproduce daily or sub-daily fluctuations, the 

predictions obtained from the projected mean levels are deemed acceptable. Furthermore, the 

Lake Erie model was found to be insensitive to the forced water level at its outlet: the bathymetry 

of the Niagara River largely controls the amount of water leaving the lake (through the outlet), and 

proper inflow conditions assure a good representation of the absolute mean water level (i.e. 

seasonal cycle). 

3.5.3.3. Atmospheric forcing: Set-ups and seiches 

Depending on the period being simulated, the gridded datasets used to model the lake’s response 

to winds are those detailed in Section 2.3: Climex, for the historical period, and debiased winds 

extracted from selected climatic scenarios, for the recent past and future periods. Both give 3 -

hourly estimates (or projections), and are interpolated to a common horizontal resolution of 

~10 km, which reflects the original Climex grid.  

https://www.tides.gc.ca/C&A/historical-eng.html
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Since the Climex dataset only covers the period 1980–2013, forecasts provided by the Global 

Environmental Multiscale Model (GEM, Canadian Meteorological Center) were used to fill the gap 

in the historical time series (2014–2018). The GEM model is an integrated atmospheric 

environmental forecasting and simulation system that incorporates both global and regional data 

assimilation. The latter is achieved by the Regional Deterministic Prediction System that produces 

hourly estimates at a horizontal grid spacing of approximately 10 km, which covers North America 

(e.g. Caron et al., 2015). Surface winds were extracted from archived data produced between 

2014 and 2018 (Table 11). 

Table 11: Summary of hydrodynamic and atmospheric forcing datasets used for the historical period (1980–2018; 

observations), and recent past and future periods (1980–2010, 2070–2100; climatic projections). 

 

3.5.3.4. Modelling framework and data assimilation 

The various tests performed during calibration showed that modelled water levels are in good 

agreement with observations in the first half of the annual simulated period, from early April to 

late July, but gradually deviate from expected values thereafter, during late summer and fall 

(Figure 55, blue and orange lines). This discrepancy occurs when overlake evaporation begins to 

be significant, relative to the other net basin supply components 

(https://glisa.umich.edu/sustained-assessment/erie-climatology/), due to the increase in air-lake 

temperature difference and winds speed. Several experiments were conducted with diverse 

combinations of evaporation and precipitation to determine the impact of the  gridded datasets on 

https://glisa.umich.edu/sustained-assessment/erie-climatology/
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the annual change in water levels (Figure 55)19. The Lake Erie model appears to be very sensitive 

to changes in water balance in late July, and evaporation observations are too sparse, both 

temporally and spatially, to properly estimate the bias adjustment that would correct the LLTM 

data (if any). 

To overcome this problem, the simulations were performed with a data assimilation process, 

which provides an estimate of the system state based on “observations” to adjust the model 

trajectory (Fletcher, 2017). This process was designed to be applicable to both intended uses, 

namely (1) historical simulations, for which observed water levels are known at each gauging 

station, and (2) climate change simulations, which use projected mean lake levels.  

3.5.3.4.1. First guess and wind set-ups 

The state of the system at a specific time step is defined by a mean lake level, which gives the 

seasonal variability, as well as anomalies, which define the response of the lake to surface wind 

forcing. The surface seiches, which explain the high-frequency components of these anomalies, 

are an oscillatory phenomenon that cannot be predicted: they are initiated by the relaxation of the 

surface waters following a wind set-up event (cf. Section 3.2.1.2). The data assimilation process 

therefore focuses on the slope of the lake surface (i.e. the set-ups) to prescribe water level 

anomalies, a slope that is directly determined by the atmospheric conditions used to force the 

model.  

Past climatic observations provide a comprehensive datasets of synoptic‐ scale atmospheric 

patterns that characterize the Great Lakes region. These data can be used as a database, i.e. a 

large collection of possible wind fields for which the state of the lake is known, based on the water 

levels recorded at gauging stations. Under a similar wind pattern, the lake is assumed to respond 

similarly, with a surface slope that generates a rise/fall in water level at the same geographical 

locations (e.g. rise at Toledo and fall at Buffalo). Since the winds and water levels show good 

coherence for periods of 2 days or more (cf. Section 3.2.2), the lowpass-filtered wind and water 

level time series can be used to populate the database that will serve as “observations” in the 

data assimilation process. 
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 Overlake evaporation and precipitation extracted from the Climex dataset, described in Section 2.3.1.1, were used to provide a 
comparative view of the impacts of surface forcing fields on the observed discrepa ncy between recorded and predicted water levels 

at the end of the summer period.  
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3.5.3.4.2. Wind patterns and historical database 

The zonal (“𝑢”) and meridional (“𝑣”) wind components were extracted from the homogeneized 

dataset used to validate the Climex outputs (cf. Section 2.3.1). Only stations located in the 

nearshore or offshore areas of the lake were retained, resulting in a set of eight meteorological 

stations. The database was restricted to the longest common period of record available, which 

spans from 2005 to 2015, and only observations obtained between March and November were 

preserved, to eliminate any potential influence of the ice cover on lake dynamics. Since only wind 

pattern is of interest for the data assimilation, i.e. the relative importance of the wind vectors, and 

following the work of Weber and Kaufmann (1994), the components 𝑢 and 𝑣 included in the 

database were normalized. This normalization was performed using the mean absolute value, 

which is defined, for a given wind field with j different locations (or observations), as: 

𝑠𝑡 =
1

𝑁
∑(𝑢𝑗,𝑡

2 + 𝑣𝑗,𝑡
2 )

1/2
𝑁

𝑗 =1

 3.11 

, with N, the number of stations available at each t time step of the recording period20. All individual 

wind observations, �̃�𝑗,𝑡 = 𝑢𝑗,𝑡/𝑠𝑡 or 𝑣𝑗,𝑡 = 𝑣𝑗,𝑡/𝑠𝑡, were used to define the dimensionless wind 

fields. In total, over 29k observations were included in the historical database.  

This database also contains the (lowpass-filtered) water level time series observed during the 

same period (2005–2015), at each Lake Erie gauging station. 

                                              
20

 A minimum of five simultaneous observations at different locations was required to maintain a date in the wind database . 
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Figure 56: Examples of results obtained from step 3 of the data assimilation process for (left) westerly winds, and 

(right) northerly winds. Top panels: The wind pattern extracted from the forcing database at initialization time T (black 

arrows) opposed to closest wind pattern extracted from the historical database at time 𝑡′ (red arrows). Bottom panels: 

The lake’ slope “observed” at time T opposed to the lake’ slope “estimated” based on water level records extracted 

from the historical database, at time 𝑡′. Details given in the text. 

3.5.3.4.3. Data assimilation 

Several steps are taken to determine the “first guess” that defines the state of the system at model 

initialization, which is the combined sum of the mean lake level and wind set-up amplitude: 

1. Wind time series are extracted from the gridded dataset used to force the model, at the 

geographical position of each of the eight meteorological stations ( 𝑗) included in the 

historical database. They are then filtered and normalized, using the same method 

explained above, and stored in a separate database called the forcing database, with 

components 𝑈𝑗,𝑡 and �̃�𝑗,𝑡. 

2. At simulation initialization (time T), the wind field used to force the model is extracted from 

the forcing database. The distance between this wind field and the 29k observations of 

the historical database is calculated according to (Weber and Kaufmann, 1994):  

𝐷𝑡 = {
1

𝑁
∑[(𝑈𝑗,𝑇 − �̃�𝑗,𝑡)

2
+ (�̃�𝑗,𝑇 − �̃�𝑗,𝑡)

2
] 

𝑁

𝑗=1

 }

1/2

 3.12 
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The process is repeated for the wind field extracted from the forcing database at the time 

𝑇 − 6ℎ and for all observed winds extracted from the historical database at time 𝑡 − 6ℎ, 

giving 𝐷𝑡−6ℎ. This procedure allows the identification of a persistent wind field, lasting at 

least 6 hours, which would be sufficient to counteract the lake’ inertia and induce a 

displacement of the surface waters.  

3. Among the 29k wind fields, the date 𝑡 = 𝑡′ of the observation that yields the minimum 

distance 𝐷𝑡 + 𝐷𝑡−6ℎ is selected as the best wind pattern estimate for the initialization. At 

this historical date, the lake was responding to a wind field that can be stated similar to 

the wind used to initialize the model. 

4. The observed water levels at the date 𝑡 ′ are extracted from the historical database and 

used to create the initialization state. Since these water levels give the correct lake slope 

(anomalies), but not the correct absolute mean level (seasonal variability), a simple bias 

adjustment is then performed. To do so, the estimated bias between the mean lake level 

at the date 𝑡 ′ and the observed or projected mean lake level at initialization time T , 

depending on the period simulated (historical or recent past/future periods), is used to 

correct the water levels extracted from the historical database.  

5. The initialization state (or initial water level) at each grid node is obtained from the 

observed (and corrected) water level at the nearest gauging station (nearest neighbour 

search), at date 𝑡 ′. 

 

Figure 56 gives an example of result obtained after step 3 for two distinct wind patterns, westerly 

(left panels) and northerly winds (right panels). Data assimilation is performed every 48 hours in 

the adopted modelling framework, and the simulation then proceeds freely over a 60 -hour time 

window. The first 12 hours of each simulation step are suppressed to eliminate the stabilization 

phase, which can present large numerical instabilities depending on the forcing applied at time T, 

especially with respect to runoff and inflow/outflow. Each 60-h time window of the simulation is 

therefore independent, and several can be performed simultaneously. 

3.5.3.5. Model performance 

The performance of the Lake Erie model was tested over the baseline period, 1980–2010, using 

the historical time series, which was intended to replicate the observed water level over the past 

several decades. Data assimilation was utilized to perform the simulations, with the observed 

mean lake level and winds as “observations”, as well as the Climex wind dataset that is known to 

be biased (Section 2.3). Here, it is the model performance under its scenario-based configuration 

approach that is tested, rather than its ability to be used as an operational product, wi th the best 

forcing datasets. In hydrodynamic models, much of the uncertainty comes from the uncertainty in 

climate forcing, which cannot be avoided.  
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3.5.3.5.1. Seasonal water level and Interannual Variability 

To determine the ability of the two-dimensional model to reproduce year-to-year lake levels, which 

reflect the annual and interannual variations experienced by the lake due to the changing 

importance of the net basin supply components, lowpass-filtered time series were first compared. 

Simulated water levels at each of the lake’ gauging stations were archived during the simulations 

and then lowpass-filtered to remove any influence of wind (i.e. wind set-ups and surface seiches). 

Only variations with periods greater than 30 days were retained to focus on monthly f luctuations. 

The error was quantified using the bias, defined as the difference between the predicted 𝑃𝑖 and 

observed 𝑂𝑖  values at time 𝑖, i.e. 𝑃𝑖 − 𝑂𝑖 , as well as the root mean square error (here after referred 

to as RMSE):  

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑(𝑃𝑖 − 𝑂𝑖 )2

𝑛

𝑖=1

]

1/2

 3.13 

with 𝑛, the number of observed or predicted values.  
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Figure 57: Bias distributions calculated from the observed and simulated (historical) monthly water level series 

(1980–2010) for each Lake Erie station, starting with the westernmost station, Toledo (upper left corner), and sorted 

by longitude. 

The simulated time series show good agreement with the historical levels recorded at the stations. 

Figure 57 displays the bias distributions computed from the lowpass-filtered time series at each 

lake locations, sorted by longitude, starting with the westernmost station, Toledo. For most 

stations, the errors remain between 5 and 10 cm for the 30-year period compared, with a 

maximum absolute value of ~15 cm (e.g. Toledo), which is within the acceptable error magnitude 

used as a standard criterion by the National Ocean Service (NOAA; Hess et al., 2003). While 

centred distributions are noticed at Fermi Power Plant, Bar Point, Marblehead, Erieau and 
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Cleveland, the model tends to underestimate water levels at the western end of the lake, and 

overestimate them on the opposite side. The largest discrepancies are observed at Toledo and 

Sturgeon Point, where the mean biases reach -2.1 (-4.1; -0.5) cm and 3.8 (2.4; 5.0) cm 

respectively (with first and third quartiles in brackets). The results from Fairport should be taken 

with caution, as the water level gauge is sitting over a salt mine, where the area is known to have 

subsided in the past. The observations were adjusted in September 2006 with an overall 

correction of ~-5 cm (NOAA, pers. comm.), which is consistent with the left-skewed distribution 

observed in Figure 57. Since 2006, the vertical motion of the gauging station has been 

continuously monitoring, and the recorded water levels are in agreement with those simu lated, 

which explains the bimodal distribution obtained at this station. 

Table 12: Mean bias (with first and third quartiles) and RMSE calculated from the observed and simulated water level 

series (1980–2010), and detailed for monthly variations (seasonal water level), wind set-ups event, and surface 

seiches. 

 

Overall, the mean bias errors stay within 5 cm, as do the root mean square error (Table 12). 

3.5.3.5.2. Wind set-ups and surface seiches 

To highlight the ability of the hydrodynamic model to capture the lake’ response to winds, and to 

properly reproduce the specific dynamics of the system, the water level anomalies were 

considered separately. While the wind datasets used to force the model has a direct influence on 

the generation of set-up events and their amplitude, the barotropic surface motions are only 
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partially related to atmospheric forcing. The initial amplitude of the seiches is dictated by the initial 

surface motion, but the subsequent propagation and damping of the oscillations are prescribed 

by the model parametrization, which controls internal lake processes as near-bottom friction.  

The predicted and observed hourly time series at the stations were first highpass-filtered to 

remove the seasonal variability prescribed by the hydrodynamic forcing (periods > 30 days). The 

resulting anomalies were then divided into their low- and high-frequency components, defined as 

water level fluctuations with periods greater or less than 2 days, respectively (cf. Section  3.2.2). 

Since the initial wind set-up amplitude is critical for the lake dynamics, individual events were 

identified in each (low-frequency) anomalies time series, following the procedure explained in 

Section 3.2.2, and taking care to compare the common events in each series. Surface seiches 

were analyzed via the daily range fluctuations estimated from the high-frequency anomalies.  

Several statistical measures were used to determine the model skill with respect to each of the 

frequency components, related to set-ups and surface seiches. In addition to the bias (Table 12), 

the measures included the RMSE, and its systematic, 𝑅𝑀𝑆𝐸𝑠, and unsystematic parts, 𝑅𝑀𝑆𝐸𝑢 

which are defined as: 

𝑅𝑀𝑆𝐸𝑠 = [
1

𝑛
∑(�̂�𝑖 − 𝑂𝑖 )

2
𝑛

𝑖=1

]

1/2

 3.14 

and 

𝑅𝑀𝑆𝐸𝑢 = [
1

𝑛
∑(𝑃𝑖 − 𝑃�̂� )

2
𝑛

𝑖=1

]

1/2

 3.15 

with 𝑃�̂�, the regressed predictions obtained from the linear least-squares regression model 𝑃�̂� =

𝑎 + 𝑏𝑂𝑖 . The 𝑅𝑀𝑆𝐸𝑠 estimates the linear (or systematic) error of the model, due to inputs or model 

deficiency, while the 𝑅𝑀𝑆𝐸𝑢 quantifies the amount of difference between the predicted and 

observed values that results from random processes or influences outside the legitimate range of 

the model, due to lack of model refinement or grid resolution. For good model performance, the 

systematic difference should approach zero, while the unsystematic difference, approach 𝑅𝑀𝑆𝐸 

(Willmott, 1982). The standard deviation (or square variance) was also considered by the 

computation of: 

𝑠𝑜 = [
1

𝑛
∑(𝑂𝑖 − �̅�)2

𝑛

𝑖=1

]

1/2

 3.16 
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and 

𝑠𝑝 = [
1

𝑛
∑(𝑃𝑖 − �̅�)2

𝑛

𝑖=1

]

1/2

 3.17 

with �̅� and �̅�, the mean of the observed and predicted values at the selected station. Finally, two 

standardized measures were included in the analysis, as such unitless quantities are widely 

applied to perform cross-model comparisons. The first is the index of agreement (IOA), which is 

defined as (Willmott, 1982): 

𝐼𝑂𝐴 = 1 − [
∑ (𝑃𝑖 − 𝑂𝑖 )2𝑛

𝑖=1

∑ (|𝑃𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2𝑛
𝑖=1

] 3.18 

This index takes a value between 0 and 1, with 1 indicating perfect agreement between 𝑃 and 𝑂. 

It can be interpreted as the measure of the relative average error between the model and 

observations. Although a modified and improved version of the IOA exists, the original definition 

presented by Willmott (1982) was used for consistency with other studies (e.g. Chu et al., 2011). 

The last quantity evaluated is the amplitude skill, AS, which is a skill test developed by Dingman 

and Bedford (1986) to assess model credibility in simulating major water level events. This test 

assigns a score to each prediction based on the difference between the observed and computed 

values, with a minimum score of 0 when the difference is greater than 0.5 m, and a variable score 

for lower values (Table 13).  
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Table 13: Amplitude skill score rules for water level anomalies.  

 

Comparison of the biases calculated from set-up events and daily range values first reveals an 

inherent feature of the hydrodynamic model: a systematic bias in the modelled amplitude of 

surface seiches. While the initial set-ups causing the seiches are mostly overestimated regardless 

of station, with errors of 0.2 to 3.7 cm, the mean estimated biases for barotropic motions range 

from -3.2 to -1.6 cm, with a maximum error of -4 cm at the ends of the lake (Table 12), where 

observed seiches amplitude is maximum (e.g. Toledo and Buffalo; cf. Section 3.2.2.1). This error 

is well captured by the systematic RMSE, which remains close to the total RMSE for most stations 

(Table 14). The lake’ parametrization induces excessive damping of the long-standing waves in 

the basin, but no adjustment was found to be effective in reducing dissipation based on tests 

conducted during the calibration. For instance, the damping coefficient that acts as a linear friction 

parameter was set to 0 in present application, as were the free surface smoothing viscosities. 

According to the amplitude skill score (i.e. AS), the absolute difference between daily range values 

remains between 5 and 10 cm for the baseline period (1980–2010), which is equivalent to a 

maximum error of 5 cm in absolute amplitude (since the daily range is about twice the amplitude). 

The standard deviation of the predicted values, 𝑠𝑝, is also similar to that estimated from 

observations, 𝑠𝑜: the relative daily variations are consistent over the 30-year period, which is an 

important result for wetland modelling. The low values obtained for IOA also highlight a general 

lack of mean seiche amplitude rather than inconsistency in relative values.  
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Table 14: Statistics and amplitude skill scores for set-ups events (left) and surface seiches (right) in Lake Erie, for the 

reference period (1980–2010). 

 

The wind set-up events identified in the simulated series show better agreement with observations 

than seiches, with a RMSE of less than 5 cm, mainly due to unsystematic errors. The IOA remains 

above 0.6, with values exceeding 0.8 at most stations. The amplitude skill score is also high, with 

a minimum value of 9.35 estimated at Toledo, where water level variations due to prevailing 

westerly winds are known to be significant (cf. Section 3.2.2.1). The calculated biases over the 

30-year period are largest on the west side of the lake, at Fermi Power Plant and Toledo. These 

discrepancies are due in part to the biases observed in the wind data, Climex particularly 

overestimating the wind speed in this part of Lake Erie. Figure 58 details the observed and 

simulated winds that promoted the water level rise (or fall) identified as set-up events in the 

analysis, for station Toledo. The bar plots provide the monthly distributions of wind set -ups and 

wind speeds as calculated for the baseline period, and specify the magnitude of each when (1) 

all individual events are considered (referred to as mean in Figure 58) or (2) when only the 

maximum monthly values are retained (referred to as max in Figure 58). The maximum 

distributions of simulated events show larger discrepancies, which follow the trend observed for 

wind speeds, with greater overestimation leading to larger error in the magnitude  of modeled 
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events. The mean distributions show better agreement between simulations and observations, 

demonstrating the model’ ability to reproduce lake motions in terms of water surface fluctuations 

following wind forcing.  

 

Figure 58: Monthly bias distributions for wind set-ups amplitude and wind speed at Toledo, for the period 1980-2010. 

The bar plots give the errors as estimated from (1) all identified individual events (referred to as mean, clear colors), 
and (2) the maximum monthly values only (referred to as max, dark colors). Wind speed refers to the magnitude of 

the wind that generated the events in the simulated and observed time series. The observed winds were extracted 

from the homogeneized observational dataset, while the simulated winds were extracted from Climex, at Toledo 

location (cf. Section 2.3). Only distributions with a minimum of ten values have been retained. 

Figure 59 and Figure 60 show examples of the observed total monthly biases for the period 1980–

2010 at two stations, Kingsville and Toledo, with short snapshots of the simulated and observed 

hourly time series (lower panels). The error distributions provide explicit information about 

expected biases when all the frequency components are considered, including seasonal 

variations, set-ups and surface seiches (although figures also detail the expected error difference 

when seiches are neglected, which is referred to as 2d-filtered in Figure 59 and Figure 60). Even 

at Toledo, where the errors were found to be maximal (Table 12 and Table 14), the monthly mean 

biases remained less than 5 cm for hourly values, and 10 cm based on the first and third quartiles, 

which is within the acceptable error range according to standard NOS criteria. When the influence 

of the seiches is removed from the time series (i.e. the 2d-filtered series), the maximum estimated 

bias is reduced, as expected from the previous results. Most importantly, the model captures 
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major set-up events with accurate simulated water level (when forcing allows), as shown in Figure 

60, where a water level rise of approximately 1 m was observed at Toledo. 

 

Figure 59: Upper panel: monthly bias distributions for hourly (green) and lowpass-filtered (red) time series at 

Kingsville, for the period 1980–2010. Lower panel: snapshot of the observed (black) and simulated (red) hourly time 

series at Kingsville for late April, early May 2016. 
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Figure 60: Upper panel: monthly bias distributions for hourly (green) and lowpass-filtered (red) time series at Toledo, 

for the period 1980–2010. Lower panel: snapshot of the observed (black) and simulated (red) hourly time series at 

Toledo for late May, early June 2015. 

3.5.4. Lake St. Clair 

3.5.4.1. Bathymetry and modelling approach 

Lake St. Clair is the smallest and shallowest lake in the Great Lakes Basin, with its deepest zone 

reaching only about 8 m. This water body is particularly well suited for a classical 2D 

hydrodynamic simulation, which allows for realistic water level fluctuations, including surface 

seiches, and time-evolving flows along the St. Clair and Detroit Rivers. Although highly 

comprehensive, this modelling approach has a much higher computational cost due to the mesh 

density required to resolve river flows, and the large amount of time steps needed to cover the 

entire historical and projected periods. 

Figure 61 details the bathymetry within the Huron-Erie Corridor that connects the upper Great 

Lakes to the lower Great Lakes, providing an average flow of 5200 m3s-1 to Lake Erie (Holtschlag 

and Koschik, 2002), or 80% of its total water supply (Bolsenga and Herdendorf, 1993). This 

channel includes the St. Clair River, Lake St. Clair, and Detroit River. The former is a relatively 

straight river of 64 km that flows from Lake Huron to Lake St. Clair, with an elevation drop of 1.6 m 

from end to end. In addition to Lake Huron outflows, this river receives inputs from the Pine, Black 
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and Belle Rivers located along the US side of the river. The Detroit River connects Lakes St . Clair 

and Erie, and runs along 52 km, with a drop in elevation of about 0.9 m. Its main flow is maintained 

by Lake St. Clair outflows, as well as the Rouge River (Michigan, USA). Lake St. Clair, which 

occupies the center of the system, is dynamically different from the other lakes of the Great Lakes 

Basin since 98% of its water supply comes from the St. Clair River and only 2% from its net basin 

supply. Consequently, even small seasonal changes in the inflow and outflow of its connecting 

channels can have a marked influence on its water levels. This is especially true during the ice 

seasons, when the lake is affected by ice retardation in the St. Clair and Detroit Rivers. Frequent 

ice jams are observed in the St. Clair River, which can restrict up to 50% of the flow (Quinn, 2002). 

 

Figure 61: Details of the bathymetry (left panel) and Manning’ coefficients (right panel) used in the Huron-Erie 

Corridor model. 

The set of boundary conditions used for the Huron-Erie Corridor consists of: (1) Lake Huron water 

level imposed at Fort Gratiot (Michigan, USA), near the outlet of the lake; (2) Lake Erie water level 

at Bar Point (Ontario), near the mouth of the Detroit River, on the eastern side of the Lower Detroit 

River; and (3) main tributary inflows along the system, which can have a noticeable effect on the 

downstream water levels. Because hydraulic conditions in the Lower Detroit River highly depend 

on the dynamics of Lake Erie, which forces surface seiches and set-up events in the river, 

simulations performed under the projected climate (past and future) used outputs from Lake Erie 

model at Bar Point. The two models are thus linked in the classic 2D modelling approach to 

provide realistic short-term water level fluctuations. 
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3.5.4.2. Mesh details 

The mesh density used for the Huron-Erie Corridor consists approximately of 600k nodes and 

300k quadratic elements, with average element size ranging from 75 m in the St. Clair and Detroit 

Rivers to 750 m in the lake. The number of elements were kept high within the St. Clair–Detroit 

Seaway, as well as in vicinity of the St. Clair Delta, where the St. Clair River enters the northern 

portion of Lake St. Clair via several channels (Figure 62). 

 

Figure 62: The computational grid used for the Huron-Erie Corridor model, with details in vicinity of the St. Clair Delta 

and the mouth of the Detroit River. 

3.5.4.3. St. Clair and Detroit River calibration and model validation 

The calibration of the St. Clair–Detroit River system was especially challenging in the upper and 

lower parts of the channel, where flow passes through riverine sections that are hydraulically 

driven by the dynamics of Lakes Huron and Erie (cf. Section 3.2.2). Because the water depth is 

quite shallow in these areas and flow velocities can be large, small changes in local Manning 

coefficients and hence, bottom friction, can induce marked changes in  discharge. Since the use 

of suboptimal friction values can bias Lake St. Clair inflows/outflows, and thus simulated water 

levels, a rigorous calibration was necessary. This calibration was performed with the help of the 
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numerous gauging stations located in the course of the system, as well as with the discharge 

measurements obtained through past field campaigns. Only a lack of data was noted at Lake St. 

Clair, which limited the parametrization of wind set-ups and surface seiches amplitude that can 

reach 5.3 cm and 1.8 cm, respectively (cf. Section 3.2.2). Therefore, the standard surface wind 

stress formulation proposed by Kumar et al. (2009) was used without further adjustment. This 

formulation, which accounts for the influence of waves on the surface drag coefficient and was 

primarily designed for oceanic applications, was also employed for the Lake Erie modelling (cf. 

Section 3.5.3).  

The Huron-Erie corridor model was calibrated for ice-free, plant-free conditions, and different 

areas were used to modulate the Manning coefficient between the mouths of the St. Cla ir and 

Detroit Rivers (Figure 61). The root-mean square errors obtained for the calibration period, i.e. 

the first week of May 2016, were about 4.5 cm in the St. Clair River, 1.8 cm in Lake St. Clair, and 

2.6 cm in the Detroit River, considering all stations included in either of these sections.  

 

Figure 63: Monthly mean water level errors (RMSE) at several gauging stations, for the period 1980–2018. Errors are 

broken down by month. 

Validation was performed on the entire historical period, i.e. 1980–2018, using water level and 

discharge measurements, the latter provided at Port Huron (Michigan, USA), at the mouth of the 

St. Clair River, and Fort Wayne (Michigan, USA), in the Upper Detroit River. Overall, the annual 
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mean water level errors (RMSE) remain below 5 cm (Table 15 and Figure 63). When the errors 

are broken down by month, an increase in the difference between observed and modelled levels 

is observed in early spring (March–April), especially during years 1982, 1984–1987, and 1996 

when errors reach 10–25 cm at stations (not shown). These RMSEs are likely related to freezing 

conditions that altered the flow in the system, a secular situation that can lead to flow reversal 

(e.g. Derecki and Quinn, 1990). Errors also tend to be noticeably smaller in summer in all sections 

of the connecting channel except near Gilbraltar (Michigan, USA), in an area known to be 

influenced by submerged vegetation (Figure 63). 

Table 15: Water level errors obtained for different sections of the Huron-Erie Corridor for years 1980–2018, according 

to two different periods. The first (Mar 15th to Nov 15th) includes late spring, when ice conditions can be observed in 

the St. Clair and Detroit Rivers. 

 

A similar behavior is observed for discharge values (Figure 64), with maximum errors in March 

and April, particularly in the Upper Detroit River whose entrance is frequently obstructed by ice 

jams.  
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Figure 64: Idem as Figure 63, but for discharge values at Port Huron (St. Clair River) and Fort Wayne (Detroit River). 

3.5.5. Lake Huron 

3.5.5.1. Bathymetry and modelling approach 

Lake Michigan-Huron is one of the largest lakes in the Great Lakes Basin with a total area of 

117400 km2. This lake is characterized by a large ratio of lake surface area to drainage basin, 

which damps the seasonal hydrologic fluctuations usually seen in the lower lakes. Because Lakes 

Michigan and Huron are connected through the Straits of Mackinaw, which is 6  km wide at the 

narrowest point, they exhibit similar behavior and are generally treated together when considering 

water levels and hydrodynamics. The mean annual net flow observed in the straits is on the order 

of 1400 m3s-1, but shows high variability from year to year (Quinn, 1977). The presence of this 

channel section in the system as a large influence on the surface seiches dynamics, as it initiates 

bi-lake oscillations and complex interactions with atmospheric forcing (Anderson and Schwab, 

2013).  
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For this project, the focus is primarily on the Lake Huron system, although both lakes were 

included in the hydrodynamic model to ensure adequate physical modelling. Lake Huron is a 

relatively complex basin composed of several entities. Its main water body, oriented North -South, 

is connected to Lake Superior via the St. Marys River that flows through several channels and 

provides a mean inflow of about 2100 m3s-1 to the system, which is controlled by the Lake Superior 

Regulation Plan. In its southern and northern portions, the lake is connected with the St. Clair –

Detroit system by the St. Clair River, near Port Huron, and to Lake Michigan via the Straits of 

Mackinaw, respectively. Finally, narrow passages in its northeastern part drain Lake Huron water 

into two nearly distinct water bodies, the North Channel and the Georgian Bay. Georgian Bay is 

a deep basin (>100 m) oriented along a northwest–southeast axis (Figure 65). 

The scenario-based approach was used to model the dynamics of Lake Huron owing to its deep 

bathymetry. Three open boundaries were used that force: (1) inflows to Lake Huron from Lake 

Superior, via the St. Marys River, and Michigan, via Mackinaw Straits, and (2) the mean level at 

the outlet of Lake Huron, near Port Huron, which controls outflows. While the first two were held 

constant for all simulated solutions, using mean values, the latter was modulated to provide the 

discrete water levels required for the solutions space (cf. Section 3.4.3.2). Lake Michigan inflow 

was imposed near Ludington (Michigan, U.SA), on the eastern side of the lake (Figure 65), to 

provide a realistic water supply to Lake Huron, which must compensate for precipitation, 

evaporation and run-off from the Michigan watershed. The bathymetry used for Lake Huron is 

shown in Figure 65, along with the geographical location of the boundary conditions. 
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Figure 65: Mesh details (upper panels) and bathymetry (lower panel) used for the Lake Huron model. Boundary 

conditions are also defined. 

3.5.5.2. Computational grid 

As explained earlier, the Lake Huron model includes Lake Michigan, as it influences the amount 

of water entering the system, as well as the overall dynamics. While the choice of an open 

boundary in the Straits of Mackinaw would have precluded the need to include this large water 

body in the computational grid, initial tests have shown that winds can greatly alter the flow in the 

Straits, leading to numerical instability and convergence problems that hamper the simulations. 

Therefore, the inclusion of Lake Michigan, although costly in terms of number of elements and 

computational time, prevented numerical instability by moving the boundary condition far from the 

connecting channel, into eastern Lake Michigan (Figure 65), which improved convergence 

behavior. Since Lake Michigan is used only to provide appropriate hydrologic forcing, a coarse 
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set of bathymetry was used for this lake and no calibration was undertaken to optimize the 

modelled hydrodynamics west of the Straits of Mackinaw. The final mesh consists of about 1840k 

nodes and 888k elements (Figure 65).  

3.5.5.3. Calibration and validation 

Since Lake Huron and Georgian Bay differ in orientation, with the Georgian Bay facing slightly 

westward relative to Lake Huron, their main basin responds distinctly to atmospheric forcing. The 

effect of winds on lake surface motion will therefore by variable depending on wind direction, with 

a greater influence of NW-SE winds in Georgian Bay due to longer fetch along this axis, which is 

nevertheless limited given the size of this sub-basin. Therefore, the selection of the optimal wind-

depth combination was realized separately for these two entities during the calibration process, 

leading to a variable effective depth in both basins for the same wind direction and intensity. 

Figure 66 shows an example of the results obtained from the set-up events calibration at 

Collingwood, in southern Georgian Bay.  

 

Figure 66: Observed (grey dots) and modelled (orange dots) wind-driven set-ups at Collingwood, Georgian Bay. The 

black and red lines show the linear regression obtained from the detected events, i.e. the relationship between event 

amplitude and wind speed for the zonal (left panel) and meridional (right panel) wind components. 

The calibrated Lake Huron model gives an overall root-mean square error of 4.6 cm and 4.2 cm 

for the amplitude of wind-generated events in Lake Huron and Georgian Bay for the year 1990, 

respectively (Table 16). These errors must be added to errors observed in the seasonal water 
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level fluctuations, which is reproduced with a mean RMSE of 4.1 cm and 4.8 cm in both basins. 

Figure 67 provides an overview of the simulated time series at Collingwood for this specific year. 

Table 16: The errors (RMSE) obtained for the long- and short-term fluctuations in Lake Huron, according to the 

calibrated model. 

 

As revealed by the data in Table 16, two stations have significant errors: US Slip, in the Upper St. 

Marys River, and Essexville, in the Saginaw Bay, which is the large, elongated bay on the western 

side of Lake Huron. The former is located near the open boundary, downstream of the locks that 

enable ships passage between Lake Superior and Lake Huron, and is strongly influenced by the 

flow regime of the river and hence, the gates that control the Lake Superior outflows. Since this 

boundary condition is held constant in the modelling approach adopted, without any consideration 

of flow at the control structures, the change in water level induced by the rapids flow (e.g. Bachand 

et al., 2017) is not captured by the model, thus the observed error. This approximation is valid 

here given the limited effect of flow variation on lake level, which is the primary concern in this 

project. The latter, Essexville, is located within an elongated bay that is large enough (~87 km × 
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46 km) to be influenced by local wind-driven fluctuations, which can enhance the surface water 

deflection otherwise observed in the main basin. This bay would have benefited from a separate 

calibration to improve the water level estimated locally. However, since there is no wetland site in 

this part of Lake Huron, as in the Upper St. Marys River, no additional work was undertaken to 

reduce the divergence observed at US Slip and Essexville.  

 

Figure 67: Upper panel: Observed (blue) and modelled (green) seasonal water level fluctuations for year 1990 at 

Collingwood, in Georgian Bay Lower panel: Idem, but for the short-term fluctuations, which include only the set-up 

events for the 2days-filtered time series (orange and red). The grey line gives the full detailed series of observed 

short-term disturbances, including surface seiches (which are not modelled) and set-ups. 
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3.6. Wave modelling 

The wave climate that shapes the physical environment of wetlands at selected sites in the Great 

Lakes Basin was estimated using wave modelling, which is a numerical description of the sea 

state and the evolution of wind-generated waves (Cavaleri et al., 2007). Since the Great Lakes 

are large, closed basins with both deep and shallow water areas, the modelling approach used 

had to be adapted to the changes that a wave undergoes as it moves toward the coast. The 

behaviour and structure of this type of wave are progressively modified and subject to physical 

processes that differ considerably from those governing deep-water waves (e.g., shoaling, 

refraction, diffraction, wave breaking). While some wave models are specifically designed to 

capture open ocean conditions, others are more dedicated to the transition zone, where waves 

undergo substantial changes, or even closer to shore, where morphodynamic processes come 

into play (i.e. surf and swash zones). 

The models selected to construct the recent past wave climate and projections must therefore 

reflect the complexity of wave dynamics in coastal environments. This section provides a general 

description of the selected models, the nesting process used to provide a good representation of 

waves in shallower areas of the wetlands (Section 3.6.1), and the two modelling approaches 

adopted for Lakes Erie and Ontario (Section 3.6.2). While the former provides a comprehensive 

description of transient wave dynamics under unsteady and time-evolving conditions, the latter 

takes advantage of a scenario-based strategy that mimics the method used to generate the Lake 

Ontario/Huron water level time series (Section 3.4.2.3). No wave modelling was performed for 

Lake Huron due to time constraints and limited computer resources. The results of the validation 

are presented in Section 3.6.3. 

3.6.1. Spectral wave models: WWIII and SWAN 

There are two main families of wave models: phase-resolved models, which simulate wave 

processes based on conservation laws (mass and momentum), and phase-averaged models. 

Phase-resolved models aim to describe rapidly changing waves in environments where diffraction 

and wave-wave interactions are predominant (e.g. harbours, near coastal structures). These 

models simulate individual waves, which requires a high spatial resolution to resolve all 

wavelengths (typically a few metres). Their use is computationally demanding (Monbaliu et al., 

2000), and is therefore mainly dedicated to engineering studies and small coastal areas. Phase-

averaged models are based on the action balance equation (described below), and describe the 

temporal and spatial evolution of the wave energy spectrum (Monbaliu,  2003). Waves are 
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simulated stochastically, by computing sea surface and wave statistics rather than the full range 

of waves. Wave conditions are assumed to evolve slowly, as opposed to phase-resolved models. 

The wave energy spectrum is computed on each grid cell of the computational domain, resulting 

in a representation of the wave field.  

3.6.1.1. Third-generation wave models 

The most up-to-date models, called third generation wave models, were first developed in the 

mid-1980s by Hasselmann et al. (1985), and Hasselmann and Hasselmann (1985). They explicitly 

include a source term for the wave-wave interactions that control the wind-sea evolution, in 

addition to the wind input (wave generation) and dissipation: the discrete interaction 

approximation (or DIA) that is still widely used in modern models. This range of models solves 

the wave transport equation determining the wave energy density in the time-space and frequency 

domain without any a priori assumptions.  

The wave parametrization used to simulate coastal waters in phase-averaged models is similar 

to that of ocean models. The main difference lies in the term sources that are more complicated 

and complex in shallow waters, where several processes may control the propagation of the wave 

energy (shoaling, refraction, diffraction, quadruplet wave-wave interactions, bottom friction and 

depth-induced breaking). Two classes of spectral models are therefore employed, depending on 

the domain modelled (Figure 68): offshore and nearshore models, which use respectively a 

formulation adapted to open ocean or coastal conditions. The most commonly used models 

included WAM (WAMDI Group, 1988) or WaveWatch III (referred to as WW3; Tolman et al., 

2002), for the first class, and SWAN (Simulating Wave Nearshore; Booij et al., 1999) or STWAVE 

(Steady State Spectral Wave model; Smith et al., 1999), for the second21. 

                                              
21

 Commonly used nearshore wave models also included XBeach (Roelvink et al., 2010) and SWASH (Simulating Waves ti l l Shore; 
Zij lema et al., 2011), which are defined as phase-resolving nonlinear shallow-water models preferentially dedicated to coastal engineer 

studies.  
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Figure 68: Top panel: Comparison of the most popular numerical wave models, the processes involved and their 

application (adapted from Roelvink, 2011). Bottom panel: Summary of physical processes in commonly used wave 

models. Green boxes indicate processes exclusively related to shoreline dynamics. 

The evolution of wave energy in the phase-averaged models is determined by the wave action, 

𝑁 = 𝐸/𝜎, which depends on the wave density spectrum, 𝐸, that distributes wave energy over 

discrete frequencies, 𝜎, and directions, 𝜃. The action balance equation is expressed as: 

𝑑𝑁

𝑑𝑡
=

𝑆𝑡𝑜𝑡

𝜎
=

𝑆𝑖𝑛 + 𝑆𝑤𝑐 + 𝑆𝑛𝑙4 + ⋯

𝜎
 3.19 

with 𝑆𝑡𝑜𝑡, the sum of the source terms that consists of various contributions depending on the 

model. In deep water, the dominant source terms include wave generation, through the transfer 

of energy from wind to the waves, 𝑆𝑖𝑛, dissipation of wave energy due to withecapping, 𝑆𝑤𝑐, and 

non-linear transfer of wave energy due to quadruplets (four-wave interactions), 𝑆𝑛𝑙4. Closer to the 

coast, in intermediate depths and shallow waters, more complex processes most by considered, 

as bottom friction, 𝑆𝑏𝑜𝑡,dissipation due to depth-induced breaking, 𝑆𝑏𝑟𝑘, non-linear three-wave 

interactions (triads), 𝑆𝑛𝑙3. In the nearshore zone, localized effects such as coastal reflection, 

refraction, diffraction, and wave damping by vegetation may also be involved. Figure 68 gives a 
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summary of the physical processes included in SWAN, when the model is used to simulated 

nearshore dynamics.  

3.6.1.2. Running the wave simulations: Workflow 

In order to provide realistic simulations of sea conditions at the boundary of a wetland site, several 

steps must be followed to set up a wave model. The workflow includes the creation of the 

computational grids and nesting approach, definition of the wave models, generation of boundary 

conditions, and selection of outputs. Figure 69 summarizes these steps, which are defined in the 

following subsections. 

 

Figure 69: Schematic of the steps required to build and set-up a wave model (adapted from 

https://texample.net/tikz/examples/swan-wave-model/). 

3.6.1.2.1. Computational grids, nesting and bathymetry 

The first step in the model set-up is to define the domain and resolution of the computational grid, 

i.e. the X,Y geographic space in which the simulation will be run and the size of the cells (pixel 

size or point distance). All the computational grids used are regular, i.e. uniform in X,Y and 

rectangular, and in spherical coordinates. 

https://texample.net/tikz/examples/swan-wave-model/
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A first spatial grid is defined that encompasses the entire lake, with a cell resolution of 500 m. 

This regular grid is dedicated to the WaveWatchIII model (version 5.16) which provides the 

offshore conditions, and includes only wet cells (i.e. without landward extension). Two 

intermediate SWAN grids (version 41.31) are then used to progressively transport the waves into 

the nearshore zone, where propagation terms such as shoaling and refraction come into play. 

Their use is necessary to provide a consistent physical representation of wave energy transport 

from one grid to another, as a change in resolution implies a change in bathymetry, which has a 

crucial influence on wave dynamics. In this nesting approach, each cell of the parent grid located 

at the boundaries of the intermediate (finer or child) grid is used to force the incoming wave energy 

(Figure 70). These boundary conditions are therefore extracted from simulations previously 

computed with the coarser (parent) grid. 

At each boundary node, the wave energy spectrum is prescribed at a given time step, but the 

waves then evolve according to local conditions. The deep-water boundary of the first SWAN 

intermediate grid is located in the WW3 grid at points where the effects of shallow water are 

negligible, thus avoiding large discontinuities between the two models. In the Great Lakes, where 

the wave climate is devoid of swell energy (low frequency waves), the deep-water approximation 

is valid to a water depth of 10–15 m. Wave energy is therefore brought from a basin-wide 

resolution of 500 m (WW3) to intermediate resolutions of 150 m and 50 m (SWAN), before 

reaching the final grid that covers the terrestrial and lacustrine area of the wetlands, with a 

resolution of 20 m (SWAN; Figure 71). Each successive grid is dependent on the previous 

(coarser) one, ensuring that offshore wave information is transferred to smaller scales. Overall, 

one WW3 was constructed for the lake, and three SWAN grids for each of the wetland sites, for 

a total of 13 models for Lake Ontario and 16 for Lake Erie (Table 17). 
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Figure 70: Nesting approach for wave modelling. Details are given in the text. 

The same bathymetry and topography datasets used for the Lake Erie and Lake Ontario 

hydrodynamic models were used to create the grids, using a linear interpolation technique with a 

priority-based ranking that favours specific datasets to avoid any overlap. For the final grid, which 

covers the wetland area of interest, the digital elevation model was included in the interpolation 

process to provide a good digital representation of the topography, especially in the terrestrial 

portion of the site. In SWAN, dry cells are removed from the calculation at each computational 

time step, allowing the number of active (or wet) cells to change with water levels.  
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Figure 71: The nested SWAN grids for the Lynde Creek marshes (5LCM, Lake Ontario). The shaded colors show the 

bathymetry, relative to IGLD85, generated for the finer computational grid, which has a resolution of 20 m and 

extends over the terrestrial area of the site. Dry cells are removed from the calculation and updated at each forcing 

time step (i.e., 1 hour), based on water level fluctuations. Uncolored areas are masked cells. 

3.6.1.2.2. Models set-up: Numerical and physical schemes 

The spectral wave models estimate the wave spectrum at each point of the computational grid 

based on discrete frequencies and directions. For WW3 and SWAN grids, the same spectral 

resolution was chosen, based on what is used for the operational Great Lakes wave forecasting 

system developed by NOAA’ National Centers for Environmental Prediction  (NCEP; Alves et al., 

2014). This model operates with a discrete spectrum of 29 frequencies ranging from 0.05 to 0.72 

Hz, emphasizing the importance of short waves typical of wind-sea. From 24 (WW3) to 36 

(SWAN) angular directions were selected for wave propagation, allowing a directional resolution 

of 10–15° and a good computational efficiency.  

While WW3 is sensitive to the CFL (Current-Friedrichs-Lewy) stability criterion, the numerical 

propagation scheme in SWAN is unconditionally stable, especially on a regular mesh, and very 

robust in shallow coastal applications due to the mutual independence of spatial and temporal 

resolutions. The CFL number, which determines the time that the fastest waves spend in a cell of 

the mesh, limits the time step needed to simulate adequately the geographical propagation of 

wave energy. The smaller the spatial resolution, the smaller the time step required to resolve 

nearshore processes (e.g., Monbaliu et al., 2000). All non-stationary runs of WW3 were therefore 

performed with a global time step of 6 minutes, while the SWAN runs used a time scale of 3 

minutes, which is small enough to handle any changes in physical conditions (offshore waves, 
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water levels, or winds). These time scales apply strictly to the Lake Erie wave models, as we will 

be discussed latter (cf. Section 3.6.2). 

Both WW3 and SWAN were run with the so-called observation-consistent wind input and 

whitecapping dissipation scheme, known as the ST6 physics, which is based on field observations 

at moderate-to-strong wind-wave conditions (Rogers et al., 2012). This scheme is based on a 

nonlinear wind input that relaxes in strong winds and steep waves to parametrize airflow 

separation (Donelan et al., 2006). A wave-breaking threshold is also used for the withecapping 

dissipation (Babanin et al., 2001), as well as cumulative behavior at small-scales for dissipation 

under breaking waves (e.g. Young and Babanin, 2006). Bottom friction (JONSWAP formulation), 

swell dissipation (Ardhuin et al., 2010), and depth-induced breaking (Battjes and Jenssen, 1978) 

were activated, as well as the Lumped Triad Approximation (LTA; Hasselman et al., 1985) and 

the Discrete Interaction Approximation (DIA; Eldeberky, 1995), for triad and quadruplets wave -

wave interactions. The models used Message Passing Interface (MPI) with a distributed memory. 

Table 17 summarizes the characteristics of each computational grid and numerical scheme used. 
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Table 17: Characteristics of the computational grids and numerical schemes used for WW3 and SWAN models. 

Acronyms refer to wetland sites. 
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3.6.1.2.3. Boundaries conditions: Atmospheric and oceanic forcing 

The wind data used to force the wave models were extracted from the datasets generated for the 

hydrodynamic modelling (cf. Table 11, Section 3.5.3). For non-stationary simulations (Lake Erie), 

the gridded wind fields were updated every 1 or 3 hours depending on the period being simulated 

(historical or recent past and future periods). Since water level fluctuations influence the depth-

induced breaking process in the nearshore zone and hence the wave intensity along the coast 

(e.g., Meadows et al., 1997), waves were calculated with fluctuating water levels. Depending on 

the simulation approach chosen (temporal or scenario-based method), gridded water level time 

series or static water level scenarios were used, as explained hereafter (cf. Section 3.6.2).  

Although wave-current interactions (WCI) can have a significant impact on wave dynamics, 

particularly under fetch-limited conditions (Brissette et al., 1993) by causing, for example, change 

in wave age, energy dissipation, change in wave frequency, and refraction, no current forcing was 

used for the simulations. The two-dimensional hydrodynamic models developed for the Great 

Lakes are unable to resolve the basin-wide circulation, which is largely three-dimensional, and 

the nearshore dynamics, which are dominated by several specific features such as upwelling or 

downwelling and coastal jets (Valipour et al., 2019). Therefore, no reliable current was available 

to predict this WCI, which is mainly confined to extremely shallow regions that exhibit large 

variations in current intensity and water depth (Dodet et al, 2013). This lack of information is a 

limitation of the wave simulations performed in this project. However, and since the shaping of 

wetlands (in time and space) related to wave activity is primarily predicted as a function of relative 

wave intensity (or near-bottom orbital velocity) in the area of interest, rather than in terms of 

absolute values, no significant drawbacks are expected from this limitation. 

3.6.1.2.4. Outputs 

From intermediate grids (WW3 and SWAN), only the hourly mean wave statistics were saved as 

outputs, i.e. the significant wave height (𝐻𝑆), mean wave period (𝑇𝑝 and/or 𝑇𝑚02  according to 

model), and mean wave direction (𝐷𝐼𝑅). In the final stage of the modelling (SWAN 20 m), the 

near-bottom orbital velocity (𝑢𝑏𝑜𝑡) was also saved on the original 20 m grids and then interpolated 

to the CWRM grid, providing results at a final 10 m resolution for wetland modelling. 

3.6.2. Modelling approaches: Time-varying and scenario-based methods 

Two numerical approaches were taken to run the wave models, mimicking the methods used for 

hydrodynamic modelling of Lakes Erie and Ontario. In the first case (Lake Erie), the simulations 
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were run in a non-stationary mode, from mid-March to early November with a (global) time step 

of 3-6 minutes. The first two weeks of simulation are used as an initialization period (or spin -up), 

i.e. the time required by the model to reach a statistical steady state under non-stationary forcing. 

Water levels and winds are updated at each one-hour time step, as well as the wave forcing at 

the boundaries, to give a realistic simulation framework. In this configuration, continuous and  

gridded time series of wave statistics are obtained, with a time resolution of one hour.  

3.6.2.1. Scenario-based wave modelling: Lake Ontario 

In the second case (Lake Ontario), the wave models were run in stationary mode (∂N/∂t=0): the 

solution obtained is the quasi-equilibrium state of the waves under static forcing. Since 

atmospheric (wind intensity and direction) and hydrodynamic (water level) conditions change 

during the growing season, the wave climate must be inferred from a time series that integrates 

spatial and temporal variations. To do this, an interpolation technique similar to that described in 

Section 3.4.3.2 was used to construct the wave time series based on the prevailing physics, by 

grouping in chronological order several static solutions, each of which being a representation of 

waves at a given time step. 
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Figure 72: Schematic illustration of the scenario-based approach to wave modelling (Lake Ontario). The selection of 

the standing wave scenario at a specific time step is performed in two steps. First, the selection of the closest 

hydrodynamic forcing, which depends on the wind speed and direction observed at time t in the filtered and regionally 

averaged wind time series (first half of the diagram). Second, the selection of the closest wave scenario, which is 

based on the wind speed and direction observed at time t in the regionally averaged unfiltered wind time series 

(second half of the diagram). 
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The first phase in this modelling approach is to define the state of the lake, in terms of water 

levels, from the mean lake level and regional (filtered) winds, which determines the dominant 

atmospheric system responsible for the set-ups (Section 3.4.3.2). This state is chosen from a 

subset of four solutions, grouping the solutions simulated with the two closest water level 

scenarios and the two closest wind intensities scenarios, as described in Section 3.4.3.2 (Figure 

72). These solutions are therefore taken from the database previously created for hydrodynamic 

modelling purposes, which include 970 lake representations (but only the first 776 are used for 

wave modelling, which includes the first eight levels in Figure 40, cf. Section 3.4.3.2). Unlike 

hydrodynamic modelling, which interpolates the lake state from the four solutions in the created 

subset, wave modelling uses only the closest solution in that set as a forcing. 

Where the static wave modelling approach differs from the method explained in Section 3.4.3.2 

is in the choice of atmospheric forcing used to generate the wave solutions. T he response of 

surface gravity waves to changes in wind is a rapidly evolving process that responds quickly to 

any deviation in wind direction and intensity, especially in fetch-limited seas (e.g., Günther et al., 

1981). Scenario-based wave modelling must therefore include this degree of complexity, which 

involves selecting a static wave solution that matches the wind conditions at each one-hour time 

step of the simulated time series. While the two-day filtered regional winds are used to select the 

hydrodynamic forcing, i.e., the lake condition in terms of water levels and set-ups, the unfiltered 

regional winds were chosen to force the wave models. At a specific time step, the wind intensity 

and direction used to generate the waves are directly related to the unfiltered, regional average 

values, based on predetermined wind classes that included 5 intensities and 16 directions (Table 

18). In doing so, two wind time series are used to determine the correct wave scenarios at time 

𝑡, i.e., the two-day filtered and regionally averaged wind time series, which defines the 

hydrodynamic state of the lake, and its corresponding unfiltered series, for the surface forcing 

(Figure 72).  
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Table 18: Wind classes used for the scenario-based modelling approach. 

 

For any wind less than 10 km h-1 (or 2.8 ms-1), calm conditions are assumed and no significant 

wave energy is expected in nearshore areas. While each wind intensity class (unfiltered) was 

used to create a distinct wave climate in combination with the lake level representations, the 

variability in wind direction was limited to five directions. These directions are centred on the 

(filtered) wind direction used to simulate the hydrodynamic scenario used as forcing (Table 18). 

This choice allows for a non-negligible reduction in computational time and data storage 

requirements since all 13 Lake Ontario models must be run for each of the solutions included in 

the wave database to provide accurate nesting between grids. Based on the analysis conducted 

on the historical wind time series (1980–2010), i.e. the regionally averaged filtered and unfiltered 

Climex series (cf. Section 3.4.3.2), the use of five directions (± 45°) around each filtered wind 

direction encompasses up to 88-96% of the variability between the two series (not shown). 

Overall, for each of the 776 lake representations, 20 wave scenarios were computed, for over 15k 

scenarios per model. 

3.6.2.2.  Expected bias of the scenario-based waves modelling 

Although the scenario-based approach is very efficient, providing a quick way to create a wave 

climate based on time series of water levels and winds, the use of stationary solutions forced 

under constant physical conditions can lead to a bias in the estimation of wave statistics. Wave 

simulations performed under spatially constant wind by Nekouee et al. (2016) were found to be 

deficient, as the predicted significant wave height was up to 38% higher than that of a spatially 
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variable wind field. Small-scale wind effects can have a significant impact on surface waves: 

omitting them can increase uncertainties in modelling outputs, which is the case when spatially 

constant fields are used. 

3.6.3. Validation: Historical period, 1980–2010 

Since wetland models use the relative wave intensity across the study sites to shape the plant 

communities and their spatial extent, contrasting the observed wave conditions across the grid, 

no calibration was performed to improve the numerical wave models. Calibration is used to correct  

for bias in the wind field, providing a possible adjustment to the wind drag coefficients and the 

strength of the swell decay due to wind effects (via the input term, 𝑆𝑖𝑛; e.g. Fernández et al., 

2021), and to improve the modelling for local conditions (e.g., calibrating the wave breaking 

coefficients). While wave observation data are available from buoys deployed in the central 

portion of the lakes via the National Data Buoy Center, no observations are accessible for the 

nearshore areas of the selected wetland sites. This lack of information limits the feasibility of a 

reliable calibration and does not ensure an optimal representation of wave characteristics along 

the shoreline in the shallower areas of the lakes. Therefore, the quality of the uncalibrated wave 

simulations was evaluated to determine the accuracy of the predicted values in deep water only. 

3.6.3.1. Errors and biases 

For both lakes (Lakes Erie and Ontario), deep-water wave statistics were extracted from 

simulations at the geographic position of surface buoys for which measurements are available 

since early 1980 (cf. Section 3.6.3). Because the WW3 models have a horizontal spatial resolution 

of 500 m, the four grid points located closest to each buoy location were used to generate time 

series of simulated values for the reference period, 1980–2010. The model-predicted values were 

then compared to the measurements using bias, root mean square error (RMSE), percent mean 

absolute error (MAPE), and dispersion index, SI: 

𝐵𝐼𝐴𝑆 =  𝑃𝑖 − 𝑂𝑖  3.20 

𝑀𝐴𝑃𝐸 = 〈|
𝑃𝑖 − 𝑂𝑖

𝑂𝑖

|〉 × 100 3.21 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
 〈(𝑃𝑖 −  𝑂𝑖 )2〉 3.22 

𝑆𝐼 = √
〈[(𝑃𝑖 − �̅�) − (𝑂𝑖 − �̅�)]2〉

〈𝑂𝑖
2〉

 3.23 

with 𝑃𝑖 and 𝑂𝑖 , the simulated and observed values at time 𝑖 for a specific station, respectively, and 

over bar or angle brackets denoting mean. The bias was calculated from the wave climatology, 

using the long-term time series of significant wave height and the best-fitted Weibull distribution 

(mean; cf. Section 3.6.3), as well as for individual realizations along the selected period (with 

mean and 2.5th/97.5th quantiles). The SI is a measure of variability, i .e., it gives the expected 

percentage error for the parameter. Bias, RMSE, and SI are standard statistical values used in 

wave modelling studies to quantify the accuracy of simulations (e.g. Hu et al., 2021). A final 

statistical indicator was used to evaluate model performance, the index of agreement, IOA, 

defined by Willmott (1982) and presented in Section 3.5.3.5. The IOA indicates a perfect 

agreement between the predicted and observed values when it is equal to 1. 

3.6.3.2. Lake Erie    

The significant wave height, 𝐻𝑆, and peak period, 𝑇𝑝, simulated by the model were compared to 

available buoy observations in Lake Erie for the baseline period, which provide  deep-water wave 

characteristics. The statistics for each wave parameter used for the model accuracy eva luation 

are presented in Table 19, along with the observed errors in the wind inputs at the station positions 

(i.e. Climex data). These time series were compared to the post-processed in situ winds as 

described in Section 2.3.1. 

Table 19: Summarized validation statistics of WW3 wave models data relative to in-situ measurements in Lakes Erie 

and Ontario. Statistics for winds (wind speed at 10 m), significant wave height, and wave period are presented at 

buoy locations, along with detailed statistics broken in wind directions for Lake Ontario. Statistics include bias, root -

mean-square error (RMSE), Mean Absolute Percentage Error (MAPE), scatter index (SI, and index of agreement 
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(IOA). 𝐻𝑆 Weibull refers to the mean of the best-fitted Weibull distribution, while 𝐻𝑆95, to waves in the upper range of 

the distribution (> 95th quantile). 

 

The simulated deep-water wave climatology for the historical period (1980-2010) is in good 

agreement with the observations, with a bias of 0.04–0.15 m for the significant wave height based 

on the mean of the best-fit Weibull distribution. This bias reflects a slight overestimation of 𝐻𝑆 at 

all stations, in agreement with the observed errors in the wind field (0.5–1.0 ms-1). Similar model 

behaviour can also be observed in the extracted time series for the year 2008, where the 

simulated data remain higher than the observations in the lower range of values, especially for 

station 45132 (Figure 73). This station (Port Stanley) has the largest deviations, with a bias of 

0.14 m, or 30% of the observed mean value. Inspection of the data reveals that the simulated 

waves are particularly overestimated in the peak of the distribution, where the waves reach their 

nominal value of ~30–70 cm (cf. Table 19, Section 3.6.3). The RMSE remains between 0.31 and 

0.35 m, which is comparable to the results obtained by Niu and Xia (2016) with their Finite -Volume 
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Coastal Ocean Model (FVCOM)-based Lake Erie surface wave model (i.e., up to 0.26–0.28 m), 

and by Alves et al. (2014) with NOAA's Great Lakes wave forecasting system (i.e., 0.14–0.37 m, 

all lakes combined). 

The scatter index varies between 0.43 and 0.53, providing information on the validity of the model 

estimates relative to the observations (acceptable < 1). For the highest waves (𝐻𝑠 > 𝐻𝑠95, the 95 

percentile), the absolute bias varies between 0.05–0.25 m (2–15%), with underestimates at 

stations 45005 and 45142, and a small overestimate in the central basin (45132), where the model 

accuracy is slightly lower (AOI < 0.80). Wave models generally underestimate storm peaks, which 

is one of the most challenging aspects of physics-based wave models (Cavaleri, 2009). During 

extreme events, nonlinear effects can potentially come into play and alter the wave dynamics, 

which is poorly captured by current wave models.  

The Q-Q plots in Figure 73 confirm the above results: overestimation of significant wave heights, 

with a maximum deviation observed at the top of the distribution, around the nominal wave climate 

amplitude (~0.3–0.7 m). The upper quantiles of the predicted distribution show small 

overestimates, revealing that wind input, more than model parameterization, may be responsible 

for the negative bias observed at the highest significant wave heights (𝐻𝑠95). The model simulated 

consistent storms and intense wave conditions, but there is a lack of temporal synchronization 

between the major events associated with 𝐻𝑠 > 1.2–1.4 m in Lake Erie. In the Great Lakes, the 

majority of the sea state can be characterized by moderate to low wave energy (Alvers et al., 

2011), with larger waves observed in early spring and late fall as expected from the wind 

climatology (cf. Figure 14), two periods that are at the limits of the modelling time window. The 

validation period may therefore hide the actual capacity of the model to reproduce more severe 

sea state. 
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Figure 73: Time series (left panels) and Q-Q plots (rights panel) of observed and simulated significant wave heights 

at buoys 45132 (a) and 45142 (b), in Lake Erie. 

Predictions of peak periods, 𝑇𝑃 , systematically underestimate observed values, as shown by 

biases that remain between -0.1 and -0.3 s, with a maximum absolute error of 3.0 s. The bias is 

mostly observed in the lower and upper quantiles, i.e., below 3 s or above 6 s (not shown), outside 

the range of nominal values observed in the in situ data (cf. Table 19, Section 3.6.3). The RMSEs 

range from 0.9 to 1.2 and the dispersion of the predicted values is quite small, with an SI score of 

0.21–0.29, which is similar to the results obtained by Alves et al. (2014). 

Overall, the agreement between the model and in situ measurements is satisfactory, although the 

performance of the WW3 model for Lake Erie could be improved by specific tuning of the wind  

input term: the accuracy of wave models depends strongly on the accuracy of the wind fields 

(Alves et al., 2014; Cavaleri, 1994). Since the wave modelling was performed with Climex data, 
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which have a temporal resolution of 3 h, an improvement could also be expected using hourly 

winds, as would be possible with the reanalysis outputs from the Global Environmental Multiscale 

Atmospheric Model (GEMR; Gasset et al., 2021) that were not available at the beginning of the 

project. 

3.6.3.3. Lake Ontario 

Because surface waves dynamics in Lake Ontario were modelled using a scenario -based 

approach with limited flexibility in terms of wind definition, with only five intensity levels (including 

calm conditions; Table 18), the objective of the simulations was primarily to replicate observed 

nominal conditions rather than individual realizations. Validation therefore focused on wave 

climate and upper quantile statistics to reflect the intended use of the wetland models, which are 

firstly concerned with the average wave conditions encountered during the growing season and 

storms, as explained in Section 3.2.4.3. 
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Figure 74: Time series (left panels) and Q-Q plots (rights panel) of observed and simulated significant wave heights 

at buoys 45135 (a) and 45139 (b), in Lake Ontario. 

The long-term statistics for the wave parameters show a variable bias depending on the observed 

local wind direction, revealing an asymmetric behaviour of the model depending on the 

atmospheric forcing. Therefore, the results in Table 19 were broken down into the four main 

geographical directions, namely north (NW–NE), east (NE–SE), south (SE–SW) and west (SW–

NW). 

The absolute bias estimated from the mean of the best-fit Weibull distribution ranges from 0.02 to 

0.24 m, with an absolute relative error that remains mostly below 25%. This error increases 

beyond 40% at station 45139 for south and west winds, the directions associated with the shortest 

fetches relative to station position in Lake Ontario, as well as the smallest recorded waves (< 0.25 

m; cf. Table 19, Section 3.6.3). Thus, the model overestimates the significant wave height under 

short fetch conditions, as predicted by previous studies (e.g. Toumi et al., 2012). The bias 
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extracted from individual observations is generally consistent with the biases observed in the 

winds. It remains within the error range of the NOAA Great Lakes wave forecasting system for 

most cases (i.e. below an absolute error of 0.10 m), but with a slightly higher RMSE than those 

obtained for Lake Erie (0.30–0.50). 

The scattering of the simulated values is also greater, with values ranging from 0.44 to 0.99. In 

the upper quantiles (𝐻𝑠 > 𝐻𝑠95), waves are globally underestimated as in the Lake Erie model, 

except for short fetch conditions (station 45139, SE–SW and SW–NW directions). However, the 

observed discrepancies are larger, with a MAE of 0–60%. The largest inaccuracies detected in 

the Lake Ontario model are reflected in the IOA, which remains below 0.8 for all stations. With 

respect to the predicted wave period, only the mean wave period, 𝑇𝑚02 , was extracted from the 

Lake Ontario scenarios, which reduces the comparison to the observed values at station 45012 

(buoys operated by ECCC strictly record the maximum wave period). As described above, WW3 

systematically underestimates this wave parameter, with a bias ranging from -1.4 to -1.0 s, which 

is significantly higher than the error observed in Lake Erie. However, 𝑇𝑚02  is sensitive to the entire 

density spectrum, which is largely biased in the low frequencies (highest waves), which may 

explain the observed difference between the two models. 

Overall, the Lake Ontario steady-state solutions provide reasonable long-term wave climate, but 

with significant errors in the station point estimates, especially in the upper quantiles of the 

significant wave height distribution (𝐻𝑠 > 𝐻𝑠95; Figure 74, left panels). The use of five intensity 

levels, with a maximum wind speed of 45 kmh-1 (12.5 ms-1), and a constant, uniform wind field 

clearly limits the ability of WW3 to reproduce wave generation under the atmospheric conditions 

that characterize the Great Lakes, with rapidly changing wind fields and intense wind gradients 

(Alves et al. 2011). The Q-Q plots in Figure 74 (right panels) show how the static wind scenarios 

can fit the mean climate on average (black line in Figure 74), but with significant biases due to 

the use of discrete wind classes. As demonstrated by Cavaleri (1994), a 10% error in the surface 

wind speed estimate can lead to a 10–20% error in 𝐻𝑠, which is not negligible. For an observed 

wind speed of 5.7 ms-1, the Lake Ontario wave model is forced with a wind speed of 6.94 ms-1, 

which represents a 17% error in the intensity of the atmospheric forcing, which can have important 

consequences on the predicted wave height. Although it would have been possible to increase 

the number of wind classes, this would have significantly increased the total number of wave 

scenarios, with each of the additional wind speed classes adding 3200 scenarios per wave model.  
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Given the final use of the wave statistics, which focuses on the relative difference in wave activity 

in the wetlands during the growing season, the Lake Ontario WW3 model and the scenario -based 

approach were considered acceptable. Any future improvement of the method should focus on 

the calibration of the wave models for use in a quasi-steady state and optimization of the number 

of wind classes used. 
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3.7. Physical variables for wetland modelling 

Ecohydraulic modelling focuses on the changing hydrological conditions that largely control the 

location, extent, productivity and diversity of wetlands (Mortsh, 1998). These conditions define the 

pattern of water-level fluctuations that shape wetlands and are indirectly influenced by important 

climatic factors, such as solar radiation, precipitation, evaporation and wind. In order to inform 

wetland modelling with a reliable description of short- and long-term water level fluctuations, the 

simulated data were post-processed to extract meaningful metrics that emphasize the timing, 

duration, and extent of observed fluctuations in the system. Although simple at first glance, this 

information must include the details of the complex water level dynamics that characterize the 

Great Lakes, including seasonal variations, set-ups, seiches, and waves. The set of physical 

variables selected must therefore be representative of these features and their specific 

importance in both terrestrial and lacustrine areas of the ecosystems, in order to reflect the 

environment-specific spatial and temporal variability. 

In this section, the post-processing technique used to aggregate the data is presented (Section 

3.7.1), along with the physical variables extracted from the physical modelling (Section 3.7.2). 

The wave modelling variables are discussed separately in Section 3.7.3. 

3.7.1. Wavelet analysis 

To provide a complete description of the fluctuations that modulate Great Lakes water levels, in 

terms of frequency, duration and time, a wavelet analysis was used. Such an analysis is 

specifically dedicated to time series showing multiple, periodic or episodic influences, each with 

its own time-frequency specificity. It is widely used in geophysical studies, including climate 

science (e.g. Tan et al., 1996) and oceanographic research (e.g. Elsayed, 2010). This section 

provides a brief review of this processing technique. A detailed description can be found in 

Torrence and Compo (1998).  

3.7.1.1. Wavelet transform and power spectrum 

To determine the dominant modes of variability within a time series, it is convenient to decompose 

the signal into time-frequency space. This decomposition is more complex than the classical 

Fourier transform, which converts the signal from the time base to the frequency base, assuming 

temporal stationarity, which translates into a constant frequency content over time (i.e. harmonic 

components). While this frequency analysis is performed by projecting the signal onto a number 
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of sinusoids of infinite extent in time, the wavelet analysis is performed by projecting the signal 

onto a set of localized functions in time and frequency space, called wavelets. These wavelets, 

𝜓𝑎,𝜏, are created from a parent wavelet, 𝜓(𝑡), which is a wave oscillation that can take many 

mathematical forms. For example, the Morlet wavelet, which consists of a plane wave modulated 

by a Gaussian: 

𝜓(𝑡) = 𝜋−1/4𝑒 𝑖𝜔0𝑡𝑒−𝑡2 /2  3.24 

=with 𝑡, the time, and 𝜔0, the nondimensional frequency, usually taken to be 6. A wavelet family 

thus groups a set of similar wavelets obtained by varying the scale, 𝑠 (dilatation), and translating 

the oscillation along the localized time index, 𝜏 (translation; Figure 75): 

𝜓𝑎,𝜏 =
1

𝑠1/2 𝜓 (
𝑡 − 𝜏

𝑠
) 3.25 

The continuous wavelet transform is thus defined as a convolution of a discrete sequence of data 

(with equal time spacing) with a scaled and translated version of the parent wavelet, usually 

denoted by 𝑊𝜏(𝑠). The convolution is run 𝑁 times for each scale, where 𝑁 is the number of points 

in the (discrete) time series. It provides the wavelet power that is equal to the square 

modulus|𝑊𝜏(𝑠)|2, analogously to the power spectral density. The scalogram (or wavelet power 

spectrum) finally obtained gives the absolute value of the continuous wavelet transform of the 

signal, in the time-scale domain (Figure 75). 

 

Figure 75: Schematic of wavelet analysis, with the concepts of translation, dilation and convolution. The wavelet is 

represented by the black sinusoid. 
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3.7.1.2. Wavelet scale and scale-averaged wavelet power 

The set of scales 𝑠 used in the wavelet transform is preselected, and usually defined as a 

fractional power of two: 

𝑠𝑗 = 𝑠02𝑗𝛿𝑗 ,𝑗 = 0,1 …. , 𝐽 3.26 

where 𝑠0 = 2𝛿𝑡, the smallest resolvable scale, and 𝐽, the largest scale. For the Morlet wavelet, 

adequate scale sampling is achieved with a scale resolution, δj, less than 0.5. This specific 

mathematical function is also characterized by a wavelet scale that is nearly equal to the Fourier 

period, i.e., 𝑇 = 1.03𝑠. For a time series with 𝑁 = 5160 points, 𝛿𝑡 = 1 h, 𝛿𝑗 = 0.05, and 𝐽 = 140, 

the spectral space of the wavelet function is composed of 227 scales ranging from 2 h to 256 h, 

which is sufficient to resolve the physical processes that change Great Lakes water level in a 

quarter-month (~7–8 days), the typical time scale used by wetland models (briefly explained in 

Section 3.7.2.1).  

When the wavelet plot is averaged over a specific range of scales, using the weighted sum of the 

power calculated along a vertical slice of the scalogram, between scales 𝑠1 and 𝑠2, the result 

gives the fluctuation of the power with time. The scale-averaged wavelet power (hereafter referred 

to as SAWP) is defined as follows: 

�̅�𝑛
2 =

𝛿𝑗𝛿𝑡

𝐶𝛿

∑
|𝑊𝑛 (𝑠𝑗 )|

2

𝑠𝑗

𝑗2

𝑗=𝑗1

 3.27 

with 𝐶𝛿 = 0.776, the reconstruction factor, kept constant for each wavelet function. The SAWP 

provides the time series of the average variance in a band of scales, similar to the variance density 

spectrum used in wave analysis (cf. Section 3.6.3). It can therefore be viewed as a measure of 

the average energy carried by the fluctuations, which is why it is sometimes referred to as the 

scale-averaged wavelet energy (e.g., Ma et al., 2009). 

3.7.2. Water-level fluctuations 

The idea behind using a pre-selected set of physical variables is to aggregate the information 

provided by physical modelling to inform ecosystem models on a time scale relevant to them. 

Plant community structure varies seasonally and annually in response to mean lake levels, while 

short-term disturbances affect organisms and processes with daily or small turnover times 
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(Keough et al., 1999). While a single event is unlikely to generate a response, successive 

episodes of rise and fall can induce significant changes in population trends, as seen in Lake Erie, 

which is subject to major fluctuations in a single day (e.g., Herdendorf 1992). Physical variables 

extracted from simulated water level time series must therefore capture all aspects of dynamics, 

including short- and long-term changes, duration, frequency, and amplitude, in a time step close 

to a year, the relevant time step for wetland models. To maintain better temporal resolution and 

allow for flexibility in modelling (e.g., estimating the influence of spring and fall conditions on 

wetland extent and composition), details of physical processes were extracted on a quarter-month 

basis. 

3.7.2.1. Quarter-months 

The quarter-month is conventionally used in Great Lakes studies (e.g., Razavi et al., 2014; 

Steinschneider, 2021) to highlight changes induced by regulation plans that control Lake Ontario 

outflows at Moses Saunders Dam, particularly under extreme water supply conditions. The 

regulation time step is four times per month, with a new flow calculated after every quarter month: 

this is the native temporal resolution of the Lake Ontario management model. The year is 

therefore divided into 48 time windows, each of which is seven to eight days long depending on 

the month. This time step was chosen to create the physical variables, providing a time scale over 

which the different values were averaged or estimated. 

3.7.2.2. Vegetation growing seasons 

Since wetland models only consider observed and modelled physical conditions during the 

growing season, when plants can develop with rainfall, daylight and air temperature (e.g.), the 

calculations were restricted to this time of year. Therefore, only the quarter-months within this 

predefined period are kept, which changes by lake as the geographical area considered by the 

models encompasses a wide range of latitudes. The start and end of the growing seasons (in 

quarter-month) were chosen based on the historical conditions encountered in the Great Lakes 

Basin in terms of monthly mean air temperature only (MacKey et al., 1996), between 1980–2018 

(Table 20). Growing season length may change in the future, but they are held constant for all 

modelling periods, including the last decades of the century (i.e. projected future period) for the 

GLPI project. Simulations from the SeedGrow model from Natural Resource Canada were 

consulted to determine future growing season length (Mackey et al., 1996). After study, it was 

noted that not the same climate models were run by SeedGrow and that the air tempera ture time 

series produced were not debiased.  
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Table 20: Growing seasons in quarter-months. * For Lake Erie, hydrodynamic modelling was initiated prior to the 

definition of the growing season and limited to the beginning of April to the end of October. This period was retained. 

 

3.7.2.3. Wet/dry cycles-and long-term fluctuations 

Since a temporal and spatial description of the hydrodynamics of the sites is required, the set of 

grid points for a given CWRM was analyzed separately. The simulated years were also 

considered one at a time as the simulations only cover a portion of the year, the growing season 

which generally extends from late spring to early fall (Table 20). 

All gridded hydrodynamic data were first projected onto the final CWRM grids, defined during 

DEM creation, using a linear interpolation technique. The water level time series extracted at each 

grid point were subsequently converted to water depth by subtracting the site elevation, 𝑧 (cf. 

Section 5), from the simulated level, ℎ: 𝑑 = ℎ − 𝑧. To describe the rise and fall of the water level 

at a point, the resulting series were analyzed to identify the localized time index(es) where the 

water depth crosses through zero (Figure 76), meaning that a grid cell has changed from a dry 

state (ℎ < 0) to a wet state (ℎ > 0). This step is used to identify the existence of dry/wet cycles, 

as well as to detect cells that have remained flooded or dried out for a period of several days, or 

even the entire quarter-month (Figure 76).  
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Figure 76: Example of a water-depth time series extracted from the simulated data, for a given grid cell, with the 

wet/dry cycle detection scheme. The vertical black lines in the middle graph indicate the time index where the water 

depth changes from ℎ > 0 to ℎ < 0, indicating a change in cell state (from wet to dry or inversely). 

As the wavelet analysis was performed on scales ranging from 2 h to 256 h, with a maximum 

scale slightly larger than the total number of hours in a quarter-month (i.e. 192 h), the time series 

were filtered to remove long-term trends that could not be detected by the analysis. A Butterworth 

high-pass filter was applied, which retains only frequency components with periods less than 30 

days. The quarter-monthly water level variations, which follow seasonal changes in lake levels, 

were instead extracted from the 7-day low-pass filtered series. To inform the wetland model about 

the range of average lake variation, the mean, 𝑑7𝑚, maximum, 𝑑7𝑥, and minimum, 𝑑7𝑖, water level 

observed during a quarter-month were estimated. These variables constitute the first set of values 

included in the list of physical variables extracted from the hydrodynamic simulations (Table 21). 

When the model also includes realistic flow velocities, as is the case with the Huron-Erie Corridor, 

the maximum flow velocity in the 𝑥 and 𝑦 directions were also extracted for each quarter-month, 

which are named 𝑢7𝑥 ,𝑣7𝑥 respectively. 
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Table 21: The physical variables selected to aggregate the hydrodynamic data. 

 

3.7.2.4. Short-Term Fluctuations 

The high-pass filtered series were post-processed with the wavelet analysis technique described 

in Section 3.7.1. Because the primary objective of this analysis is to detect and characterize the 

timing, duration, and frequency of wet/dry cycles that characterize the physical environment of 

wetland plant communities, only grid cells with detectable cycles were processed. 

3.7.2.4.1. Wavelet power spectrum and significant cycle period 

The wavelet power spectrum was generated for the extracted time series at each grid point, 

keeping only the signal within the 95% confidence level (Figure 77b). This level is defined based 

on a background spectrum, which determines the minimum acceptable power to assume a feature 

observed in the scalogram to be true with a given percentage confidence. Fourier red noise, or 
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Brownian noise, was chosen as the reference signal, which allows differentiation between real 

frequency content and randomly generated artifacts. 

 

Figure 77: Post-processing technique used to analyze hydrodynamic data: (a) time series of water depth at a point, 

with detection of dry/wet cycles (black vertical lines); (b) scalogram; (c) physical variables extracted from the event 

analysis, i.e. total cycle duration (blue), average cycle period (red), and number of cycles included in an event 

(separate bars in the graph); (d) scale-averaged wavelet power. 

For each quarter-month, a detailed inspection of the spectral content in relation to the cycles was 

performed (Figure 77). First, based on the wavelet plot, the period range of the detectable features 

was determined using the signal enclosed within the 95% confidence level. All cycles included in 

the quarter-month that had a period less than the minimum detected period were merged to form 

a temporal sequence of consecutive dry/wet cycles, the so-called event. Conversely, any cycles 

associated with a period greater than the maximum period detected in the scalogram were 

discarded: they reflect a change in the state of the cell, which goes from flooded to dry (or vice 
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versa) without showing any cyclicity. An event can be understood as the fluctuations experienced 

by a grid cell located at the altitude of the mean lake level. This cell is subject to seiche -induced 

changes and, under constant level conditions, will see several water level rises and falls in a 

single day. Such a grid point should therefore be identified as periodically inundated, associated 

with a cycle period similar to the typical seiche period, as well as a number of cycles per quarter-

month that is representative of this periodicity.  

For identified events, the so-called significant period is determined at each time step 𝑡 that covers 

the duration of the event. The significant period is the period for which the maximum wavelet 

power is observed at each localized time index in the series (within the 95% confidence level; 

Figure 77b). 

3.7.2.4.2. Selected physical variables 

Since quarter-month is the temporal resolution chosen for the wetland models, all information 

extracted from the wavelet analysis was averaged based on this definition. Thus, for a quarter-

month, the physical variables selected to characterize short-term water level variations are (Table 

21): 

1. Mean Cycle Period, 𝑇𝑐: Average period obtained from the significant period estimated at 

each time step of the rise/fall events detected during the quarter-month. 

2. Maximum Cycle Period, 𝑇𝑥: Maximum significant period of the detected events. 

3. Maximum Detectable Cycle Period, 𝑇𝑞: Maximum significant period allowed for the 

quarter-month, based on the maximum observed wavelet power. 

4. Duration of dry/wet cycles, 𝑊𝑐: Duration of detected cycles during the quarter-month, 

which gives the estimated number of cycles when divided by 𝑇𝑐.  

5. Scale-Averaged Wavelet Power, 𝑠𝑎𝑃: Mean of the scale-averaged wavelet power 

calculated at time points 𝑡 of the detected events. 

6. Maximum Scale-Averaged Wavelet Power, 𝑠𝑎𝑃𝑥: Maximum of the scale-averaged 

wavelet power calculated at time points t of the detected events. 

7. Percent Time Flooded, 𝑃𝑐𝐹 : Percentage of time during the quarter-month that the grid cell 

is strictly flooded with no cycles detected, which includes cycles with a significant period 

greater than the maximum period allowed based on spectral content.  

8. Percent Time Dried Out, 𝑃𝑐𝐷 : Same as 𝑃𝑐𝐹 , but for the time spent in a strictly dry condition. 

Figure 77c presents the results obtained from the analysis of the series shown in Figure 77a for 

𝑊𝑐 (blue line) and 𝑇𝑐 (red line), as well as the estimated number of cycles (black line), defined as 

the ratio of these two variables. For ease of interpretation, the entire time series is presented 

without considering the quarter-month. Figure 77d displays the scale-averaged wavelet power 
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time series obtained for this particular example, which reveals high values during the set -up 

events. This variable is therefore representative of the major water-level changes observed at a 

specific location in the wetland, capturing any extreme water level fluctuations that may result in 

a change in physical conditions.  

The spatial distribution obtained for the average period of characteristic fluctuations observed at 

Long Point, Lake Erie, is provided in Figure 78 for a given quarter month. This site is exposed to 

the lake dynamics and can be defined as an open coastal wetland. As can be seen, grid cells 

located on the fringe of the peninsula experience seiches, which have a nominal period of ~14 h 

in Lake Erie. Landward, the typical period of fluctuations increases, revealing that these land 

areas are mostly flooded during extreme water level rise and fall events, with a period of 2–3 days 

in the lowest elevations (green and yellow colours in Figure 78), and more than 4 days in the 

upland areas. Conversely, the majority of the lake points remain strictly flooded, while some land 

areas stay dry throughout the quarter-month. This is most easily seen in the lower panel of Figure 

78, which shows the percentage of time a grid cell is subject to water depth fluctuations over the 

quarter-month, a value obtained from 100 − 𝑃𝑐𝐹 − 𝑃𝑐𝐷 . All blue-shaded areas include strictly 

flooded or dried out points (i.e., no discernible cycle). 
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Figure 78: Example of results for Long Point Wetland, Lake Erie: the average period (top panel) and the percentage 

of time a grid cell is subject to water level fluctuations (dry/wet cycles; bottom panel). Results are presented for a 

given quarter-month. 

These seven variables are primarily used to quantify short-term fluctuations and capture any wind-

induced changes in Great Lakes water level dynamics, which are closely related to seiche and 

set-up intensity. 

3.7.2.5. Scenario-based physics  

The mathematical description of the physical variables and their selection were made from data 

extracted from the Lake Erie and Huron-Erie Corridor models, which were developed in a non-

stationary modelling framework. These models provide a comprehensive representation of the 

physics of the lakes, with their characteristic seiche-induced modulations that generate sub-daily 

changes in water levels. In the scenario approach adopted for Lakes Ontario and Huron, as well 

as the Upper St. Lawrence River (cf. Section 3.4.2.3), none of these fluctuations are modelled: 

the simulated hydrodynamics provide an estimate of the direct response of the lake surface to 
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surface wind forcing, but not of the ensuing physics, which cannot be parameterized in static 

mode. 

To determine if the variables listed in Table 21 are still relevant to scenario-based modelling, a 

quick test was performed for Lake Erie, the only lake for which static scenarios and non stationary 

time series were produced. These scenarios were initially developed to compare the performance 

of the two modelling approaches. Two gridded water level datasets were generated for the year 

2014 (April–November) with the same wind input, i.e., GEM. As explained in Section 3.4.2.3, the 

winds were regionally averaged for use with the stationary scenarios, so that a single time series 

is employed to force the static model rather than a meshed dataset, as is the case in no n-

stationary modelling. The simulated water-depth time series at a specific location in the lake was 

extracted from both scenarios, specifically at a grid cell located in Rondeau Bay Wetland (Lake 

Erie). The results of the post-processing technique explained in Section 3.7.1 are shown in Figure 

79, with the non-stationary and stationary examples displayed in the left and right panels 

respectively.  
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Figure 79: Same as Figure 77, but for a grid cell located in the Rondeau Bay wetland in Lake Erie. Left panels: results 

obtained from non-stationary scenarios. Right panels: results obtained from stationary scenarios (i.e., the scenario-

based approach). 

Regardless of the difference in absolute water depth, Figure 79 shows that the wavelet analysis 

is still effective in describing the spectral content of the time series and detecting periods 

characterized by multiple dry/wet cycles. The scalogram obtained from the stationary scenarios 

clearly shows the absence of seiche activity in the simulated data, as no significant features are 

observed below a 16 h period. The number of detected events is also less, with only three 

windows delineated instead of ten (Figure 79c), but representative of what can be observed in 

the top panel: the selected grid cell remains strictly flooded or dried out for several days. The 

detected dry/wet events extend over a longer time, with a total duration of 200–600 h, a result 

consistent with the modelled dynamics, which does not allow for as much variability due to the 

absence of long surface motions. These movements account for 4–16 cm of the observed daily 

variability (cf. Table 5, Section 3.2.2), which is sufficient to generate successive dry/wet cycles 

over grid cells located near the mean lake level elevation, as is the case here. As a direct 

consequence, the absence of the sub-daily motions significantly alters the energy (or variance) 

contained in the signal, with a maximum value of 0.02 m2 instead of 0.3 m2 for the non-stationary 
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case (Figure 79d). Although several peaks can be distinguished at the same time index, the 

relative importance of changes in water depth observed in early May and October, e.g., is lost in 

the scenario-based approach. The seiches that followed the setups have a non-negligible 

influence on the final estimate of the scale-averaged wavelet power, which averages the wavelet 

power by a factor of 1/𝑠. The smaller the scale 𝑠 (or period), the higher the contribution of wavelet 

power to the final estimate. 

Overall, the dissimilarity observed in the results is due to the spectral content, which is not as 

complete in the scenario-based approach, which does not simulate seiches. Nevertheless, the 

wavelet analysis provides meaningful information, as the defined physical variables are 

representative of the modelled dynamics and consistent with the need for wetland modelling. 

Therefore, the same variables were used for both modelling approaches (Table 21). 

3.7.3. Waves 

As explained in Section 3.2.4.3, wave activity and its relative importance in the spatial extent of 

the wetlands are estimated using the near-bottom orbital wave velocity, 𝑢𝑏𝑜𝑡. This variable 

represents the maximum root mean square value attained by the modelled velocity in a time step. 

In previous modelling efforts, mean values calculated over the growing season or sub -seasonal 

periods (i.e., spring/fall) have been used to quantify the impact of waves in ecosystem models. 

However, careful inspection of the data generated for the Great Lakes revealed that the 

distribution of this variable is predominantly bimodal, and has a Weibull shape that is the common 

candidate distribution employed in long-term wave statistics (cf. Section 3.2.4.4; Figure 30). The 

use of an arithmetic mean can therefore hide useful information, particularly with respect to 

extreme events and cyclic storms, which cause deterioration and erosion of coastal wetlands, 

resulting in habitat loss. 

3.7.3.1. Weibull mixture model 

To highlight this asymmetry in wave dynamics, which is related to the site specificity and episodic 

nature of the storms observed in the Great Lakes, the physical variables used to characterize the 

wave climate were revised. Instead of time-averaged values, wave action in the wetlands was 

estimated from a two-component Weibull mixture model, with the density function defined as 

follows (Razali et al., 2013): 
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𝑔(𝑥) = ∑ 𝑤𝑗𝑓𝑗(𝑥)
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] 3.29 

with 𝑘, the number of components in the system, 𝑤𝑗, the proportion of the 𝑗th component in the 

mixture, and 𝑓𝑗 (𝑥), the density function of the sub-population 𝑗 of the Weibull distribution. Here 

𝑤𝑗 ≥ 0, 𝑗 = 1,2, …, 𝑘, and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 . The adopted model uses 𝑘 = 2, allowing the 

characterization of the nominal wave activity and extreme events, the latter being associated with 

intense wave climate and high values of 𝑢𝑏𝑜𝑡 .  
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Figure 80: Upper panel: extracted near-bottom wave orbital velocity for a randomly selected grid cell in the Long Point 

Wetland, Lake Erie, for the year 2013. Lower panel: near-bottom wave orbital velocity histogram and associated 

distributions, i.e., Weibull mixture model (blue), simple Weibull distribution (orange), simple Weibull distribution fitted 

for low-wave climate (green), and simple Weibull distribution fitted for high-wave climate (red). 

An example of the anticipated mixture Weibull model is shown in Figure 80 for a randomly 

selected grid cell in Long Point Wetland, for the time series extracted from the simulation carried 

between April and November 2013. As shown in the figure, the data distribution is formed by two 

wave climates, defined here as representative of the low and high conditions observed during the 

growing season (green and red lines in Figure 80, respectively). The two climates can be defined 

by a distinct Weibull distribution, with their own shape, 𝛼, and scale, 𝛽 (cf. Section 3.2.4.4), and 

thus a different expected value (i.e., the mean of the Weibull distribution).  
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3.7.3.2. Selected physical variables: Wave exposure 

Because plants can be affected by nominal wave activity as well as storms, two main features 

were extracted from the annual statistics: the mean and the 95th percentile. While the former is 

used to determine the ongoing wave-associated stress that shapes plant communities (Croft and 

Chow-Fraser, 2007) and the range of elevations occupied by wetland species (Keddy et al., 

1983), the latter is used to identify highly exposed areas devoid of vegetation. These shorelines 

typically have consolidated substrate (e.g., rocky, bedrock), sandy soil, or low organic matter 

content, as sustained wave action promotes erosion and offshore sediment transport (e.g., 

Hawley and Niester, 1993; Thomas et al., 2006). Exposure, estimated by the tail of the high wave 

climate, can therefore be used to identify unfavourable habitats for submerged aquatic species 

and floating plants, which are generally intolerant of wind and waves. It can be considered a 

surrogate indicator for soil type, which generally gives indications of the like lihood of presence or 

absence of specific species. Plant models do not otherwise use any substrate-related data. 

 

Figure 81: Example of results from the highest 95th percentile in the Rondeau Bay wetland (Lake Erie). The area 

exposed to wave activity at the tip of the peninsula is characterized by high 95th percentile values  (i.e., strong waves 

climate). This area is occupied by long sandy beaches, which is expected when physical conditions are highly 

unfavorable for submerged aquatic vegetation. 

Figure 81 shows the predicted results from the 95th percentile. The data presented were extracted 

from 1-year simulated wave time series for the Rondeau Bay wetland, located on the north shore 

of Lake Erie. As shown by the spatial distribution of this variable, the fringe of the site exposed to 
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incoming wave energy is characterized by high wave orbital velocity, in contrast to the interior of 

the bay, where quiescent conditions are detected. The sandy beaches observed on the lakefront 

along the eastern and southern margins of the bay are therefore correlated with high 𝑢𝑏𝑜𝑡 values 

as anticipated. 

Table 22: The physical variables selected to aggregate the wave data. 

 

Table 22 summarizes the variables selected to inform the wetland models of wave activity: near-

bottom orbital wave velocity extracted from the low- and high-wave climate, 𝑚𝑢𝑙𝑜𝑤 and 𝑚𝑢ℎ𝑖𝑔ℎ, 

the highest 95th percentile, 𝑝95, and the proportion of data included in the leftmost distribution, 

𝑝. For wave statistics, all variables were estimated over the entire growing season, rather than on 

a quarter month basis. Each grid cell was handled independently, as described in the previous 

section (cf. Section 3.7.2). 
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3.8. Projected changes 

3.8.1. Lake dynamics: Long and short-term fluctuations, waves climate 

The projected changes in lake dynamics are presented in Table 23, with detailed description of 

changes for long- and short-term water level fluctuations, as well as for wave climate. The 

significance of projected changes was determined following the method described in Section 3.3, 

with statistical tests for mean and variance. Changes are also expressed in absolute and relative 

values, the latter being defined as the absolute change divided by the present climate from the 

model simulation. 

3.8.1.1. Long-term water level fluctuations: Mean lake levels 

A complete analysis of the projected changes in mean lake levels can be found in Seglenieks and 

Temgoua (2022). The following paragraph provides only general conclusions drawn for the 

various parts of the Great Lakes systems, with the exception of Lake Superior. The analysis is 

limited to the selected AOGCMs, which provides the lower and upper bound limits of expected 

values for a restricted set of climatic conditions (cf. Section 2.2.3, Figure 7). The results are 

presented in Table 23, with changes defined as the difference between the distributions of future 

(2070–2099) and the recent past (1980–2009) annual values, considering all quarter-months 

included in the 30-year periods. Differences are given for the growing season only, as described 

in Table 20 (cf. Section 3.7.2.2). Interannual variability was assessed via the standard deviation 

of the distributions (hereafter referred to as STD). 

3.8.1.1.1. Change in mean 

By the horizon 2085, no clear projection in mean lake level is obtained for the Great Lakes Basin, 

with the exception of Lake Ontario and the upstream section of the Upper St. Lawrence River (i.e. 

Alexandria Bay), where levels are likely to increase by up to ~0.7 m (Table 23). While the lower 

bound scenario tends to predict a smaller relative change, with a decline between -0.12 and -

0.23 m for Lakes Erie, Huron, and the Huron-Erie Corridor, the AOGCMs do not agree on the sign 

of changes, revealing large model uncertainty. The overall variation in long-term fluctuations, 

however, is large compared to the observed natural variability for the period 1980–2009, which 

remains between 0.26 and 0.39 m (STD in Table 23). According to the climate change envelope, 

the absolute change in mean level is 0.5 to more than 2.5 times the year -to-year variation, which 

can have a significant impact on the composition and positioning of wetland vegetation (e.g. 

Wilcox and Nichols, 2008). The response of plants to such a long-term change in water levels can 
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force an up- or down-slope migration that goes beyond the historical cycle. Anthropogenic 

stressors, such as urbanization (i.e. land use), could then trigger an abrupt shift in wetland quality, 

especially under the upper bound scenario. A decrease in total habitat area can be expected by 

the end of the century in sites where any landward re-establishment is restricted (e.g. Gottgens 

et al., 1998). 

3.8.1.1.2. Change in Interannual Variability 

Interannual variability, expressed here as standard deviation, is expected to increase by more 

than 25% in the upcoming decades for the Lower Great Lakes, including the Lower Detroit River 

near Amherstburg (Table 23, dark orange color). Variability in Lake Ontario and the Upper St. 

Lawrence (i.e. Alexandra Bay) is particularly marked, with an absolute change in standard 

deviation of up to 0.23–0.24 m, which represents a relative increase of 88–94%. No significant 

change in IV was projected for Lakes St. Clair and Huron. 

Large fluctuations in water levels can dramatically alter plant communities from year to year when 

periods of extremely high or extremely low lake levels occur. Anthropogenic disturbances, such 

as land use alterations, can also have a greater impact on wetland conditions during similar 

extreme events (Uzarski et al., 2017). In terms of wetland composition, there is empirical evidence 

that invasive species, like Typha X glauca and Phragmaties, are favored by interannual water-

level fluctuations, taking advantage of water levels declines to establish in newly exposed 

substrate (Frieswyk and Zedler, 2007; Lishawa et al., 2010; Tulbure and Johnston, 2010; Wilcox, 

2012). The projected increase in IV may therefore threaten the ecological integrity of Great Lakes 

wetlands (DeRoy and MacIsaac, 2020).  

 



 

232 

 

Table 23: Projected changes in lakes dynamics for the period 2070-2099. Results are presented for change in means and interannual variability, described here by the standard 
deviation. Changes are provided with missing values (or dash, –) when statistical tests did not meet the 10% significance level (i.e. U-test for the mean and Levene’ test for the 

variance). Shaded colors indicate relative changes that reach at least 5 or 25% and reveal a clear signal of change, i.e. when the two scenarios agree on the sign of the projected 

changes (positive, in orange, or negative, in green). Grey boxes indicate no data. 
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Table 24: Idem as Table 23, but for some of the physical variables developed for wetland modelling: strictly flooded area, defined as the % of the site kept flooded during the growing 
season; cycle period, which is the mean period of dry/wet cycles detected in the transition zone (ignoring zero values); maximum scale-averaged wavelet power, defined as the 

mean annual maximum values observed in the quarter-months; the cycle duration, defined as the total time (in days) that a grid cells is subject to fluctuating water levels during the 

growing season; near bottom wave orbital velocity; and partially flooded area, defined as the % of sites included in the transition zone, where dry/wet cycle are observed. Details are 

given in the text. 
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3.8.1.2. Short-term water level fluctuations and waves 

Because lake dynamics respond to surface stresses that force water surface motion, generating 

set-ups, surface seiches, and surface gravity waves, the expected changes from climate 

disturbances follow what was observed for winds (cf. Section 2.4). Table 23 displays results 

consistent with the projected wind climate, i.e. a decrease in the maximum monthly wind set-ups 

amplitude in most lakes by the end of the century due to decreasing wind speeds by the end of 

the century. The lower bound of changes in mean annual maximum winds (cf.  Table 3) therefore 

has a significant impact on the modelled lakes dynamics, particularly in the Lower Great Lakes, 

including the Lower Detroit River (i.e. Amherstburg). However, the relative changes remain less 

than 10% for most of stations, or less than 4 cm in Lake Erie and 1 cm in Lake Ontario. These 

changes may not be relevant to wetland plant communities, which typically occupy large elevation 

ranges, e.g., from 74.4–75.0 m and 75.8–76.0 m for emergent marsh and meadow marsh in Lake 

Ontario (Grabas et al., 2019).  

Lakes St. Clair and Huron show different behavior, with up to 22% increase in the mean annual 

monthly maximum set-ups amplitude for the former, or 1.2 cm, and almost no significant change 

for the latter. Given that marsh areas in Lake St. Clair are characterized by very low topographic 

relief, dikes that limit wetland migration, and the dominance of submerged or emergent aquatic 

vegetation (Mortsch, 1998), changes in mean lake level in 2070–2099 are likely to have a more 

pronounced effect on the vegetation pattern than changes in sub-daily fluctuations.  

3.8.1.2.1. Surface seiches 

Since only Lakes Erie and St. Clair (including the Huron-Erie Corridor) were modelled under 

unsteady, time-evolving conditions that allow a complete physical description of barotropic 

surface motions, changes in daily-range values of high frequency fluctuations are obtained only 

for these specific lakes. As noted for the set-up events, the amplitude of surface seiches is 

projected to decrease, especially in Lake Erie, as expected for a gentle wind climate.  

3.8.1.2.2. Interannual Variability of short-term fluctuations 

Finally, the year-to-year variability in monthly maximum set-ups events is projected to increase in 

the Lower Great Lakes, including Lake St. Clair, similarly to what was drawn from the wind speeds 

analysis (cf. Table 3). This variation is quite large relative to observed values for the period 1980–

2009, and reach 8–93% depending on stations, with the greatest changes expected in Lakes Erie 

(41–54%) and St. Clair (35–93%). More than the means, the IV of short-term fluctuations can 
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have marked influence on species richness (e.g. Grabas et al., 2019), notably wet meadow 

communities whose diversity relies on temporary cycles of flooding and drying (Gathman et al., 

2005). Again, no significant climate signals were detected in Lake Huron.  

3.8.1.2.3. Wave climate: Lakes Ontario and Erie 

Past and future wave characteristic were defined based on long-term wave climate statistics 

calculated over the 30-year time series (i.e. according to the best-fitted Weibull distribution, cf. 

Section 3.2.4.4). 

The projected future wave climate for Lakes Ontario and Erie is similar to that observed during 

the baseline period. The relative changes in significant wave height and wave period were 

estimated to be less than 5% (Table 23), with no agreement on bound values. The same 

conclusions can be formulated for the inter-year variability. The mean wave climate on the lakes 

reflects the shape of the basins and the fetch length, which determines the surface wave 

dynamics, as well as the annual frequency and magnitude of the winds. As wave generation 

during large storm events is mostly fetch-limited in the Great Lakes, which restricts the wave 

height, the potential impact of modest changes in wind climate as projected here (Table 3) 

remains limited (Wuebbles et al., 2019).  

These results provide guidance for the two AOGMs used, for deep-water waves, and for months 

within the growing season, which excludes late fall (November) and winter (December–January–

February). The greatest changes in wave activity are expected during the cold weather season, 

as projected decrease in ice cover extent by the end of the 21 st century (Filazzola et al., 2020) 

will likely increase wave energies throughout the Great Lake Basin. Lake ice almost completely 

inhibits waves under heavy-ice conditions (Bai et al., 2020), which are expected to become rare 

in the future, while the number of ice-free years will increase (Filazzola et al., 2020). Since storm 

activity in the Great Lakes is generally higher in winter (e.g. Byun et al., 2019), the loss of lake ice 

will certainly affect the mean annual wave climate. 

3.8.2. Site-scale dynamics 

While wetland areas and plant communities are expected to respond to changes in mean lake 

level, they may be affected differently depending on their topography, even for sites belonging to 

the same basin (e.g. Wu and Zheng, 2020). A change in mean lake level variably alters wetland 

area based on the complexity of the bank landform. To determine whether a specific site has 
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experienced changes in its physical environment, some key variables extracted from the 

hydrodynamic and wave simulations were analyzed (cf. Section 3.7). Table 24 summarizes the 

results of this analysis, with detailed description of changes in mean and interannual variability 

between recent past and future periods. The data give spatial averages of mean annual values 

calculated over the site area of interest. The wetland sites selected for this project are introduced 

and described in details in Section 4. 

 

Figure 82: Range of relative changes from baseline projected by the lower and upper bound scenarios for some of 

the key physical variables. Shaded colors indicate the sign of changes (positive in orange, and negative in green), as 

well as the level of significance of each projections. The black lines make the projected range explicit, based on the 

significant values. This figure should be read as a clustered bar chart with overlapping bars, where the lengths 

represent actual values rather than proportional ones. 

 

3.8.2.1. Changes in flooded area 

Under a change in mean lake level, the percentage of habitat areas inundated throughout the 

growing season will likely increase or decrease if the nominal conditions are significantly altered. 

This may affect the dominance of submerged aquatic vegetation (Hudon et al., 2005), change the 

overall low marsh habitat (i.e. aquatic habitat; Weller and Chow-Fraser, 2019a), and potentially 

the total area defined as open water if the depth of inundation in the lacustrine boundary of coastal 

wetlands is substantially increased. Projected changes in the extent of the strictly flooded area of 

each wetland are given in Table 24, as well as in Figure 82, which illustrates the range of possible 

futures under the lower and upper bound scenarios (relative to baseline).  
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All Lake Ontario sites (including 1HIE) display a clear increase in the mean annual number of grid 

points defined as strictly flooded during the growing season. An additional 6–34% of the deepest 

portion of the wetlands will likely be inundated by 2070–2099 and will not experience any wet/dry 

cycles on a sub-daily or seasonal basis. Only Lynde Creek Marshes (5LCM) reveal a possible 

decline in flooded extent, but with a relative value that remains small, i.e . less than 3%, and a 

lower bound projection that is less significant than its counterpart value (𝑝<5% rather than p<1%). 

According to the reference period, the percentage of permanently flooded zone at this site is also 

less compared to other Lake Ontario marshes, with only 21% of points remaining below the water 

line against 39–66% (Table 24). This is similar to the proportion found in other riverine systems, 

such as Grand River Mouth Wetland (7GRM; Lake Erie) and Anderson Creek Marshes (23ACK; 

Lake Huron), where the upper limit projection is also large relative to basin-scale predictions. The 

projected rise in mean lake level by the end of the 21 st century may therefore have a greater 

impact in steeply topographic drowned river mouths primarily characterized by high marsh habitat 

(i.e. wet meadow or shrubby swamp) during the period 1980–2009.  

With the exception of most of the riverine systems (7GRM, 8SPP, and 11FCK), for which the 

decrease in permanently flooded area is small (<3%) and less (𝑝<5%) or not significant (𝑝>10%), 

the projections for the remaining wetlands are not robust and fluctuate as expected by the 

projected lake levels (Table 23). Although the projected increase in mean lake conditions by 

horizon 2085 is significantly larger than any possible decrease, some sites respond equally to the 

two bound scenarios, with a similar relative decrease or increase: Lake St. Clair marshes (13LSC 

and 14SAM), as well as Hay Bay and Hog Bay Wetlands in Lake Huron (16HBW and 18HGW). 

3.8.2.1.1. Interannual Variability 

The extent of the annual strictly flooded area is expected to be more stable in 2070 –2099 for 

several sites in Lakes Erie, St. Clair and Huron. A relative decrease of 32–89% is projected for 

the interannual variability, with a more pronounced effect observed in Lake St. Clair, where the 

relative year-to-year variation for Lake St. Clair Marshes and Johnston Bay ranges from 78–89%. 

These sites are characterized by diked areas that limit the shoreward migration of low marsh 

when lake levels are high and, at the same time, the extent of wetland habitat. This is well 

illustrated by the low variability observed during the reference period, which is only 6–12% of the 

average values for 13LSC and 14SAM. Since the relative changes in the annual inundated areas 

are projected to be quite small for these sites, i.e. between -3% and 3%, the decrease in variability 

suggests more stable conditions over time, with no major changes over the 30-year period. The 

transition zone of these sites, where sub-seasonal wet/dry cycles are observed, also shows a 
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similar drop in IV, with a relative decrease of 80–91%. Therefore, there is a heightened risk of 

perennial habitat loss in Lake St. Clair under the upper bound projection.  

More generally, decreased IV can support a stable extent of low marsh habitat from year to year 

when the flood depth allows the establishment or persistence of submerged vegetation and 

floating plants. Otherwise, open-water area will increase at the expense of aquatic species. Since 

annual and perennial aquatic species are recognized to be resilient to change in water levels from 

year to year (Gathman et al., 2005), due to their rapid response to water depth variation, change 

in interannual variability should not be a threat to low marsh habitat, except in the case of an 

extreme increase in mean annual lake level.  

Again, Lake Ontario and riverine systems (7GRM and 8SPP) show different behavior, with a likely 

increase in interannual variability of the permanently inundated area by the end of the century, 

which follows the projected variability in lake levels (cf. Table 23). The relative increase in 

variability is especially important compared to reference values, representing one to 5 times the 

estimated IV for 1980–2009. However, since Plan 2014 was used to project past and future water 

level scenarios (Seglenieks and Temgoua, 2022), even though it was not implemented until early 

2017, comparison to absolute reference values should be taken with caution.  

3.8.2.2. Changes in transition zone 

The area of wetlands subject to daily or sub-seasonal fluctuations (here after referred to as the 

transition zone) is an important component of the ecosystem biodiversity, the latter being critical 

to the establishment and persistence of wet meadows (Gathman et al., 2005), the most species-

rich habitat type in Great Lakes coastal wetlands (Keddy and Reznicek, 1986; Wilcox et al., 2005).  
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Figure 83: Left panels: Climate reference map for mean annual partially flooded area, which gives the % of time a 

grid cell is subjected to fluctuating water level during the growing season, for the period 1980–2009 in Airport Creek 

Marshes, Lake Ontario. Right panels: The upper and lower bound of the projected change for this variable by 2070–

2099 relative to baseline.  

The data presented in Table 24 reveal a clear positive change in the extent of the transition zone 

by the end of the century for the Lake Ontario sites. The mean annual percentage of grid points 

subject to wet/dry cycles changes by up to +6% for the 2070–2099 period, which represents an 

increase of 24–103% relative to baseline. Airport Creek Marshes (2ACM) show the largest shift, 

with a projected increase in mean annual spatial values of 3.3 to 5.5 % (in absolute value), which 

is comparable to the historical variability of 6.3%. Figure 83 details the spatial distribution of this 

variable in 2ACM, with the reference state on the left and projected changes on the right. The 

black areas in maps highlight zones that remain dry throughout the 30-year period and, 

conversely, white (or uncolored) areas indicate the strictly flooded sectors. As expected from 

results in Table 24, major changes are projected for the 2070–2099 period, with increasing 

fluctuations under the upper bound scenario in areas that are already favorable to wet meadow 

and emergent plants (left panel in Figure 83). While 13% of grid points show physical conditions 

that could potentially support high marsh habitat during the recent past, this value will likely 

increase by 8 to 24% by the end of the century. The net effect will be a decrease in upland area 
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in 2070–2099 (i.e. black areas in Figure 83), with a possible impact on the upper wetland (i.e. 

swamp).  

Similar dynamics can be expected at the other Lake Ontario sites, as well as in Lake Erie riverine 

system (7GRM and 11FCK), and at some Lake Huron sites (15BDD, 18HGW, and 19TBY). 

Conversely, a significant decrease in partially flooded areas is projected for the connecting 

channel sites, i.e. Hill Island East (1HIE; down to -48%) in the Upper St. Lawrence, and Detroit 

River Marshes (12DRM, down to -33%) in the Huron-Erie Corridor.  

3.8.2.3. Characteristics of short-term fluctuations 

Changes in sub-annual water level fluctuations can also be analyzed in terms of changes in the 

mean characteristics of the dry/wet cycles, i.e. cycle period (in hours), total duration of level 

fluctuations during the growing season (days), and the energy carried by short-term disturbances, 

as explained by the scale-averaged wavelet power (cf. Section 3.7.1.2). Table 24 lists results for 

these three variables, and Figure 82 details projected changes for each site along with the 

significance level. As explained in Section 3.7.2.4, the cycle characteristics were extracted from 

high-pass filtered water levels simulated over a quarter-month, i.e. regardless of the weekly 

variation in mean lake level. Therefore, they include only the high-frequency components of the 

signal with periods < 7 days. Furthermore, to determine whether a change is projected in the 

nearshore dynamics indifferently of the projected change in the extent of the transition zone, only 

grid points with non-zero values were considered when dealing with short-term fluctuations. 

Annual means are thus calculated on quarter-month spatial means, rather than on the individual 

annual mean of each grid points, to eliminate any influence of landward or lakeward wetland 

migration.  

3.8.2.3.1. Wet/dry cycle periods 

The mean dry/wet cycle periods obtained from the reference dataset are representative of the 

physical processes that modulate nearshore dynamics at each site. While Lake Erie and the 

Huron-Erie Corridor were modelled under unsteady conditions, which allow a good representation 

of surface seiches and set-ups, the simulated water level scenarios for Lakes Ontario and Huron 

only admit wind-driven fluctuations with periods of > 2 days (cf. Section 3.4.2.3). This explains the 

difference in values presented in Table 24, where typical fluctuation periods range from 87–101 

hours (~ 4 days) in Lakes Ontario and Huron, and 27–72 hours (1–3 days) in Lakes Erie (including 

the Lower Detroit River) and St. Clair. Most of Lake Erie sites show quite a low mean annual 
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average (< 2 days) that demonstrates the dominant influence of seiches, which typically have 

period of ~14 hours, over wind-induced displacements.  

As expected, no significant changes in shoreline dynamics are observed between 1980 –2009 

and 2070–2099. Typical drying and wetting periods are essentially similar, with almost no 

significant change in Lakes Ontario and Huron, and a relative difference of less than 6% in Lake 

Erie and the Huron-Erie Corridor (Figure 82). Projected changes in mean lake level do not alter 

the physics of surface seiches, which is highly dependent on basin morphology, and no significant 

shift in wind event frequency is notable in the compiled data. The rise and fall of water levels in  

the transition zones are likely to be driven by synoptic-scale systems of periods of 2–4 days in 

the last decades of the 21st century, as typically observed in mid-latitudes (Trigo et al. 1999). 

Although research conducted with CMPI5 GCMs point to a decrease in the frequency of cyclone 

storm tracks over North America (Chang et al., 2013; Lehmann et al., 2014) and the Great Lakes 

system (Turner et al., 2013) by 2100, no similar drop was clearly identified in the analysis of strong 

wind events in this study (events with wind speed > 13.9 ms-1 or 46.8 kmh-1; not shown in Section 

2.4).  

3.8.2.3.2. Mean annual duration and scale-averaged power 

An overall decrease in the mean annual duration of periodic events is projected for a majority of 

sites in Lakes Ontario, Erie, and St. Clair, including the Lower Detroit River (Table 24). While grid 

cells experienced between ~7–24 days of short-term disturbances during the past growing 

seasons, this number is reduced by ~2–3 days by 2070–2099 (Figure 82), with the greatest 

relative change projected for Grand River Mouth (7GRM) and Hill Island East (1HIE; up to 30%) 

wetlands. These changes are large relative to the natural variability, especially in Lake Ontario 

where the STD estimated for the reference period is less than 5 days for the majority of sites22. 

The projections obtained for Lake Huron are somewhat opposite, with a likely increase in mean 

annual duration of 8–11% (or 1.8–2.5 days) in half of the wetlands studied.  

Although projected changes in event intensity (i.e. seiche and set-up amplitude; Table 23) can 

partially explain these results, the complex dynamics linking short-term disturbances, mean lake 

level and site topography are likely at play here. The same conclusions can be drawn for t he 

mean annual maximum scale-averaged wavelet power, for which projections vary by site with no 

general trend, except for a somewhat stronger decrease or increase in this variable in Lake 

Ontario and Huron-Erie Corridor, respectively. A positive increase in maximum scale-averaged 

                                              
22

 Again, a caveat must be added to this observation as Lake Ontario projections were conducted under regulation Plan 2014.  
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wavelet power is expected when the event amplitude is significantly amplified or the transition 

zone substantially increases without sufficient change in water depth to inhibit or lessen dry/wet 

cycles23. Both explanations can be applied to Lake St. Clair, the only lake where a significant 

increase in set-ups amplitude is projected by the end of the century relative to baseline.  

 

Figure 84: Example of changes in mean water depth across the transition zone for Lynde Creek Marshes, in Lake 

Ontario, for past and future periods (left panels), as well as projected changes in the maximum scale-averaged 

wavelet power (right panel). Black shaded areas in all maps indicated zones that remain strictly dry during the 30-

year periods. 

The consistent decrease obtained for both cycle duration and scale-averaged wavelet power is 

generally related to increasing water depth throughout the partially flooded areas, which reduces 

and inhibits the fluctuations and, therefore, the energy carried by them. An example of similar 

dynamics is presented in Figure 84 for Lynde Creek Marshes in Lake Ontario. A negative mean 

water depth in the left panels indicates trend toward dryness over the 30-year period considered, 

while uncolored areas reveal strictly flooded zones. As can be seen in the left panels, a large 

portion of the site in the center of the wetland is inundated in 2070–2099 relative to baseline, and 

an increase in water depth is projected at the margin of it. The projected negative changes in 

maximum scale-averaged wavelet power by the end of the century (right panel) are related to this 

increase in water depth in the transition zone, which limits the influence of dry/wet cycles.  

In general, a reduction in the richness of emergent marsh and meadow communities can be 

expected when the magnitude of successive cycles of drying and flooding that characterize the 

transition zone is reduced (e.g. Grabas et al., 2019). 

                                              
23

 Again, it is import to note that this variable is set to zero when no cycles are detected. 
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Figure 85 gives a second example that clearly illustrates the complexity of site-wide dynamics. It 

shows the spatial distribution of projected changes for the cycle duration in Rondeau Bay 

Wetlands (10RBY), with reference values. As can be seen from the reference period (left panel), 

areas in the interior of the peninsula, on the bay side, are frequently exposed to water level 

fluctuations, as are lands bordering tributaries flowing along the coast. With projected changes in 

mean lake levels, the transition zone moves landward (lakeward) on the northern (southern) 

shores of the bay under the upper bound scenario, and conversely under the lower bound 

scenario (right panels). While the number of grid points subjected to wet/dry cycles is projected 

to decrease by 5% in the lower case, as illustrates black shaded area in Figure 85, no significant 

change is observed in the mean annual duration across the site (p>10%; Table 24). In contrast, 

the number of grid points exposed to sub-seasonal fluctuations is projected to increase by 7% in 

the upper case although much of the peninsula and land along the tributaries are  expected to 

flood more frequently. These changes result in a significant decrease of about 2 days in the mean 

annual cycle duration (Table 24). Therefore, to obtain a complete picture of the projected changes 

in site dynamics, each wetland must be considered individually to derive results that go beyond 

the general conclusions extracted for the lakes as a whole. 
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Figure 85: Left panel: Climate reference map for mean annual cycle duration for the period 1980–2009 in Rondeau 

Bay Wetlands, Lake Erie. Right panels: The upper and lower bounds of projected change for this variable by 2070–

2099 relative to baseline. Duration gives the total number of days during the growing season that a grid cell is subject 

to sub-seasonal water level fluctuations. 

3.8.2.4. Waves: Near-bottom orbital velocities 

Only grid points experiencing wave activity were considered here to explore changes in near-

bottom orbital velocities, i.e. grid points with a non-zero mean annual value. 

No clear signal of change in near-bottom wave orbital velocities is observed in Lake Ontario, 

although a more pronounced decrease is to be expected according to the lower bound scenario 

(-12,-39% compared to +5,+10%; Table 24). Opposite projections are obtained for Lake Erie, 

where wave intensity is likely to increase by the end of the century along wetland shorelines under 

both scenarios, with major relative changes expected in lacustrine sites like Long Point (6LPW, 

52–81%) and Rondeau Bay Wetlands (7RBY, 28–52%). Because no such differences in offshore 

wave climate were observed between past and future periods (Table 23), changes in site-scale 

statistics are likely due to changes in mean lake level, which alters water depth (or bathymetry) 

and thus, nearshore dynamics. An increase in exposure to wave action is likely to influence plant 

composition of the offshore fringe of open shore wetlands (Albert et al., 2005; Angradi et al., 2013; 
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cf. Section 3.2.4.3). High activity can limit the establishment and survival of much of the emergent 

plants and submerged aquatic vegetation.  

3.8.3. Summary 

From the results described in the previous sections, some general conclusions can be drawn 

about projected changes in site-scale dynamics, which are related to mean lake level, site 

topography, and nearshore dynamics: 

1. Most Lake Ontario sites (including 1HIE, in the Upper St. Lawrence) display a 6-34% 

increase in mean annual strictly flooded area in 2070–2099 relative to baseline. Drowned 

river mouths, such as Grand River Mouth Wetland (7GRM; Lake Erie) and Anderson 

Creek Marshes (23ACK; Lake Huron), also show high upper bound projections compared 

to basin-scale values. In general, the riverine systems are more likely to be flooded by the 

end of the century. 

2. The transition zone is projected to expand by 2070–2099 in Lake Ontario wetlands, and 

Lake Erie riverine systems (7GRM and 11FCK), as well as in specific sites in Lake Huron 

(15BDD, 18HGW, and 19TBY).  

3. A significant decrease in the areal extent of the transition zone is projected for connecting 

channel sites, i.e. Hill Island East, in the Upper St. Lawrence, and Detroit River Marshes, 

in the Huron-Erie Corridor.  

4. An 80–90% decrease in interannual variability of flooded and partially flooded area of Lake 

St. Clair marshes is projected by the end of the century. More stable physical conditions 

can be expected from year to year in this lake, which heightens the risk of perennial habitat 

loss if mean lake level increases significantly. 

5. A general decrease in the mean annual duration of periodic events is projected for a 

majority of sites in Lakes Ontario, Erie, and St. Clair, including the Lower Detroit River. 

Projections for Lake Huron are somewhat opposite, with a likely increase in the mean 

annual duration in half the wetlands. 

6. Wave exposure is likely to increase in the offshore fringe of Lake Erie’s open shore 

wetlands (i.e. Long-Point and Rondeau Bay Wetlands), with a 52–81% relative increase 

in wave activity by the end of the century, which is likely to limit aquatic species 

establishment. 
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4. SELECTED SITES 

The Great Lake Protection Initiative focuses on 20 sentinel wetlands that represent the diversity 

of coastal wetlands found along the Canadian shoreline of the Great Lakes. In this study, the 

CWRM is used to show how these sentinel wetlands might evolve under the different climatic 

scenarios. 

In 2004, the Great Lakes Coastal Wetland Consortium (GLCWC) identified 4511 coastal wetlands 

(>2ha) along the Canadian shoreline of the Great Lakes, covering roughly 700 km2 (Ingram, et 

al., 2004). Moreover, it is recognized that the GLCWC inventory underrepresents the number of 

coastal wetlands in Lake Huron, particularly in eastern Georgian Bay (Ingram, et al., 2004; 

Midwood et al., 2012). Therefore, twenty coastal marshes, representative of the dominant 

hydrogeomorphological systems found within lakes Huron, St. Clair, Erie and Ontario, were 

selected to be studied, as well as locations in the St. Marys River, the Detroit River and the Upper 

St. Lawrence River (Figure 2). It was mandatory to represent the dominant 

hydrogeomorphological systems found within each basin for making sure that the variation in the 

exposure of coastal marshes to lake-level changes was properly captured. Daily, seasonal and 

annual water-level change controls the distribution of vegetation communities in Great Lakes 

coastal wetlands (Keddy & Reznicek, 1986; Wilcox & Meeker, 1991; Wilcox, et al., 2002), and the 

influence of water levels is moderated by the hydrologic connection between wetland and lake 

(Keough et al., 1999; Wilcox, et al., 2005; Wilcox, 2012; Grabas & Rokitnicki-Wojcik, 2015). 

Coastal wetlands throughout the Great Lakes can be classified as lacustrine, riverine or barrier-

protected based on their primary hydrologic source and hydrologic connection with the lake. 

Within these systems, coastal wetlands can be further separated based on their geomorphic 

features and coastal processes (Albert et al., 2005). A hierarchical diagram illustrating the 

variation in coastal wetland hydrogeomorphology is shown in Figure 86. Lacustrine systems are 

directly controlled by Great Lakes levels, and are heavily influenced by lake-level fluctuations as 

well as erosive and depositional processes. In this study, riverine sites occur at the confluence of 

a tributary and a lake and are partially controlled by the river watershed. However, lake waters 

flood the lower portions of these systems, influencing water levels and fluvial processes. Lastly, 

barrier-protected systems may have a lacustrine or riverine origin, but they become separated 

from the lake by a barrier beach or beach ridges often forming a coastal lagoon (Albert et al., 

2005; Wilcox, 2012). Table 25 details the hydrogeomorphology of the 20 coastal wetlands 
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selected, and Figure 87 illustrates the relative surface area of each hydrogeomorphological 

system in each basins. 

Barrier beach lagoons are a notable omission from sites selected on lakes Huron and Ontario. 

The sand barrier that forms in these systems can sever the hydrologic connection between 

wetland and lake for an extended period of time (Albert et al., 2005). These barriers are dynamic 

and are the result of sediment transport. They can breach as water levels rise or through erosion 

on the lakeward side of the barrier causing rapidly changing water levels (see Figure 5 within 

Grabas & Rokitnicki-Wojcik, 2015). The CWRM does not model the changes in sedimentation 

since it uses a static digital elevation model (DEM). The inability to predict when and for how long 

the barrier beaches form and when breaches occur challenges the ability to model the distribution 

of wetland vegetation since the water depths are most likely inaccurate in such sites using the 

proposed approach. 

In addition to lake-level fluctuations, several other environmental variables can influence the 

distribution of vegetation communities of Great Lakes coastal wetlands (Wilcox, et al., 2005). 

These are both natural and anthropogenic and include, but are not limited to:  

 Temperature; 

 Latitude; 

 Sediment supply and transfer (e.g. longshore drift) and associated disruptions (e.g. 
shoreline hardening, dredging); 

 Ice and storm events; 

 Biological stressors, including invasive species (e.g. Typha x glauca, Phragmites australis 
spp. australis, common carp); 

 Wetland impoundment, including dike construction; 

 Water chemistry including pollutants (e.g. herbicides), nutrients (e.g. nitrogen and 
phosphorus), turbidity and temperature; and 

 Other human-related disturbances such as land conversion (Wilcox, 2012). 



 

248 

 

 

Figure 86: Hydrogeomorphic classification of Great Lakes coastal wetlands (Albert et al., 2005). 
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Table 25: Hydrogeomorphology (HGM) and land tenure for twenty Great Lakes coastal wetlands assessed. 1 - Refers 

to a wetland managed by a provincial conservation authority. 
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Figure 87: Relative surface area of each hydrogeomorphic system in: (a) the St. Marys River; (b) Lake Huron; (c) the 

Huron-Erie Corridor; (d) Lake Erie; (e) Lake Ontario and (f) The St. Lawrence River as quantified through the GLCWI 

(Ingram et al. 2004). 
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4.1. Site description 

4.1.1. St. Lawrence River 

1HIE - Hill Island East 

Hill Island East is a protected embayment on the eastern edge of Hill Island, Thousand Islands 

National Park. It is the only study site located in the Upper St. Lawrence River. Protected 

embayment coastal marshes are the most common hydrogeomorphological type observed along 

the Upper St. Lawrence River, representing 45% of all coastal wetlands as quantified through the 

Great Lakes Coastal Wetland Inventory (GLCWI) (Ingram et al., 2004; Figure 87). 

Thousands Island National Park is located where the St. Lawrence River and Frontenac Arch 

meet, serving as a transitional zone between eastern deciduous and boreal forests. The geology 

and unique climatic characteristics of the Park provide a diversity of habitats that support several 

species at the northern or southern limit of their range (Parks Canada Agency, 2019). Hill Island 

is designated as an Area of Natural and Scientific Interest by the Province of Ontario, and Hill 

Island East is an evaluated Provincially Significant Wetland. 

 

Figure 88: Hill Island East, Thousand Islands National Park, Ontario. Photo Credit: Canadian Wildlife Service – 

Ontario Region, Environment and Climate Change Canada, August 2002 

4.1.2. Lake Ontario 

2ACM - Airport Creek Marsh 

Airport Creek Marsh is an open drowned river-mouth wetland located on Tyendinaga Mohawk 

Territory in the Bay of Quinte, Lake Ontario. Open drowned river-mouth coastal marshes are the 

most common hydrogeomorphological type observed in Lake Ontario, representing 30% of all 

coastal wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 
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Airport Creek Marsh is also designated as a Provincially Significant Wetland. Amongst coastal 

wetlands within the Bay of Quinte Area of Concern, the water quality and biotic condition of Ai rport 

Creek Marsh are considered ‘Good’ to ‘Excellent’ (Environment Canada - Canadian Wildlife 

Service, 2007). Airport Creek Marsh is monitored by Quinte Conservation and ECCC with support 

from the Mohawks of the Bay of Quinte. 

 

Figure 89: Airport Creek Marsh, Desoronto, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, August 2019. 

3SBM - South Bay Marsh 

South Bay Marsh is an open embayment located along the eastern edge of Prince Edward 

County, Ontario. Open embayment coastal marshes are an uncommon hydrogeomorphological 

type within Lake Ontario, representing only 7% of all coastal wetlands as quantified through the 

GLCWI (Ingram et al., 2004; See Figure 87). 

South Bay Marsh is designated as a Provincially Significant Wetland and a part of the Prince 

Edward County South Shore Important Bird and Biodiversity Area (Birds Canada, 2018). Like 

Airport Creek Marsh, water quality and biotic data have been collected at South Bay Marsh by 

the Canadian Wildlife Service – Ontario Region for nearly two decades. This information has 

supported the development of a submerged aquatic vegetation (SAV) community index of biotic 

integrity (IBI) for use in Lake Ontario coastal wetlands (Grabas et al., 2012), and has furthered 

research relating the influence of daily, seasonal and annual water level fluctuations to the 

composition of Lake Ontario coastal wetland vegetation communities (Wilcox, et al., 2005; Grabas 

& Rokitnicki-Wojcik et al., 2015; Grabas et al., 2019). 
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Figure 90: South Bay, Milford, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, Environment and 

Climate Change Canada, September 2016. 

5LCM - Lynde Creek Marsh 

Lynde Creek Marsh is a barred drowned river-mouth, Provincially Significant Wetland located in 

Lynde Shores Conservation Area, Whitby, Ontario. Unlike open drowned river -mouths, barred 

drowned river-mouths have a barrier that constricts streamflow as it enters the lake, often forming 

a lagoon. Barred drowned river-mouth coastal marshes are a fairly common 

hydrogeomorphological type observed in Lake Ontario, representing 25% of all coastal wetlands 

as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 

The biological and geophysical condition of Lynde Creek Marsh have been monitored by the 

Central Lake Conservation Authority (CLOCA) and ECCC for nearly two decades as part of the 

Durham Region Coastal Wetland Monitoring Project (Environment Canada and Cen tral Lake 

Ontario Conservation Authority, 2007) and the Coastal Wetland Monitoring Program (CWMP; 

Uzarski, et al., 2017). Relative to other coastal wetlands throughout the Great Lakes, the condition 

of Lynde Creek Marsh is considered “Moderately Impacted” to “Moderately Degraded” as 

measured through the composition of the bird, anuran, fish and vegetation communities.  
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Figure 91: Lynde Shores Conservation Area, Whitby, Ontario. 

6JSM – Jordan Marsh 

Jordan Station Marsh is evaluated as a Provincially Significant Wetland that overlaps two 

Provincial Areas of Natural and Scientific Interest - Jordan Valley and Twenty Mile Creek Drowned 

River Mouth. Jordan Harbor is surrounded by private residences and agricultural land, with 

exception of two Provincial Conservations Areas – Ball’s Falls and Jordan Harbour, both of which 

are managed by the Niagara Peninsula Conservation Authority (NPCA). Like South Bay Marsh, 

the condition of Jordan Station Marsh has been monitored by the Canadian Wildlife Service – 

Ontario Region for nearly two decades (Wilcox et al., 2005; Grabas et al., 2012; Grabas & 

Rokitnicki-Wojcik et al., 2015; Uzarski et al. 2016; Grabas et al., 2019). Relative to other coastal 

wetlands throughout the Great Lakes, the condition of Jordan Station Marsh is considered to be 

‘Moderately Impacted’ to ‘Degraded’ as measured through water quality and surrounding land 

use, and the composition of the bird, anuran and fish communities.  

The most appropriate hydrogeomorphological classification for Jordan Station Marsh would be a 

barred drowned river-mouth; however, the Queen Elizabeth Way (QEW) is located across the 

barrier beach that once sheltered this coastal wetland. Barred drowned river -mouth coastal 

marshes are a common hydrogeomorphological type observed in Lake Ontario, representing 25% 

of all coastal wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 
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Figure 92: Jordan Harbour, Jordan Station, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, September 2016. 

4.1.3. Lake Erie 

7GRM - Grand River Mouth Wetlands 

The Grand River Mouth Wetlands are designated as a Provincially Significant Wetland Complex. 

It is located at the outlet of southern Ontario’s largest watershed (6800 km2), and it is heavily 

influenced by agriculture (70% agricultural land; Grand River Conservation Authority, 2018). A 

significant portion of the marsh is owned by the Grand River Conservation Authority and leased 

to the Broad Creek Recreation Club. The Canadian Wildlife Service – Ontario Region has 

monitored the condition of the Grand River Mouth Wetlands for the past decade, on a three-year 

basis (unpublished data). Relative to other Lake Erie coastal wetlands, the water quality of the 

Grand River Mouth Wetlands is considered to be ‘Very Degraded’. Despite this, the biotic 

condition appears to be ‘Very Good’ as measured through the composition of aquatic 

macroinvertebrate and bird communities. 

The wetlands at the outlet of the Grand River can be considered a large, barred, drowned river-

mouth complex. However, like Jordan Station Marsh, the mouth of the Grand River has been 

stabilized through jetties in Port Maitland, Ontario. Barred drowned river -mouth coastal marshes 

are a common hydrogeomorphological type observed in Lake Erie, representing 28% of all coastal 

wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 
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Figure 93: Byng Island, Dunnville, Ontario. Photo Credit: Grand River Conservation Authority, 2010. 

8SPP - Selkirk Provincial Park 

Selkirk Provincial Park contains a barred drowned river-mouth wetland at the confluence of 

Sandusk and Spring Creeks in Haldimand County, Ontario. Barred drowned river -mouth coastal 

marshes are a common hydrogeomorphological type observed in Lake Er ie, representing 28% of 

all coastal wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 

Selkirk Provincial Park is an evaluated Provincially Significant Wetland, surrounded largely by 

agriculture. The Canadian Wildlife Service – Ontario Region has monitored the condition of Selkirk 

Provincial Park for the past decade, on a three-year basis (unpublished data). Relative to other 

Lake Erie coastal wetlands, the water quality of the Selkirk Provincial Park is considered to be 

‘Moderately Degraded’. Despite this, biotic condition, as measured through the composition of 

aquatic macroinvertebrate and bird communities is considered to be ‘Very Good’.  

 

Figure 94: Selkirk Provincial Park, Selkirk, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, July 2019. 
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9LPW - Bouck’s Pond, Long Point National Wildlife Area 

Bouck’s Pond is one of several sand-spit embayments on Long Point National Wildlife Area. 

Sand-spit embayment coastal marshes are the most common hydrogeomorphological type 

observed in Lake Erie, representing 43% of all coastal wetlands as quantified through the GLCWI 

(Ingram et al., 2004; See Figure 87). 

The coastal marshes of Long Point, including Bouck’s Pond serve as one of the most important 

staging grounds on the continent for waterfowl (Government of Canada, 2020). Because of this, 

Long Point is recognized provincially and internationally as a wetland complex o f extraordinary 

ecological and social importance. Long Point is a Wetland of International Significance under the 

Ramsar Convention, a UNESCO World Biosphere, a Provincially Significant Wetland, and an 

Important Bird and Biodiversity Area. Relative to other Lake Erie coastal wetlands, the water 

quality of Bouck’s Pond is considered to be ‘Good’ and the biotic condition as measured through 

the composition of submerged aquatic vegetation, aquatic macroinvertebrate and bird 

communities is considered to be ‘Very Good’ to ‘Excellent’. 

 

Figure 95: Bouck’s Pond, Long Point National Wildlife Area, Ontario. Photo Credit: Canadian Wildlife Service – 

Ontario Region, Environment and Climate Change Canada, November 2018. 



 

258 

 

10RBY - Rondeau Bay 

Rondeau Provincial Park protects a unique diversity of habitats including oak savannah, 

Carolinian forest, dune and coastal wetland (Friends of Rondeau, 2016). The marshes of the 

Greater Rondeau Area are also considered to be a major waterfowl staging area (Birds Canada, 

2018). In recognition of its ecological and social importance, Rondeau Provincial Park is 

designated as an Area of Natural and Scientific Interest, a Provincially Significant Wetland, and 

as an Important Bird and Biodiversity Area. 

 

Figure 96: Rondeau Provincial Park, Ontario. Photo Credit: Ontario Parks, August 2010. 

11FCK – Fox Creek/ Dolson’s Creek Marsh 

A barred drowned river-mouth coastal marsh exists at the confluence of Fox and Dolson’s Creeks 

in Harrow, ON. Barred drowned river-mouth coastal marshes are a common 

hydrogeomorphological type observed in Lake Erie, representing 28% of all coastal wetlands as 

quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 

Fox Creek/ Dolson’s Creek Marsh is evaluated as a Provincially Significant Wetland in a 

landscape dominated by agriculture. The Canadian Wildlife Service – Ontario Region has 

Rondeau Bay is a large sand-spit embayment in southwestern Ontario in the Municipality 

Chatham-Kent. Rondeau Provincial Park is located on the east side of Rondeau Bay and contains 

several sand-spit embayment coastal marshes, much like Long Point National Wildlife Area. 

Sand-spit embayment coastal marshes are the most common hydrogeomorphological type 

observed in Lake Erie, representing 43% of all coastal wetlands as quantified through the GLCWI 

(Ingram et al., 2004; See Figure 87). The west or landward side of Rondeau Bay contains several 

drowned river-mouth wetlands in a landscape dominated by agriculture. 



 

259 

 

monitored condition of Fox Creek/ Dolson’s Creek Marsh for the past decade, on a three-year 

basis (unpublished data). Relative to other Lake Erie coastal wetlands, the water quality of the 

Fox Creek/ Dolson’s Creek Marsh is considered to be ‘Moderately Degraded’. Despite this, the 

biotic condition, as measured through the composition of the submerged aquatic vegetation, 

aquatic macroinvertebrate and bird communities is considered to be ‘Good’ to ‘Very Good’. 

 

Figure 97: Fox Creek Marsh, Harrow, Ontario. Photo Credit: Canadian Wildlife Servi ce – Ontario Region, 

Environment and Climate Change Canada, July 2019. 

4.1.4. Huron – Erie Corridor  

12DRM - Detroit River Marshes 

The Detroit River Marshes are a riverine, open shoreline coastal wetland complex in LaSalle, 

Ontario. Open shoreline marshes are a common hydrogeomorphological type observed in the 

Huron – Erie Corridor (Detroit River, Lake St. Clair, St. Clair River), representing 28% of all coastal 

wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87). 

Located in the Detroit River Area of Concern (AOC), the water quality and condition of the 

submerged aquatic vegetation community within the Detroit River Marshes are considered ‘Good’ 

and comparable to coastal wetlands outside of the AOC. Despite this, the biotic condition as 

measured through the composition of local the bird community is considered to be ‘Poor’ relative 

to non-AOC sites (ECCC, 2017). The Detroit River Marshes are designated as Provincially 

Significant Wetland and an Important Bird and Biodiversity Area. Petite Côte Conservation Area 

is also situated in the Detroit River Marshes east of Fighting Island, an international wildlife refuge 

(Essex Region Conservation Authority, 2020). 
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Figure 98: Detroit River Marshes, LaSalle, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, July 2012. 

13LSC – Lake St. Clair Marshes 

The marshes along the eastern shoreline of Lake St. Clair can be considered as a large, open 

shoreline coastal wetland complex. Open shoreline marshes are a common 

hydrogeomorphological type observed in the Huron – Erie Corridor (Detroit River, Lake St. Clair, 

St. Clair River), representing 28% of all coastal wetlands as quantified through the GLCWI 

(Ingram et al., 2004; See Figure 87). 

The eastern shoreline of Lake St. Clair is designated as an Area of Natural and Scientific Interest, 

a Provincially Significant Wetland Complex and an Important Bird and Biodiversity Area. South of 

James Bay, Lake St. Clair and adjacent marshes are the most important staging area for 

waterfowl in Ontario (Government of Canada, 2020). St. Clair National Wildlife Area (NWA), 

located adjacent to the southeastern shore, is a Wetland of International Significance under the 

Ramsar Convention and sees up to 360 000 individual waterbirds in the spring and up to 150 000 

in the fall (Canadian Wildlife Service - Ontario Region, 2001). The Canadian Wildife Service of 

ECCC continues to monitor the biotic and geophysical condition of the Lake St. Clair Marshes to 

inform NWA management and the remediation of the St. Clair River Area of Concern 

(Environment Canada - Canadian Wildlife Service, 2016). 
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Figure 99: St. Clair National Wildlife Area – St. Clair Unit, Pain Court, Ontario. Photo Credit: Canadian Wildlife 

Service – Ontario Region, Environment and Climate Change Canada, September 2017. 

14SAM – Johnston Bay/ St. Anne Marsh 

The marshes of Johnston Bay and the southern portion of St. Anne Island, Ontario are part of the 

St. Clair River delta, the largest delta in the Laurentian Great Lakes (Thomas et al., 2006). The 

eastern portion of the St. Clair River Delta is Bkejwanong Territory (Walpole Island First Nation). 

Not surprisingly, delta marsh habitat is the most common hydrogeomorphological type observed 

in Huron – Erie Corridor (Detroit River, Lake St. Clair, St. Clair River) , representing 54% of all 

coastal wetlands as quantified through the GLCWI (Ingram et al., 2004; See Figure 87).  

Walpole Island supports a mosaic of biologically diverse natural landscapes, including tall grass 

prairies, oak savannahs and coastal wetlands. Not only do these habitats support over 70 species 

at risk, but they are also of cultural and social importance to the Bkejwanong people (Beckford et 

a.l, 2010). Walpole Island, including the marshes of Johnston Bay and the southern portion of St. 

Anne Island are designated as an Area of Natural and Scientific Interest by the Province of Ontario 

and are also part of the Eastern Lake St.Clair Important Bird and Biodiversity Area.  
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Figure 100: Johnston Bay/ St. Anne Marsh, Walpole Island First Nation, Ontario. Photo Credit: Canadian Wildlife 

Service – Ontario Region, Environment and Canada, June 2019. 

4.1.5. Lake Huron 

15BDD - Baie du Doré 

Baie du Doré is an open embayment, coastal marsh adjacent to the Bruce Power Nuclear Station 

in Tiverton, Ontario. Open embayment coastal marshes are an uncommon 

hydrogeomorphological type within Lake Huron, representing only 5% of all coastal wetlands (not 

including eastern Georgian Bay), as quantified through the GLCWI (Ingram et al., 2004; See 

Figure 87). 

Baie du Doré is also evaluated as a Provincially Significant Wetland. Since 2014, Bruce Power 

and Municipality of Kincardine have supported the monitoring and management of the invasive 

common reed, Phragmites australis sp. australis (Phragmites) within the coastal wetlands 

between Baie du Doré and MacGregor Point Provincial Park. The monitoring and management 

of Phragmites along this stretch of the Lake Huron shoreline have been coordinated and 

implemented the Lake Huron Centre for Coastal Conservation, the Invasive Phragmites Control 

Centre and the Saugeen Ojibway Nation (Bruce Power, 2019). 
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Figure 101: Bruce Power Nuclear Plant, Tiverton, Ontario. Photo Credit: Bruce Power, 2019. 

16HBW – Hay Bay Wetland 

Hay Bay is protected embayment located in Fathom Five National Marine Park, a National Marine 

Conservation Area in Lake Huron. Protected embayment coastal marshes are the most common 

hydrogeomorphological type within Lake Huron, representing 51% of all coastal wetlands (not 

including eastern Georgian Bay), as quantified through the GLCWI (Ingram et al., 2004; See 

Figure 87). 

Fathom Five National Marine Park is part of the Niagara Escarpment Plan and World Biosphere 

Reserve, and harbours several species at risk endemic to wetlands (Parks Canada Agency, 

2016a). The southern portion of Hay Bay is also evaluated as a Provincially Significant Wetland 

(Barney Lake). 

 

Figure 102: Hay Bay, Fathom Five National Marine Park. Photo Credit: Southwestern Ontario Orthoimagery Project 

(SWOOP), Ontario Ministry of Natural Resources and Forestry, 2015. 
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18HBW – Hog Bay 

Hog Bay is a protected embayment located in Severn Sound, Lake Huron near Midland, Ontario. 

Protected embayment coastal marshes are the most common hydrogeomorphological type within 

Lake Huron, representing 51% of all coastal wetlands (not including eastern Georgian Bay) as 

quantified through the GLCWI (Ingram et al., 2004; See Figure 87).  

Hog Bay is evaluated as a Provincially Significant Wetland that serves as an important staging 

area for waterbirds (Weseloh et al., 2002). In 2003, Severn Sound was delisted as an Area of 

Concern having sufficient restored all beneficial use impairments identified in Annex 2 of the Great 

Lakes Water Quality Agreement (1987). The Severn Sound Environmental Association continues 

to monitor the condition of Severn Sound, including the evaluation of wetlands to determine their 

significance for land use planning. 

 

Figure 103: Hog Bay, Midland, Ontario. Photo Credit: South Central Ontario Orthoimagery Project (SWOOP), Ontario 

Ministry of Natural Resources and Forestry, 2013. 

19TBY – Treasure Bay 

For nearly two decades, the laboratory of Dr. Chow-Fraser (McMaster University) has mapped 

and studied the ecology of coastal wetlands within Georgian Bay (Wei & Chow-Fraser, 2007; 

Treasure Bay is a protected embayment located on Beausoleil Island within Georgian Bay Islands 

National Park near Port Severn, Ontario. Georgian Bay is the world’s largest freshwater 

archipelago, containing roughly 30 000 islands and over 3700 coastal wetlands (Fracz & Chow-

Fraser, 2013). These wetlands provide important habitat for migratory fish, birds, mammals and 

herptiles, including several species at risk (Fracz & Chow-Fraser, 2013; Parks Canada Agency, 

2016b). In recognition of its ecological importance, Georgian Bay was designated as a UNESCO 

World Biosphere in 2004 (Georgian Bay Biosphere Reserve, 2020). 
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DeCatanzaro et al., 2009; Midwood & Chow-Fraser, 2010; Cvetkovic & Chow-Fraser, 2011; 

Rokitnicki-Wojcik et al., 2011; Midwood et al., 2012). The research undertaken by McMaster 

University has futhered our understanding of how the quality and quantity of spawning and 

nursery habitat for migratory fish are influenced by Great Lakes water levels (Cvetkovic et al., 

2010; Midwood & Chow-Fraser, 2012; Fracz & Chow-Fraser, 2013; Weller & Chow-Fraser, 

2019a, b). 

 

Figure 104: Treasure Bay, Beausoleil Island, Georgian Bay. Photo Credit: BC2 Groupe, July 2018. 

27FPT – Frances Point Marsh 

Frances Point Marsh is a protected embayment located on the northeastern tip of Franklin Island 

near Brooks Landing, Ontario. Like Beausoleil Island, Franklin Island is one of the 30  000 islands 

in eastern Georgian Bay, Lake Huron – a UNESCO World Biosphere Reserve (Georgian Bay 

Biosphere Reserve, 2020).  

Georgian Bay contains over 3700 coastal wetlands (Fracz & Chow-Fraser, 2013). These wetlands 

provide an important habitat for migratory fish, birds, mammals and herptiles, including several 

species at risk (Fracz & Chow-Fraser, 2013). Like Treasure Bay, Frances Point Marsh has and 

continues to be studied by the laboratory of Dr. Chow-Fraser at McMaster University, Ontario. 
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Figure 105: Frances Point, Franklin Island, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, May 2019. 

22WHW – Whiskey Harbour Wetland 

Manitoulin Island supports a diversity of globally rare vegetation communities, including Great 

Lakes coastal wetlands and alvars that provide habitat for a number of species at risk (e.g. 

Pitcher’s thistle, Cirsium pitcheri; lakeside daisy; Teraneauris herbacea; and dwarf lake iris, Iris 

lacustris; (Kraus et al., 2006). Whiskey Habour was recently surveyed as part of the Coastal 

Wetland Monitoring Program and is considered undisturbed or of reference quality with respect 

to water quality and surrounding land use (Central Michigan University, 2018). 

 

Figure 106: Whiskey Harbour, Wiikwemkoong Unceded Territory. Photo Credit: Canadian Wildlife Service – Ontario 

Region, Environment and Climate Change Canada, May 2018. 

Whiskey Harbour is a protected embayment located on Wiikwemkoong Unceded Territory, 

towards the northeastern tip of Manitoulin Island. Protected embayment coastal marshes are the 

most common hydrogeomorphological type within Lake Huron, representing 51% of all coastal 

wetlands (not including eastern Georgian Bay) as quantified through the GLCWI (Ingram et al., 

2004; See Figure 87). 
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23ACK – Anderson Creek 

Anderson Creek is an open drowned river mouth wetland on the St. Marys River near Desbarats, 

Ontario. Open drowned river-mouth coastal marshes are a common hydrogeomorphological type 

observed on the St. Marys River, representing 14% of all coastal wetlands as quantified through 

the GLCWI (Ingram et al., 2004; See Figure 87). 

To assess the impairment of fish and wildlife habitat within the St. Marys River Area of Concern 

(AOC), the biotic conditions of Anderson Creek and other non-AOC locations were studied 

between 2013 and 2015. Relative to AOC and other non-AOC locations along the St. Marys River, 

the water quality of Andersen Creek is considered ‘Good’ and the biotic condition, as measured 

through the submerged aquatic vegetation is considered ‘Very Good’ (Environment and Climate 

Change Canada, 2016). 

Anderson Creek is also part of a Provincially Significant Wetland Complex (Kensington Point).  

 

Figure 107: Anderson Creek, Desbarats, Ontario. Photo Credit: Canadian Wildlife Service – Ontario Region, 

Environment and Climate Change Canada, July 2015. 
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4.2. Area of Interest (AOI) 

To take into account the capacity of wetlands to migrate over time, it is necessary that the CWRM 

represents areas larger than the present-day footprint of the selected wetlands. Nevertheless, 

since CWRM relies on a large amount of data that implies considerable computing capacities, 

modelling unnecessarily large areas could quickly create a major burden. Thus, an Area of 

Interest (AOI) for each sentinel site was carefully delimited to precisely identify the zones where 

CWRM results are computed. AOI delineation is based on the following criteria:  

1. Inland boundary based on the contour line at an elevation 5 m higher than each lake 

historical high-water level (based on monthly averaged values; see Table 26). For 

instance, the historical high water level value in Lake Erie is 175.04 m, thus the contour 

line at 180 m was selected as the area of interest inland limit for all sites in this lake;  

2. Offshore boundary based on the isobaths 5 m lower than each lake historical low water 

level (based on monthly averaged values; see Table 26); and 

3. Lateral boundaries based on a maximum 2 km buffer around each sentinel wetland. 

From those general areas, some site-specific adjustments were made to:  

1. Include adjacent wetlands24;  

2. Exclude areas where some datasets are not available (for instance no LIDAR coverage); 

3. Exclude areas where hydrodynamics are strongly altered by artificial structures (for 

instance, upstream of dams); 

4. Exclude areas that are not included on wave modelling; and 

5. Limit the size of areas of interest in flat areas. 

Table 26: Historical high and low water levels per lake (based on monthly averaged values): 

Lake 

Historical  

High Water Level 

(m) 

Historical  

Low Water Level 

(m) 

Maximum  

fluctuation 

(m) 

Lake Ontario 75.81 73.74 2.07 

Lake Erie 175.04 173.18 1.86 

Lake St. Clair 175.96 173.24 2.72 

Lake Huron 177.5 175.57 1.93 

                                              

24 Based on the Great Lakes Coastal Wetland Consortium dataset produced in 2004, available at 
https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/site_view_regions_totals/FeatureServer  
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Based on those criteria, the Lake St. Clair (13LSC) and Ste. Anne Marsh (14WID) sites share the 

same AOI since their offshore and inland boundaries overlap.Therefore, there are 19 AOIs that 

cover the 20 coastal wetlands of this study. In total, the AOIs represent 1243 km2, where the 

biggest AOI is 13LSC with 823 km2 and the smallest is Whiskey Harbour Wetland AOI (22 WHW) 

with 0.62 km2 (Table 27). The difference in AOI size is due to the different wetland sizes, the 

topographic variation in the surrounding area and LIDAR dataset availability.  

Table 27: CWRM Areas of Interest. 
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4.3. Masked areas 

4.3.1. Masks related to physical variable 

Within each site’s AOI, there are areas where it is assumed that CWRM results will not be 

accurate due to 1) the large influence of groundwater seepage, 2) the occurrence of pools 

(pounds, lake), 3) areas protected from flooding (dykes) or 4) the absence of accurate elevation 

information. Within each AOI, such areas were identified and used to form a mask where CWRM 

will not computed results. 

The absence of accurate elevation data occurs mostly in tributary channels or where bathymetric 

data are not available (Figure 108). In addition, inland water bodies (i.e. pools) that are not 

connected to the lake were assumed to have inaccurate elevation information since they were 

covered by LIDAR surveys (which reflects on water surface as described in Section 5). Theses 

zone were identified by comparing the flooded area of an AOI and the corresponding topometric 

coverage.  

Most pools were identified with the Ontario Hydro Network (OHN) Waterbody dataset (Ontario 

Ministry of Natural Resources and Forestry, 2018) and cross-validated with satellite imagery. 

Finally, when inland water streams were identified on OHN Watercourse dataset (Ontario Ministry 

of Natural Resources and Forestry, 2010) and were visible on satellite imagery, a 20 m buffer was 

created on each side of the stream and this zone was added to the mask (Figure 109).  
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Figure 108: Part of the mask (in red) applied on water portions of Rondeau Bay’s (10RBY) area of interest where 

bathymetry datasets (bright green) are not available. 

 

Figure 109: Part of the mask (in red) applied on Fox Creek (11FCK) area of interest, based on a 20 m buffer applied 

on each side of watercourses and on waterbodies disconnected to the lake (yellow hashed) that also appear on 

satellite’s imagery. 

No dataset that precisely identifies dyke locations could be found (Figure 110 and Figure 111). 

Therefore, dyke systems have been manually delineated based on LIDAR data, satellite imagery, 

field photographs and GoogleStreetView. Also, it is assumed that upland areas, mainly on the 

landward side from main roads are mostly anthropized (housing, commercial, industrial, etc.). 
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These roads act as dykes and water levels are not controlled solely by lakes (Figure 112).Thus, 

those areas were also masked.  

 

Figure 110: In Rondeau Bay (10RBY), dyke and pump system regulates water level near agricultural lands. 

 

Figure 111: In Lake St-Clair (13LSC), water level on agricultural lands (left side) is maintained artificially low 

compared to the lake’s level (right side). 
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Figure 112: In Detroit River Marsh (12DRM), upland area from the road is mostly anthropogenic. Therefore, it was 

assumed that the road would act as a dyke and areas upland have been masked (yellow). 

As described in Table 30, the extent of masked area varies from one site to the other, ranging 

from 0% to 57.9% of total AOI, with an average value of 9.6%. Most extended masks occur in 

anthropic settings such as Lake St. Clair (13LSC) shores or Grand River Mouth (7GRM) wetlands, 

while sites in more natural environment such as Hill Island or Whiskey Harbor will have reliable 

CWRM results throughout the whole AOI.  

4.3.2. Masks related to land use 

Land use has to be considered in AOI masking. For instance, wet meadow species will not grow 

on asphalted roads nor intensively cultivated areas even if favorable hydrologic conditions occur. 

Therefore, it is necessary to mask areas that cannot support wetlands migration, based on the 

land use information available. The Ecological Land Classification (ELC) was used for this 

purpose. It is a collection of ecological classes delineated based on satellite imagery that covers 

the majority of the study sites. Even though it was primarily intended to delineate ecological 

classes, anthropized land areas are also identified with precision.  
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Based on ELC classes descriptions (Ontario Ministry of Natural Resources and Forestry, 2019b), 

the ELC codes listed in Table 28 were considered unsuitable for wetland migration and were 

masked. 

Table 28: ELC classes present in the AOIs and considered not suitable for wetland (please refer to Ontario Ministry of 

Natural Resources and Forestry, 2019b for description of each class). 

 

The ELC dataset only partially covered the AOI of 7GRM, 10RBY, 14WID, and 15BDD. In these 

areas, the Southern Ontario Land Ressource Information System (SOLRIS) version 3.0 (Ontario 

Ministry of Natural Resources and Forestry, 2019a) was used instead of ELC to delineate 

unsuitable areas for wetland migration (Figure 113). SOLRIS is a land cover/land use inventory 

covering Southern Ontario from 2000 to 2015. It is the third update (after 2.0 and 2.1) since the 

initial SOLRIS version 1.0 was created in the late 1990’s. It is mainly based on Landsat-5 TM, 

Landsat-7 ETM+ and Radarsat-1 image classification (using eCogintion image object technology) 

with a minimum mappable unit of 0.5 ha (Ontario Ministry of Natural Resources and Forestry, 

2019a). Therefore, features less than 0.5 ha or less than 90 m wide cannot be reliably detected. 

This explains why areas delimited with this dataset can have a “pixelized” aspect and are only 
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used where the ELC dataset is not available. The land use classes of SOLRIS included in the 

mask are listed in the following table (Table 29). 

Table 29: SOLRIS land use classes present in the AOIs and considered not suitable for wetland (please refer to 

Ontario Ministry of Natural Resources and Forestry (2019a) for description of each class). 

 

 

Figure 113: Mask related to land use in Rondeau Bay (10RBY) site, determined from a combination of ELC and 

SOLRIS 3.0 datasets. 

The combination of ELC and SOLRIS datasets did not provide satisfying results for 16HBW and 

18HBW, as clear discrepancies between land use classification and satellite imagery occur. In 

these cases, we performed a manual delineation of land uses within the AOI based on satellite 

imagery, field photographs and Google SreetView (Figure 114). 
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Figure 114: Mask related to land use for Hay Bay (16HBW) site, delineated manually. 

Finally, 19TBY and 27FPT have many underwater hard rock outcrops where wetland migration 

cannot occur. A substrate hardness value was derived from side scanning and sonar surveys 

collected at those sites by an external consultant (Georgian Bay Forever, 2020). Post collection 

data processing was created using the embedded reflectance data, allowing bathymetric isobaths 

and bottom hardness determinations to be charted. Bottom hardness values were then examined 

along with existing charts, historic imagery, and local observations to determine rock shoal extent. 

On a second visit, visual confirmation of the rock shoals was possible in most instances and, 

where necessary, real-time imaging was examined to confirm the siting. Surface and subsurface 

georeferenced photographs were taken for several reference points at each site. Underwa ter rock 

shoal extent maps were derived from those observations and were included in the land use mask 

of the surveyed sites.  

As described in Table 30, land use masked area varies greatly from one site to the other, ranging 

from 0% to 63% of total AOI with a mean value of 11%. Most extended masks occur in intensive 

agricultural settings such as Fox Creek, while sites in more natural environment such as Hill Island 

or Whiskey Harbor have land uses that can support wetlands throughout the whole AOI.   
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Table 30: Area of interest (AOI) for the twenty Great Lakes Coastal Wetland sites and their respective masked areas 

(physical modelling and land use masks. Non-masked AOI area is the resulting AOI after applying physical modelling 

and land use masks. 
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5. HIGH-RESOLUTION DIGITAL ELEVATION MODELS OF 

COASTAL WETLANDS 

Authors: Antoine Maranda, M.ATDR., Mathieu Roy, Ph.D., Marianne Bachand, Ph.D., Jean Morin, 

Ph.D. 

5.1. Introduction 

Wetland classes are mainly structured along a topographical gradient, and the elevation range 

(relative to water level) in which certain species can persist is often narrow (<1 m). Thus, wetland 

structure and plant spatial distribution are especially sensitive to changes in elevation relative to 

water level. An accurate characterization of elevation is therefore critical in wetland plant 

succession models like the one included in the Coastal Wetland Response Model (CWRM). This 

characterization is done through high-definition Digital Elevation Models (DEMs). Primary terrain 

attributes such as the slope, aspect (slope orientation) and terrain curvature can influence wetland 

structure and plants. This information is retrieved from elevation values of the DEM and can then 

be generalized at different resolutions to describe terrain attributes from small to local scales.  

5.1.1. Definitions and key concepts: 

5.1.1.1. Digital Elevation Models 

A DEM is a digital representation of the terrain elevation (Figure 115). DEM is a generic term that 

includes Digital Surface Model (DSM), which represents the elevation of the terrain including all 

objects on it, like trees or buildings, and Digital Terrain Model (DTM), which represents the bare 

ground surface (without objects). For the scope of this study, DTMs were produced since physical 

and ecological processes modelled by the CWRM rely on bare ground elevation values. However, 

the more generic term DEM is used in this report.  
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Figure 115: Difference between Digital Surface Model and Digital Terrain Model .  

A DEM represents the topography of an area at a scale defined by its cell (or pixel) size  in a 

regular grid setup. Finer cell size will provide more information on the topographic variability while 

increasing file size and computing time. A DEM cannot provide information more precise than the 

original topographic and bathymetric data used to create it. Considering the precision of datasets 

available for all the study sites and computing capacity, a 2 m resolution DEM was created for 

each wetland AOI. These DEMs provide elevation information at every 2 m that is then transposed 

on the CWRM 10 x 10 m computational grid.  

Since AOIs cover the land-water interface across the entire Great Lakes region, several 

bathymetric and topographic elevation datasets were used to create each DEM. Merging these 

multiple datasets to produce consistent and flawless DEMs contributed to processing complexity. 

A large amount of ground-truth data collection and data manipulations, based on statistical 

modelling and multispectral image analysis, were used to produce the most accurate DEM for 

each sites. The following sections describe the sources of all the topographic and bathymetric 

data that were used and the transformations that were needed to create the most precise, 

accurate and seamless DEMs as possible.  

5.1.1.2. Primary terrain attributes 

Several terrain attributes can be generated as derivatives of elevation values. In this study, the 

bottom slope, aspect and the profile curvature were extracted, which are commonly used 

variables in ecological studies (Morin et al. 2003), at five different resolutions (i.e. 10, 30, 130, 

250, and 310 m).  
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The slope expresses the rate of change in elevation values between a DEM cell and its 

neighbours (expressed in degrees or percent). Basically, the lower the slope, the flatter the terrain 

is within that cell. The aspect gives each DEM cell’s slope orientation in degrees clockwise from 

North. The profile curvature is the second derivative of the topographic surface defined by a DEM, 

and expresses the degree of downslope acceleration or deceleration within the landscape in a 

specific direction (Gallant and Wilson, 2000), i.e. in the slope orientation. Values are negative 

when the slope is increasing downhill (convex profile) and positive when it is decreasing (concave 

profile). Calculation details will be described in the methods section.  

5.2. Methods  

5.2.1. Coordinates reference systems 

5.2.1.1. Horizontal coordinate reference systems 

Study sites cover two different Universal Transverse Mercator (UTM) zones. Therefore, two 

different horizontal coordinate reference systems were used, which were assigned to the different 

sites as presented in Table 31. Each dataset used to create the DEM of a specific site was 

projected in the appropriate coordinate system before being integrated into the DEM.  

Table 31: Study sites and the associated horizontal coordinate reference systems. 

 

5.2.1.2. Vertical coordinate reference system 

The International Great Lakes Datum 1985 (IGLD85) is the vertical coordinate reference system 

used for the CWRM, which provides dynamic heights. However, all topographic datasets used to 

create the DEMs were provided in the Canadian Geodetic Vertical Datum 1928 (CGVD28) or in 

the Canadian Geodetic Vertical Datum 2013 (CGVD2013) that give normal-orthometric and 

orthometric heights. The conversions of heights related to these different vertical reference frames 

usually necessitate knowledge of heights in the two systems at a common benchmark 

(Véronneau, pers. comm.). Therefore, a series of benchmarks provided by the Canadian Geodetic 
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Survey was used, which gives height conversion between CGVD28, CGVD2013 and IGLD85 at 

various points along the coast of the study zone. For each site, the closest benchmark was 

identified, and the appropriate height conversion was applied to the datasets. In the case that 

many benchmarks were close to one wetland, benchmark values were averaged. When 

bathymetry datasets provided depth measurements instead of e levation values, the official Low 

water datum elevation of the corresponding lake was added to depth values to obtain IGLD85 

elevation values (Table 32).  

Table 32: Conversion values between different vertical datum and Lake low water datum for  each study site. 

 

5.2.2. Topographic datasets 

For 19 of the 20 sites, airborne LIDAR point clouds were used as primary topographic datasets. 

The point clouds originated from the following three sources:  

1. LIDAR Eastern Acquisition Project (LEAP) acquired in 2009, covering 3 sites with an 

average density of 1.3 points/m2, .las files version 1.2 (for more information see 

Government of Ontario, 2018); 
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2. Land Information Ontario (LIO) dataset acquired from 2016 to 2018 covering 7 sites, with 

an average density of 8 points/m2, .las files version 1.4 (for more information see 

Government of Ontario, 2019); 

3. LIDAR point clouds collected for Natural Resources Canada during summer  2018, 

covering 9 sites with an average density of 15 points/m2, .las files version 1.4 (for more 

information see KBM Resources Group, 2018); 

Please refer to Appendix A to see which LIDAR dataset was used for each site. 

No LIDAR point cloud was available for Frances Point (27FPT). For this specific site, 2 m 

resolution DEMs from the South Central Ontario Orthophotography Project (SCOOP) and the 

Central Ontario Orthography project (COOP) were used as primary topographic datasets 

(Government of Ontario, 2016 and 2017). The DEM for this site will be referred to as an imagery-

derived DEM in the following sections.  

5.2.2.1. LIDAR-derived DEM correction method 

Airborne LIDAR is amongst the most advanced and accessible technologies to collect precise 

topographic data over large areas, which makes it a popular option for measuring the bare ground 

elevation height and creating DEMs. However, the laser pulse is often unable to penetrate the 

dense vegetation canopy, and so it fails to provide accurate bare earth elevations in such areas. 

This greatly limits the accuracy of LIDAR-derived DEMs in areas such as coastal wetlands, as 

plants create a positive bias in elevation that results in significant vertical errors (Buffington et al., 

2016; Hladik and Alber, 2012; Montané and Torres, 2006; Rosso et al., 2005; Sadro et al., 2007; 

Schmid et al., 2011).  

Since DEM accuracy is critical to wetland succession models, an error correction method was 

applied to LIDAR datasets. A technique named the LIDAR Elevation Adjustment with NDVI 

(LEAN) was used (Buffington et al., 2016). This technique uses multispectral imagery information 

coupled with ground truth points to develop a statistical correction model that is then applied to 

the original LIDAR-derived DEM.  

5.2.2.1.1. LEAN Modified Technique inputs 

The LEAN technique was slightly adapted to study needs and datasets availability and will be 

referred to as the LEAN Modified Technique (LMT) in the subsequent sections. While the LEAN 

technique was applied to a 1 m resolution DEM in Buffington’s work, there was an interest to see 

if LEAN method could be more performant in error reduction at a different resolution. Therefore, 

the technique was tested at 11 different resolutions ranging from 1 to 20 m. This multi-resolution 
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approach is relevant since DEMs created with other ground filtering techniques such as Minimum-

bin gridding can have accuracy values that strongly vary according to the DEM’s resolution . It was 

therefore desirable to see if the same accuracy variation was observed under the LEAN method 

for different resolutions and, if so, to determine the resolution that maximized the corrected DEM’s 

accuracy.  

Ground truth points collection  

Elevation data were collected at 300 – 600 survey points per study site, distributed uniformly 

across 20 transects predetermined by ECCC. These values, along with elevation data collected 

by vegetation surveys described in Section 4.1, were used to ground-truth and assess the 

accuracy of LIDAR-derived DEMs, develop a correction model, and quantify precision gain. These 

values will be referred to as ground-truth points hereafter.  

Ground-truth points were collected using Trimble R8 and R10 Global Navigation Satellite System 

(GNSS) receivers operating in Real-time Kinematic (RTK) mode, providing centimeter accuracy 

(Z error ± 5 cm) and post-processing capability. Surveys were conducted on foot in 2018 and 

2019 when plant growth (early spring, late fall) or risk of disturbance to marsh-nesting birds were 

low (early spring, mid- to late summer). In remote areas without network access (e.g. eastern 

Georgian Bay, Lake Huron), ground control points (GCPs) were logged over a four -hour period 

and corrected using the Canadian Spatial Reference System Precise Point Positioning (CSRS-

PPP) tool (Natural Resources Canada, 2020). Raw positional data were then post -processed 

from corrected GCPs using Trimble Business Center 4.10 (Trimble Inc., Sunnyvale,  CA) and 

ArcGIS 10.5.1 (ESRI Inc., Redlands, CA).  

Topographic transects spanned terrestrial and aquatic systems, extending from the forest edge 

to the flooded areas, to a maximum water depth of 1.2 m. In addition to basin morphology, the 

orientation and length of transects were predetermined to capture elevation points in each 

vegetation community present, as determined through contemporary aerial imagery and 

Ecological Land Classification (Lee et al. 1998). The dense canopy cover occasionally precluded 

the collection of ground-truth points at a higher elevation. In these instances, staff drew upon their 

understanding of wetland systems to find a suitable location no more than 10 m off the 

predetermined transect. If surveying was still not possible, the transect was relocated to an 

alternate location following the elevation gradient in the study site to achieve the desired number 

of survey points.  
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Uncorrected LIDAR-derived DEM elevation values 

Uncorrected LIDAR-derived DEM elevation values are one of the LEAN method’s inputs. Since 

no LIDAR-derived DEM existed for all sites, it implied creating uncorrected DEMs from the raw 

LIDAR point clouds. To do so, the minimum-bin gridding technique was used, which assigns to 

each grid cell the elevation value of the lowest LIDAR point that lies within the cell’s extent. Since 

the LEAN method was to be tested at different resolutions, the lowest LIDAR point falling within 

11 different grid cell sizes was identified, ranging from 1 m to 20 m, creating 11 different 

uncorrected LIDAR-derived DEMs for each site. Elevation values from each DEM at each ground-

truth point location were then extracted as a LEAN method input.  

The error of each uncorrected DEM was then calculated at each specific ground -truth point 

location as:  

𝐸𝑟𝑟𝑜𝑟𝑙𝑖𝑑𝑎𝑟𝑖𝑗 =  𝑍𝑙𝑖𝑑𝑎𝑟𝑖𝑗 − 𝑍𝑅𝑇𝐾𝑖 5.1 

, where, 𝑍𝑙𝑖𝑑𝑎𝑟𝑖𝑗 is the elevation of the uncorrected DEM of resolution j at the location of ground-

truth point i, and 𝑍𝑅𝑇𝐾𝑖, the elevation of ground-truth point i.  

For each uncorrected DEM, the Root Mean Square Error (RMSE) was calculated as:  

𝑅𝑀𝑆𝐸𝑗 = √∑(𝐸𝑟𝑟𝑜𝑟𝑙𝑖𝑑𝑎𝑟𝑖𝑗 )2/𝑛 5.2 

, where 𝑅𝑀𝑆𝐸𝑗 is the Root Mean Square Error of a DEM of resolution j, and 𝑛, the number of 

ground truth points.  

RMSE is used for accuracy assessment. This error helps to determine for each site which 

resolution provides the most accurate uncorrected LIDAR-derived DEM when created with the 

minimum-bin gridding technique (Figure 116). For comparison purposes, the RMSE of a DEM 

created with the average LIDAR elevation values in a 2 m resolution grid cell was also estimated. 
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Figure 116: Errors obtained by comparing minimum-bin gridding LIDAR derived DEM values and ground-truth values 

at 11 different resolutions for the Anderson Creek (23ACK) site. On the right-end, errors obtained with the average 

bin gridding at 2 m resolution. 

Multispectral image statistics 

The LEAN method uses vegetation information derived from multispectral imagery to correct 

LIDAR DEMs. Therefore, a collection of multispectral images that covers each wetland during the 

leaf-on period was gathered. Images were precousiously selected with a preference for highest 

resolution, lowest cloud coverage and acquisition date as close as possible to LIDAR surveys.  

These images came from Geoeye, WorldView-2, WorldView-3, Pleiades and Ikonos sensors, and 

ranged from 80 cm to 2 m resolution. Please refer to Appendix B to see which multispectral image 

was used for each site. Images were cropped to each wetland area of interest and then 

georeferenced with a 1 m resolution intensity image generated from the LIDAR cloud. In the few 

cases where more than one image were needed to cover a specific area of interest, a mosaic was 

created by using the Large blending feathering method from the Mosaic tool in OTB/Monteverdi 

open source software (ORFEO Toolbox, 2017). This ensured that the multispectral values were 

as consistent as possible throughout the mosaic. Most of the image manipulations were done 

using the GDAL library (GDAL, 2019) in Python. 
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With the multispectral image of each site, the Normalized Difference Vegetation Index (NDVI) was 

first calculated as: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 5.3 

where NIR is the near-infrared band value (band number 4 on 4 band images, and band number 

7 on 8 band images), and R, the red band value (band number 1 on 4 band images, and band 

number 5 on 8 band images). NDVI is a relative index that ranges from -1 to 1, with values close 

to 1 generally associated with dense vegetation. The pigment in plant leaves, chlorophyll, strongly 

absorbs visible light (including red band) for use in photosynthesis, and the cell structure of the 

leaves strongly reflects near infrared light. Thus, the more leaves a plant has, the higher the value 

of the NIR band and the lower the value of the red band when represented on a multispectral 

image.  

Second, the NDVI average value of the pixels falling into 11 different window sizes (corresponding 

to uncorrected DEMs resolution) around each ground-truth points was calculated. Those NDVI 

average values were then used as LEAN method’s input. Calculations  were performed using 

Rasterio (Gillies et al., 2019) Python library. 

All calculated data were gathered in such a way that each ground truth point was associated with 

an uncorrected LIDAR-derived DEM elevation value, as well as a NDVI average value at 11 

different resolutions.  

5.2.2.1.2. Correction model development 

As suggested in Buffington’s work, a site-specific multivariate approach was used to model the 

relationship between the LIDAR error, NDVI values, and uncorrected LIDAR elevation. This model 

was defined as: 

𝐸 = 𝑐 +  𝑙 +  𝑙² +  𝑣 +  𝑣2 +  𝑙 ∗  𝑣 +  𝑙 ∗  𝑣2 +  𝑙²𝑣 +  𝑙²𝑣² 5.4 

where, 𝐸 is the predicted error (LIDAR elevation minus ground-truth point elevation), 𝑙, the 

uncorrected LIDAR DEM elevation, 𝑣, the NDVI, and 𝑐, a model specific constant value. The 

model aims to predict an error for each pixel of a LIDAR derived DEM, based on its NDVI and 

elevation values.  
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In implementing LEAN, the Least Absolute Shrinkage and Selection Operator (LASSO) 

regression was employed to fit models, which include (3) independent variables. For each of 

them, the LASSO’s shrinkage hyper-parameter was chosen using 100-fold cross-validation. A 

supplementary 100-fold cross validation analysis was run to validate each LEAN model and keep 

potential outliers in check, by randomly withholding 30% of the dataset for testing at each iteration. 

The average model correction from individual cross-validation runs was calculated, as well as 

RMSE mean and standard deviation. Statistical analysis was performed using glmnet R package 

(Freidman et al., 2019).  

For each site, the LEAN method was applied at 11 different resolutions ranging from 1 to 20  m 

(Figure 117), to identify the resolution that offers the best performing model (lowest RMSE). 

Outputs also specify the elevation range for which the model is valid. Please refer to Appendix C 

for each set of site model parameters. Examples of model outputs are provided in Figure 117. 

 

Figure 117: Example of the correction model outputs for Lynde Creek Marsh (5LCM). The red shaded box gives the 

resolution with the lowest RMSE, while values of the nine terms involved are listed in the lower table. 
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5.2.2.1.3. Applying the correction model  

To apply the correction method to each site, a corrected DEM was produced by applying the 

statistical model to a raw LIDAR-derived DEM, using the resolution that provides the lowest 

RMSE.  

To do so, a two-band raster dataset covering the whole site’s AOI was first created, with one band 

containing NDVI values and the other raw LIDAR-derived elevations (the lowest LIDAR point 

identified in each raster cell). For each raster cell, these two values were then entered into the 

model equation, which returned an estimated error. This error was finally subtracted from the raw 

LIDAR elevation, resulting in a new corrected elevation value for each raster cell within the 

elevation range deemed valid for the model (Figure 118).  

 

Figure 118: Workflow for applying the correction model on the raw LIDAR-derived DEM. 

5.2.2.1.4. Identify the land-water interface 

The near-infrared laser (1064 nm) that is typically used for airborne topographic LIDAR survey 

only penetrates the first few centimeters of the water surface before being completely absorbed. 

Therefore, it cannot be used as a reliable data source for bathymetric measures, and LIDAR-

derived DEMs should only cover the land part of wetland area of interest. Thus, the coastline, as 
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it appered when the LIDAR data was collected, was accurately located and georeferenced for 

each site. 

For most sites, the point cloud classification was used, where “class 9” identifies laser pulses that 

land on the water. Keeping only point class 1-2-3-4-5-6-10-11 (refer to Appendix D for ASPRS 

Standard LIDAR Point Classes), a 2 m resolution raster dataset was first generated, using the 

point count as pixel value. Only pixels with a value of 10 or higher were kept and identified as 

being part of the land surface. Second, this raster was converted to a polygon shapefile, 

eliminating any parts that were less than 400 m2. Finally, a smoothing algorithm (Polynomial 

Approximation with Exponential Kernel with a 10 m tolerance from Smooth Polygon ArcGIS Pro’s 

toolbox) was applied to create a smooth coastline.  

For the three sites covered by the LEAP LIDAR dataset (cf. Appendix A), point cloud classification 

did not correctly identify the pulses that landed on the water (Figure 119). Therefore, coastline 

delineation was realized by extracting the extent of the water bodies from Satellite images using 

the Quick OSM extension in QGIS. This method has the advantage to quickly extract a smooth 

coastline, but it cannot guarantee an identical water level at the acquisition date of the satellite 

image and LIDAR, which explains why it was only applied when the first technique did not give 

consistent results. The corrected LIDAR-derived DEMs were then clipped with the coastline to 

keep only the inland portion of each site area of interest.  

 

Figure 119: For sites covered by LEAP dataset, point classification is not reliable to identify laser pulses that hit water  

surface. Here, points in pink are classified as water (class 9) and green, as ground (class 2). On the right, satellite 

image of the same sector. 



 

290 

 

5.2.2.1.5. Performance assessment 

To assess the performance of the applied correction technique, corrected DEMs accuracy was 

compared with four other DEMs obtained from widely used LIDAR ground filtering techniques 

(Figure 120): Minimum-bin gridding (MBG), Ground classified points (GCP), Kraus and Pfeifer’s 

ground filter (KGF) (Kraus and Pfeifer, 1998) and Zhang et al.’s progressive morphological ground 

filter (PGF) (Zhang et al., 2003). For MBG, the DEM was created with the LAS Dataset To Raster 

tool in ArcGISPro with the minimum binning technique and linear void–filling method at a 2 m 

resolution. GCP was obtained by filtering the LIDAR cloud, keeping only “class 2” points, and 

using the same tool as MBG, with the average binning technique and linear void fill method at a 

2 m resolution. KGF and PGF were applied to the raw LIDAR cloud via PyFor (Frank B., 2019), a 

Python package that holds ground filtering modules based on these two techniques. A 2 m 

window cell, as well as default parameters were used in this case.  

The government of Ontario recently created 0.5 m and 1 m resolution DEMs with the LEAP and 

LIO LIDAR point clouds (Government of Ontario, 2019). These DEMs (named ONT in the 

following tables and figures) include coverage for nine of the selected sites, which in these cases 

allows additional accuracy comparison with the corrected DEMs developed for this study. 

 

Figure 120: DEM generated with five different techniques on a portion of Anderson Creek (23ACK). A) LMT B) GCP 

C) PGF D) KGF E) MBG. F) Satellite image of the sector with ground truth points in green. (Z=10x)  
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Figure 121: Error values obtained when comparing elevation values from 6 LIDAR-derived DEMs and ground-truth 

points for Long Point Wetlands (9LPW). Corrected DEM is on the right end and is identified as LMT (LEAN modified 

technique). 

The RMSE relative to ground-truth point elevations was calculated for each DEM to support an 

accuracy comparison (Figure 121). Outliers, detected as values outside an interval spanning over 

the mean plus/minus three standard deviations, were removed to avoid extreme elevation values. 

For each site, DEM accuracy was then compared based on their respective RMSE. In spite of 

drawbacks observed in the analysis of the spatial variability of errors, RMSE-based comparison 

of DEM elevations with ground-truth values offers an appropriate way to provide error estimate 

and has been used in several previous studies (Gonga-Saholiariliva et al., 2011).  

As illustrated by the results obtained (Table 33 and Table 34), the modified LEAN technique (LMT) 

provided the most accurate DEM for 16 of 18 sites25 (most accurate was PGF for 2 sites), with an 

average RMSE of 25 cm (with minimum and maximum values of 15.6 cm and 42.5 cm, 

respectively). On average (Table 34), this technique reduces the error by 45% (20.8 cm) 

                                              
25

 Please note that since Lake St. Clair (13LSC) and Johnston Bay (14SAM) area of interest are overlapping, only one DEM has been 

generated covering both sites AOIs. It is referred to as 13LSC in the tables and figures of that section.  
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compared to MBG, 55% (30.9 cm) compared to GCP, 38% (15.4 cm) compared to PGF, 53% 

(28.5 cm) compared with KGF, and 51% (25.9 cm) compared to ONT. For a vast majority of tested 

sites, the LMT created a more accurate DEM than the five other methods and, on average, 

reduced elevation errors by 48% (24.3 cm). This technique performed best in South Bay Marsh 

(3SBM), with an average reduction of 66% (39.8 cm) in RMSE; however, it was less effective in 

Jordan Station (6JSM), with 1% (0.15 cm) increase in average error over other DEMs. 

Table 33: Root mean square errors (in meter) between ground-truth points and DEMs generated with 6 different 

techniques. 

 

It is worth nothing that the LMT correction technique showed the poorest performance and was 

outperformed by PGF (2ACM and 6JSM) at sites where the statistical model returned only one 

significant term, the constant 𝑐. Thus, a constant pixel-independent value was subtracted from 

each of the raw elevation values, rather than a specific value derived from each pixel elevation 

and NDVI values, as it was the case at the other sites. 
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Table 34: Comparison of RMSE values from DEMs created with LEAN modified technique (LMT) and five other 

ground filtering techniques. 

 

An average residual error of 25 cm might seem relatively high for flat areas such as coastal 

wetlands. However, given the swampy and muddy nature of wetlands (Figure 122), as well as the 

accuracy of GNSS receivers (~5 cm) which can result in errors of several centimeters when 

measuring ground truth elevations, this error range is acceptable and the precision of the resulting 

elevation values is considered suitable for the CWRM. 

 

Figure 122: Pictures taken in South Bay Marsh (3SBM) showing the swampy and muddy nature of the terrain, which 

can leads to errors of several centimeters when measuring ground truth elevations. 

5.2.2.2. Imagery-derived DEMs correction  

Since LIDAR point cloud data were not available for Frances Point (27FPT), the imagery derived 

DEM was used as primary topographic datasets for this site. 

This DEM is derived from digital imagery acquisition at 20 cm Ground Sample Distance. The 

image is first classified by an automated filtering routine to identify the ground surface and remove 

above-ground features, and remaining points are then triangulated and interpolated on a regular 
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2m grid (Government of Ontario, 2016 and 2017). When the ground is not visible in the original 

imagery, as is often the case in areas such as wetlands or dense forests, the automated routine 

cannot identify ground points, and low points in the canopy can be misinterpreted as  ground 

values. This is an important limitation of imagery-derived DEMs, and these digital models cannot 

be considered accurate representations of the bare-earth elevation surface.  

Thus, a correction process similar to the one applied to LIDAR-derived DEMs was used to correct 

this imagery derived DEM to minimize elevation errors and improve accuracy. Mainly, the LEAN 

correction method (Buffington et al. 2016) was applied to the 2 m resolution DEM. RMSE value 

of 27.3 cm was obtained for 27FPT, which is similar to LIDAR-derived DEM values but represents 

a reduction in error values of only 6.5% compared to the uncorrected DEM (29.2 cm). Therefore, 

the LEAN correction method was less performant for this imagery-derived DEMs than it was for 

LIDAR-derived DEMs, for which the average error reduction was 45% (cf. Table 34).  

Since the topographic datasets used for Frances Point differ from those used for the other sites, 

this wetland was not included in the accuracy assessment (cf. Section 5.3.1). 

5.2.3. Bathymetry datasets 

DEMs had to be completed using bathymetric datasets as each AOI spanned both aquatic and 

terrestrial environments, and LIDAR datasets are not reliable on water (cf. Section Identify the 

land-water interface). As no recent bathymetric survey campaign was available for the entire 

Great Lakes region, multiple datasets were used to cover the selected sites. These datasets were 

collected by various organizations, using several technologies, at different periods and times. 

Even after consolidating all available bathymetric information, ECCC had to conduct bathymetric 

surveys at some study sites to fill outstanding data gaps. 

5.2.3.1. Targeted bathymetric surveys 

Within predetermined, spatially explicit polygons, ECCC and BC2, an independent contractor, 

collected depth data relative to water-level surface elevation at the time of the survey. By following 

the Ministry of Natural Resources and Wildlife’s Bathymetric Inventory Standardization Guide 

(Arvisais & Demers, 2011), bathymetry transects were positioned based on the area and 

morphology of each wetland. These transects were located perpendicular to the shore, with 

multiple crossings and shore-side branches (Figure 123) to validate the accuracy of the collected 

RTK topographic data (cf. Section Ground truth points collection). 
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The bathymetric surveys were performed by motor boat (Zodiac or Jon boat), using a single beam 

echosounder to ensure sufficient sampling in shallow (≤1.2 m in depth) and open water habitats 

(>1.2 m). BC2 collected sonar data using an Echotrac CV100 (Teledyne Technologies Inc., 

Thousand Oaks, CA), and recordings were georeferenced using an Arrow 200  RTK GPS 

Receiver (Eos Positioning Systems Inc., Terrebonne, QC). ECCC logged water depth using a 

HydroBox v. 2.45 (SyQwest Inc., Cranston, RI), and recordings were georeferenced horizontally 

using a Trimble GeoXH GPS unit (Trimble Inc., Sunnyvale, CA). Collected water depths were 

exported and corrected using daily water levels (measured in situ; cf. Section Ground truth points 

collection), as well as the transducer draft. HYPACK (Xylem Inc., Rye Brook, NY) was the 

hydrographic software employed by both teams for navigation and data acquisition, recording one 

point every tenth of a second. Collected bathymetric data were exported via HYPACK, and post-

processed with ArcGIS 10.5.1.  

 

Figure 123: Different bathymetry datasets used for 10RBY DEM. Blue: bathymetric LIDAR dataset; Yellow: 

echosounder dataset from BC2; Purple: echosounder dataset from Fisheries and Oceans Canada; Red: Bathymetry 

grid from NOAA; White: Area of interest boundaries. 
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5.2.3.2. Dataset prioritization and elevation shift 

Since more than one bathymetric dataset were used to cover the lacustrine area in most sites, 

the datasets had to be ordered in priority, with the best bathymetric measurements defined as the 

preferred measurements. Precision and accuracy are the two main characteristics that were used 

to quickly assess datasets quality and facilitate prioritization. Accurate data have values that are 

close to reality (low RMSE when compared to ground truth points), while precise data are linked 

to high spatial resolution, which takes good account of the elevation variability.  

For many sites, bathymetric LIDAR datasets (IIC Technologies, 2018) were available. Those 

datasets are covering a large portion of the nearshores area with high point density (1.6 to 8 

points per m2) and detect bathymetric variability with high precision. However, when compared to 

bathymetric data collected by BC2 and CWS (hereafter referred to as echosounder datasets), 

these more precise bathymetric LIDAR datasets appeared less accurate since they had larger 

elevation difference with ground truth points (e.g. Figure 124).  

 

Figure 124: A) DEM of Baie du Doré (15BDD) generated with echo-sounder dataset for the water portion of the lake; 

RMSE=0.57m; B) DEM of Baie du Doré (15BDD) generated with bathymetric LIDAR dataset for the water portion of 

the lake; RMSE=0.87m; (Z=10x). 

In order to take advantage of the precision of one dataset while maintaining the accuracy of the 

second, bathymetric LIDAR elevation values were modified to recover the accuracy otherwise 

obtained from the echo sounder data. This correction was made by plotting the observed 

difference in elevation between the echo-sounder and bathymetric LIDAR points, within 0.5, 1.0, 

and 1.5 m from each other. The error calculated from these different radii was found to be 

relatively constant, with a small distribution of values around the mean and median (Figure 125), 
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indicating the existence of a systematic error between the two datasets. It was therefore possible 

to correct the bathymetric LIDAR dataset based on the difference in median elevation between 

the two datasets. The resulting bathymetric LIDAR dataset is precise and accurate, with high 

resolution elevation values closer to ground truth points. This method increases bathymetric 

LIDAR accuracy and provides better consistency between the two bathymetric datasets, creating 

seamless DEMs (Figure 126). 

 

Figure 125: Elevation difference between echosounder points and bathymetric LIDAR points that are within a 0.5 (A), 

1m (B), 1.5m (C) and 2m (D) radius from each other. In this case, 0.28m was subtracted from bathymetric LIDAR 

elevation values. 
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Figure 126: Bathymetric LIDAR elevation shifts ensure seamless DEMs in transitions zones between two different 

bathymetric datasets (circled in red). A) DEM generated without elevation shift and B) DEM generated with elevation 

shift at 5LCM (Z=10x). 

With a few exceptions, when bathymetric LIDAR datasets were available for one site, the data 

were modified according to the technique described above and used as a primary source of 

bathymetric data to generate the DEM. Then, soundings datasets were used to complete areas 

that were not covered by the bathymetric LIDAR. Finally, other bathymetric datasets collected 

from Fisheries and Ocean Canada or NOAA were used to fill gaps when necessary.  

5.2.4. DEM creation and interpolation methods 

As mentioned previously, DEMs are grids where each cell value represents the elevation of the 

terrain. To generate a regular grid with point clouds and datasets of different density, these 

datasets need to be interpolated to the DEM grid. The DEM spatial resolution is 2 m, which is 

lower than most of the datasets used. Therefore, several elevation values can be assigned to the 

same grid cell, which corresponds to the different points within that cell. Since the DEM seeks to 

represent the bare earth, each cell was assigned the lowest elevation value available, which is 

known as the minimum-bin gridding interpolation technique.  

While this technique works in areas covered by datasets of high point density, it fails in areas 

covered by sparse datasets, where elevation value cannot be assigned to many grid cells. In 

these instances, elevation was estimated from surrounding measurements using an alternative 

interpolation technique. This interpolation method has to be chosen with caution since it can 

introduce errors. In most cases, a Natural Neighbour interpolation method (with LAS Dataset To 

Raster tool in ArcGIS PRO) was selected. It is an area-based interpolation technique that better 
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accounts for data density variation than distance-based techniques (Amidror, 2002) such as 

Inverse Distance Weight or Nearest Neighbour (Figure 127). This approach is quite useful here 

since data density varies greatly from one dataset to the other and an empty grid cell’s elevation 

can be interpolated from different datasets. 

 
Figure 127: With distance-based weight interpolation (A) query point’s value would be the average of the 3 

surrounding known values (14.33) over-representing the dense values (16 and 18), while area-based interpolation (B) 

would give a lower value (12.96). Source: (Lucas G., 2011) 

However, the Natural Neighbour technique is unsuccessful in creating discontinuity-free DEMs 

when used to interpolate echosounder datasets collected along transects. These datasets have 

high point density along localized lines that can be as much as 100 m apart. When interpolated 

with Natural Neighbour technique, these datasets created important artifacts that do not 

accurately represent real terrain bathymetry. Therefore, Ordinary Kriging interpolation was used 

for echosounder data, using a Spherical Variogram on a 5 to 10 m grid (depending on site size 

and computation capacities; e.g. Figure 128). Ordinary kriging was performed with PyKrige 

Python toolkit (Copyright (c) 2015-2018, PyKrige Developers), with 12 lags and more weight given 

to first lags.  
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Figure 128: A) 19TBY DEM created with echosounder dataset interpolated with Natural Neighbour technique. B) 

Treasure Bay’s DEM created with echosounder dataset interpolated by Ordinary Kriging. C) Treasure Bay 

echosounder dataset. D) Spherical variogram. 

5.2.5. DEMs filtering 

Outliers may persist as a result of the post-processing treatments described above, creating 

unwanted noise and peak and dips in the final DEM (e.g. Figure 129). To create flawless DEMs, 

image-filtering techniques were applied to the corrected models to eliminate questionable values. 

There are many filters that can be combined and applied with different intensities to achieve 

cumulative effects. It is therefore important to carefully select which filters to apply and how to 

apply them in order to properly remove outliers without altering the original DEM accuracy.  
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Figure 129: Fox Creek’s DEM (11FCK) before filters were applied (outlier values appear in red). 

After some literature review and a trial and error process, the RemoveOffTerrainObjects (ROTO) 

filter developed by John Lindsay form University of Guelph (Lindsay J., 2018) was used, followed 

by a Gaussian filter. ROTO is described as a tool that “is typically applied to LIDAR DEMs which 

frequently contain numerous off-terrain objects (OTOs) such as buildings, trees and other 

vegetation, cars, fences and other anthropogenic objects” (Lindsay, 2018). The filter was applied 

with the WhiteboxTools Python package (Copyright (c) 2017-2019 John Lindsay), with the filter 

parameter set at 15 and slope, at 10. Gaussian filter was also applied via WhiteboxTools with 

sigma value set to 1, which corresponds to a 9-pixel kernel size. This combination achieved 

removal of outliers without altering DEM quality and was used for all selected study sites (e.g. 

Figure 130).  
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Figure 130: Lynde Creek Marsh’s DEM: A) With no filter applied; B) With ROTO filter applied; C) with ROTO and 

Gaussian filters applied. 

5.2.6. Extraction of elevation values on CWRM grid  

To meet the needs of the CWRM, elevation values from 2 m resolution DEMs were interpolated 

on to CWRM 10 x 10m grids. A k-dimensional tree was created from the 2x2 m elevation data 

using the cKDTree class from Scipy Python library (Jones et al., 2001), with a leaf size of 16. This 

tree was then used to identify the closest elevation value of the 10 x 10m grid points, assign it to 

the point grid and thus provide the final elevation value for the CWRM (Nearest Neighbour 

Interpolation; Figure 131).  
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Figure 131: Baie du Doré’s (15BDD) 2 m resolution DEM elevation values are transferred on the 10 x 10m CWRM 

grid. 

5.2.7. Primary terrain attributes 

From the 10 m resolution DEMs three, primary terrain attributes were calculated and generalized 

at 5 different resolutions (10, 30, 130, 250 and 310 meters).  

5.2.7.1. Slope  

Slope calculation was realized using the “Slope” tools from WhiteboxTools Python package 

(Copyright (c) 2017-2019 John Lindsay). The tool uses Horn's 3rd-order finite difference method 

to estimate slope (Horn, 1981). Following the clock-type grid cell numbering scheme presented 

in Figure 132, the slope of cell 9 in degree is calculated as: 

𝑆𝑙𝑜𝑝𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑓𝑥
2 + 𝑓𝑦

2)0.5 5.5 

𝑓𝑥  =  (𝑧3 −  𝑧5 +  2(𝑧2 −  𝑧6) +  𝑧1 −  𝑧7) / 8 ∗  𝛥 5.6 

𝑓𝑦  =  (𝑧7 −  𝑧5 +  2(𝑧8 −  𝑧4) +  𝑧1 −  𝑧3) / 8∗  𝛥 5.7 

, where Δx and Δy are the grid resolution in the x and y directions, respectively, which is 10  meters 

here. Mainly, this slope calculation technique uses a moving 3x3 window, which predicts the slope 

of the central cell, based on its eighth neighbours. The Horn equation (also known as 
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Neighbouring technique) tends to smooth the slope surface, and so it may lead to a loss of local 

variability in the spatial distribution of slopes over the domain (Dunn et al., 1998). 

 

Figure 132: Clock-type grid cell numbering scheme. 

5.2.7.2. Aspect 

Aspect (or slope orientation) was calculated using the « aspect » mode of « gdaldem » tool of the 

GDAL library (GDAL, 2019). This tool also uses Horn's 3rd-order finite difference method to 

estimate the slope (Horn, 1981) from which it extracts the angle between the x and y components 

of the slope (equation 5.6 and 5.7): 

𝜃 = 𝑡𝑎𝑛−1(
𝑓𝑦

𝑓𝑥
) 5.8 

, where 𝜃 is the angle between the 2 slope components, which is then adjusted to give a slope of 

0˚ for a slope facing North, and 90˚, for a slope facing east. Aspect values are finally grouped in 

8 categories corresponding to the cardinal (N, E, S, W) and ordinal (NE, SE, SW, NW) directions.  

5.2.7.3. Profile curvature 

Profile curvature was calculated from DEMs values using the “ProfileCurvature” tool from 

WhiteboxTools Python package (Copyright (c) 2017-2019 John Lindsay). This algorithm uses the 

plan curvature formula defined by Gallant and Wilson (2000). It expresses the degree of 

downslope acceleration or deceleration within the landscape in a specific direction, which is 

chosen here as the slope orientation. Curvature values are grouped in convex (negative values) 

and concave (positive values) categories.  

5.2.7.4. Multi-scale moving window average 

In order to describe primary terrain attributes global patterns and micro-topographic variations, 

slope, aspect, and profile curvatures were calculated at 5 different resolutions (10, 30, 130, 250, 
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and 310 meters). Coarser resolutions were obtained by averaging the 10 m slope, aspect and 

curvature gridded data within moving windows of 3x3, 13x13, 25x25 and 31x31 pixels. This task 

was performed using the “MeanFilter” tool from the WhiteboxTools Python package (Copyright 

(c) 2017-2019 John Lindsay).  

5.3. Results 

5.3.1. DEMs accuracy assessment  

5.3.1.1. Root Mean Square Error 

The accuracy of the DEMs was assessed by calculating the RMSE between DEM elevation 

values and all available ground truth points (located in the land and lacustrine portion of the 

wetlands). The accuracy of DEMs was also analyzed through the error frequency distribution, 

which details the dispersion of values and proportion of sampled points with errors below a 

particular threshold. Here, the proportions of the distribution with absolute error less than 50 cm, 

25 cm and 15 cm were calculated. Table 35 shows the accuracy assessment results obtained for 

all LIDAR-derived DEMs. 
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Table 35: Accuracy assessment of the final DEMs. 

 
*Outliers were removed based on standard deviation and average values (plus and minus 3 x standard deviation). 
** Median and mean calculated on absolute values.  
 

Based on 7215 sample points throughout 18 wetlands26, average RMSE was estimated at 27 cm 

(ranging from 16 to 38 cm), with an average median error of 16 cm (ranging from 10 to 27 cm). 

Nearly half of the points sampled (48%) had an error less than 15 cm, 69% less than 25 cm and 

92% less than 50 cm. The environmental conditions underlying the data collection (i.e. 

unconsolidated earth) must be considered when interpreting these results, as well as the accuracy 

of the GNSS receiver (~5 cm) that can produce errors of several centimeters when recording 

elevation. In this context, results shown in Table 35 are acceptable for the needs of the CWRM, 

which must integrate robust and representative elevation data in wetlands.  

                                              
26

 Please note that since Lake St. Clair (13LSC) and Johnston Bay (14SAM) area of interest are overlapping, only one DEM has been 

generated covering both sites AOIs. It is referred to as 13LSC in the tables and figures of that section. 
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As a comparison, the accuracy of the recently created DEMs by the Government of Ontario 

(Government of Ontario, 2019) was estimated based on the same set of ground-truth points. Only 

inland ground-truth points of the area of interest were kept for this analysis since no bathymetric 

datasets were used to create these DEMs. The inclusion of all ground-truth points would have 

exaggerated the error and underestimated the accuracy of the Government of Ontario DEMs.  

Table 36: Accuracy assessment of Government of Ontario DEMs. 

 
*Outliers were removed based on standard deviation and average values (plus and minus 3 x standard-deviation). 
** Median and mean calculated on absolute values.  

Based on 3115 sampled points through nine wetlands (Table 36), the average RMSE for the 

Government of Ontario’s DEMs is 50 cm (compared to 29 cm for their corresponding corrected 

DEMs), with an average median error of 43 cm (compared to 16 cm). About 17% of sampled 

points have an error of less than 15 cm, 29% less than 25 cm, and 62% less than 50 cm 

(compared to 49%, 70%, and 91%). Thus, the corrected DEMs developed for this study were 

found to be more accurate for all sites, with a 42% decrease in RMSE compared to Ontario’s 

products and a 63% decrease in mean median error.  

Table 37 shows RMSE values for imagery-derived DEMs, which tends to be slightly higher than 

those observed from LIDAR-derived DEMs. 
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Table 37: Accuracy assessment of imagery derived DEM. 

 

5.3.1.2. DEM error distribution 

As shown in Figure 133, most of the corrected DEM error distributions are centered near zero. 

The LIDAR-derived DEM’s correction technique, as well as the interpolation used to produce the 

bathymetric data, did not introduce a systematic elevation bias. As mentioned previously, a 

positive elevation bias is generally associated with uncorrected, LIDAR-derived DEMs, wich leads 

to a shift in the error distribution curves. Such a shift can be observed in the error distribution of 

the Government of Ontario’s products (Figure 134), and for sites where the correction method did 

not work properly (i.e. 2ACM, 6JSM; Figure 133). It is therefore possible to conclude that, for most 

sites, the LEAN Modified Technique removed most of the positive elevation bias typically 

associated with LIDAR-derived DEMs. The same result was observed in the imagery-derived 

DEM that was created for 27FPT, where the LEAN correction method also performed well.  
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Figure 133: Distribution of DEM’s elevation error for the 19 study sites27. Most sites have a distribution centered on 0 

(red line). Only sites where the LIDAR correction method was less effective (2ACM, 6JSM) still have a positive 

elevation bias (curve shift to the right). 

                                              
27

 Please note that since Lake St. Clair (13LSC) and Johnston Bay (14SAM) area of interest are overlapping, only one DEM has been 

generated covering both sites AOIs. It is referred to as 13LSC in the tables and figures of that section. 
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Figure 134: Error distribution between Government of Ontario DEMs and ground truth points for the 9 study sites. All 

sites show positive elevation bias (curve shifts to the right) which is typical of uncorrected LIDAR-derived DEMs. 

5.3.1.3. Spatial distribution of errors 

No trend was observed in the spatial distribution of errors extracted from the corrected DEMs 

(Figure 135). Nevertheless, the finer-scale spatial variability of DEM error has received much 

attention in recent years from the scientific community (Gonga-Saholiariliva et al., 2011; Wilson, 

2012), and many investigators have suggested that a better description o f how these elevation 

errors may affect any further use (i.e. modelling) is needed. Methods such as the Loca l indicator 

of Spatial Association (LISA) (Anselin, 1995) have proven to be effective (Gonga-Saholiariliva et 

al., 2011) and could be implemented through GeoDa open source software (Anselin et al., 2006) 
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in further studies. Information on the spatial distribution of elevation errors coupled with satellite 

image classification techniques could likely help develop more efficient LIDAR-derived DEM 

correction methods.  

 

Figure 135: Residual elevation error in Baie du Doré DEM (15BDD) don’t show any spatial distribution pattern. (Errors 

in m, final DEM elevation minus ground-truth point values). 

5.3.2. Primary terrain attributes 

Slope, aspect, and curvature gridded data were calculated at resolutions of 10, 30, 130, 250 and 

310 m to describe global primary terrain attribute patterns, as well as small-scale topographic 

variations. Since no ground-truth measurments were collected for these parameters, it was not 

possible to conduct accuracy evaluation. Despite this, and given the accuracy results obtained 

for the corrected DEMs, key terrain attributes are based on robust, precise and accurate elevation 

values. 

5.4. Summary 

The post-processing technique described in this section led to the creation of 2  m resolution 

seamless DEMs, representing the integrated topography and bathymetry for  19 coastal 
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wetlands28 in the Great Lakes region. Classified LIDAR point clouds were used as primary 

topographic datasets for 18 sites, and then corrected using the LEAN method (Buffington et al., 

2016) to overcome the deficiencies of raw LIDAR in providing accurate bare earth elevations in 

densely vegetated areas like coastal wetlands. Based on multivariate correlations between the 

collected ground-truth elevation, uncorrected DEM elevation, and Normalized Difference 

Vegetation Index (NDVI), this method estimates the error in each pixel of a LIDAR-derived DEM. 

This error is then subtracted from the original DEM to create a corrected DEM, wh ich provides 

elevation values that are closer to ground-truth observations.  

With this correction technique, the terrestrial portion of the 18 DEMs have an average RMSE 

value of 25 cm. Compared to DEMs created with other ground-filtering techniques, the corrected 

DEMs had the most accurate elevation values in 16 out of 18 cases, with a RMSE 38 to 55% (15 

to 31 cm) lower than other DEMs. Thus, the chosen correction technique created more accurate 

DEMs, and thus helped to significantly reduce elevation errors on the land portion in the 18 

wetlands where it was applied. For the site where LIDAR point clouds were not available, a similar 

correction technique was applied on imagery-derived DEM created by the Government of Ontario, 

although this achieve less error reduction (6.5%). 

Multiple bathymetry datasets were used to complete the water-covered area of each wetland. 

Prioritization of the dataset and multiple manipulations (e.g. elevation corrections and vertical 

datum conversions) were required to create consistent and seamless datasets that co uld be 

interpolated on the DEM grids. Minimum-bin gridding interpolation was used where bathymetry 

datasets were denser, while Kriging and Natural Neighbour interpolation were preferred in areas 

covered by sparser datasets. Final DEMs were then filtered with RemoveOffTerrainObjects 

(ROTO) (Lindsay, 2018) and Gaussian filters.  

Based on 7215 sample points throughout 18 wetlands28, average LIDAR-derived DEMs’ RMSE 

was 27 cm (ranging from 16 to 38 cm), with a mean median error of 16 cm (ranging from 10 to 

27 cm). In comparison, the land portion of the DEMs created by the Government of On tario had 

an average RMSE of 50 cm. Thus, the technique described in this section reduced the error by 

46% (23 cm) on average.  

                                              
28

 Please note that since Lake St. Clair (13LSC) and Johnston Bay (14SAM) area of interest are overlapping, only one DEM has been 

generated covering both sites AOIs. It is referred to as 13LSC in the tables and figures of that section.  
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Considering the environmental conditions underlying the data collection (i.e. unconsolidated 

earth), and the sampling accuracy of the ground truth elevations on which the DEMs are based, 

the results obtained were judged acceptable for the needs of the CWRM, which must integrate 

robust and representative elevation data in wetlands. The elevation error distribution for each 

DEM was found to be centered on zero, which confirms that the applied DEM correction technique 

removed the systematic (positive) bias that is typically associated with LIDAR-derived DEMs.  

Slope, aspect, and curvature were calculated from the elevation values of the corrected DEMs at 

a 2 m resolution. In order to describe the global pattern of these primary terrain attributes and 

their small-scale topographic variations, they were resampled at five different resolutions (10, 30, 

130, 250 and 310 m). Finally, elevation and primary terrain attributes were interpolated on to each 

CWRM grid point (10 m x 10 m), based on nearest neighbour interpolation techniques.  

In further studies, analysis on DEM error spatial distribution coupled with image classification 

and/or plant species clustering techniques could help to develop more advanced error correction 

methods and create DEMs that are even more accurate. 
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6. GREAT LAKES COASTAL WETLAND MODELLING 

Authors: Dominic Thériault, M. Sc., Marianne Bachand, Ph.D., Sandrine Hogue-Hugron, M. Sc., 

Mathieu Roy, Ph.D., Jean Morin, Ph.D. 

6.1. Vegetation modelling 

Coastal wetlands are dynamic ecosystems influenced by abiotic factors such as nutrients, 

temperature and water level fluctuations. Water levels in the Laurentian Great Lakes fluctuate 

over various time scales. Long term fluctuations are driven by annual water budgets, whereas 

short term fluctuations are driven by wind tides and seiches (Fortin & Gronewold, 2012; Trebitz, 

2006). Wetland plant species dominance and extent are directly linked to fluctuating water levels 

(Smith et al., 2021). 

Wetland plant species mainly grow in accordance with their water-depth tolerance, resulting in 

stratified vegetation communities (hereafter called wetland classes) along the elevation gradient 

called the hydrosere (Figure 136). By definition, wetlands are terrestrial areas saturated with water 

for periods sufficiently long to influence their abiotic and biotic components, favoring the 

occurrence of hydromorphic soils, hydrophilic vegetation and biological processes associated 

with humid environments (Couillard & Grondin, 1986; Zoltai, 1988). Hydrological variables such 

as water level fluctuations, water velocity and wave energy are recognized as highly influential on 

hydrophilic species habitat and niche. At a larger scale, those processes influence the structure 

of the hydrosere in the wetland ecosystems (Ellison & Bedford, 1995; Mitsch & Gosselink, 2000; 

Odland & Del Moral, 2002; Smith et al., 2021; Tabacchi et al., 1998; Tessier et al., 1981; 

Townsend, 2001; van der Valk et al., 1994). As a result, wetlands are dynamic ecosystems that 

are highly responsive to changes in hydrology, either natural or anthropogenic. For example, 

wetlands can migrate with changes in water level, causing the overall area of wetland in a given 

water body to fluctuate through time. In addition to fluctuations in wetland area, the structure of 

one given wetland ecosystem will respond to changes in the hydrological regime. Periodic events, 

like prolonged flooding, can cause the mortality of shrubs and be responsible for a shift in wetland 

classes from swamp to marshes within a few seasons. Between open water (OW)  and upland 

(UPL), the typical wetland classes of the hydrosere are the submerged aquatic vegetation (SAV) 

below the surface of the water, emergent marshes (EM) in shallow water or inundated substrate, 

wet meadows (WM) above the shoreline, followed by shrubby (SS) and treed swamps (TS) at the 

inland limit of the wetland. 
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In order to model the vegetation response to change in water levels, three types of models were 

developed: 

1. Wetland succession model;  

2. Invasive species suitable habitat; and 

3. Invasive species population growth models.  

The different types of models are based on the same assumption: the distribution of hydrophilic 

species and wetland classes is strongly influenced by hydrological processes (Nilsson & Keddy, 

2011; Toner & Keddy, 1997). The following sections present each of these models. 

 

Figure 136: Typical sequence of coastal wetland classes observed on a gradient of elevation (IJC.org, url: 

http://www.ijc.org/loslr/en/background/w_wetlans.php ) 

6.1.1. Wetland succession modelling 

The objective of the CWRM is to predict the spatial distribution of submerged aquatic vegetation 

(SAV), emergent marshes (EM), wet meadows (WM), shrubby swamps (SW) and treed swamps 

(TS). Although open water (OW) and upland (UPL) are not wetland class per se, we also included 

them in this effort to limit the spatial distribution of SAV lakeward and swamps landward. The 

selected method for modelling combines three components: 1) a clustering analysis to classify 

the vegetation data from the field surveys into large wetland classes (Section 6.1.2); 2) a 

supervised machine learning (here Random Forest) to link wetland class distr ibution to physical 

variables (Section 6.1.4) and 3) a succession algorithm to differentiate the variable progression 

of the different wetland classes (Section 6.1.6, Figure 137). 

http://www.ijc.org/loslr/en/background/w_wetlans.php
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Figure 137: Coastal Wetland Response Model (CWRM) Framework. Blue squares are for data, grey ellipses are data 

operation (i.e. sampling, geospatial operation) and other colored ellipses are modelling operations. 

6.1.2. Wetland class datasets 

To generate a dataset containing a relatively balanced number of nodes of the different wetland 

classes, five datasets were used: GLPI vegetation surveys, Ecological Land Classification (ELC; 

Ontario Ministry of Natural Resources and Forestry Ontario, 2019b), other CWS surveys, the 

Great Lakes Shoreline Ecosystem (GLSE) inventory (Ontario Ministry of Natural Resources and 

Forestry, 2019c) and the Wetlands Trends through Time (WTT) (Snell and Cecile Environmental 

Research, 2001). The information on the vegetation surveys used is detailed in Table 39, and the 

various surveys are further discussed in the following sub-sections.  

6.1.2.1. GLPI Vegetation surveys 

The current GLPI project financed an important vegetation survey. For each wetland site, a 

vegetation survey measured 150 to 200 quadrats along 15 to 20 transects during 2018 and 2019. 

The numbers of transects and quadrats per site was determined by the size of the wetland. The 

transect locations were determined before sampling to capture a variety of habitats along the 

hydrosere and the elevation gradient. If transects needed to be shortened to fit within a site, 

additional transects were added to cover the wetland site for a maximum of 20 transects per site. 

Sampling quadrats were uniformly distributed along each transect with a gener al rule of 10 
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quadrats per transects. The Canadian Wildlife Service (CWS), Natural Resource Solutions Inc. 

and Dillon Consulting performed vegetation surveys in both years for the benefit of the modelling 

effort. Quadrats of 1.0 m x 0.5 m were distributed along transects. The total percentage of 

vegetation cover was estimated, as well as the percentage of cover for each species present for 

each quadrat. Plants that were difficult to identify to the species level (e.g., Characeae) were 

identified at the genus. Species cover ratio was estimated by vertical projection from 0 to 5%, 

then by increments of 5% until 95% and from 96 to 100%. Two surveyors evaluated vegetation 

cover to minimize sampling error and species misidentification. If quadrats were in deep water, 

and the vegetation cover could not be accurately estimated, surveyors used a rake device to 

identify the taxa in the quadrat and cover was estimated from the raked vegetation. Positioning 

and elevation data (X, Y and Z) were recorded for each quadrat using a GPS-RTK providing a 

high precision topographic survey (see Section 5 for more details). 

Another vegetation dataset was used to improve the representation of SAV. It was obtained from 

surveys conducted by the CWS under the Coastal Habitat Assessment and Monitoring Program 

(CHAMP) for other studies. The sampling methodology is described in Grabas et al. (2012) and 

it focused on the SAV species, but the dataset also contains species of other wetland classes. 

The SAV community was sampled using 20 randomly located quadrats of 1 m x 1 m within the 

open water portion of each wetland from 2003 to 2019. Relative species abundance for the 20 

most abundant species of each lake are presented in Appendix E, and the list of all the species 

identified in the study are presented in Appendix F.  

6.1.2.2. Ecological Land Classification (ELC) 

ELC is a dataset describing the ecological land use classes delineation (including wetland 

classes) at different scales and covering the majority of the study sites (Ontario Ministry of Natural 

Resources and Forestry, 2019b). It is based on satellite imagery and aerial photography. The 

scale at which vegetation types and wetland classes are identified in the ELC dataset ranges from 

1:2000 to 1:10 000 depending on the imagery used. The years of wetland observations range 

from 2008 to 2015 depending on the site (Table 39). 

6.1.2.3. Great Lakes Shoreline Ecosystem (GLSE) inventory 

GLSE is a geospatial digital inventory containing ecosite polygon mapping, field survey calibration 

points and associated ground level ecological data (Ontario Ministry of Natural Resources and 

Forestry, 2021). Mapping and ground sampling adheres to the Great Lakes Shoreline Ecosystem 
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classification system (Lee et al., in prep.), which is a detailed ecological classification and 

surveying method. It covers the entire Lake Erie shoreline, from the land to water or wetland to 

water interface to two kilometers inland. It also covers Lake Ontario, Detroit River, Lake St. Clair, 

Lake Huron and southern Georgian Bay shorelines. 

6.1.2.4. Wetlands Trends through Time (WTT) 

The WTT dataset is a spatial database of wetland vegetation delineation for 6 wetland sites along 

the shores of Lake St. Clair, Lake Erie and Lake Ontario that was developed as part of the Wetland 

Vulnerability to Climate Change project (Mortsch et al., 2006) initiated by CWS and the Adaptation 

and Impacts Research Group (AIRG) of ECCC. For each wetland site, aerial photographs for 

different years representing periods of low, medium or high lake levels, from the 1920s to 2001, 

were acquired. Wetlands and other land use classes were manually delineated by 

photointerpretation on mylar map sheets at a scale of 1:10 000. Those delineations were then 

digitized and converted into a Geographical Information System (GIS) compatible format.  

6.1.2.5. Merging the different sources of data into a single wetland class dataset 

Data processing was performed on the vegetation datasets prior to the wetland model calibration 

and validation. The species distribution data obtained through vegetation surveys were used to 

derive wetland class distribution using clustering analysis (see Section 6.1.3). The wetland 

classes in the classification datasets were matched with the CWRM classes. Nodes of each class 

(OW, SAV, EM, WM, SW, UPL) were extracted by intersecting the mapping polygons and the 

CWRM nodes, and the number of nodes between classes was balanced by random sub -

sampling. Examining the GLSE and ELC datasets, which were both generated through areal 

image delineation, revealed mismatched classifications at some locations for the same year. To 

alleviate this issue, only the CWRM grid nodes for which the two sources indicated the same 

wetland class were retained in the dataset. When possible, data intersection was done on 

delineations of the same year. Otherwise, a maximum five-year gap between the two delineations 

was considered, and only for persistent plant communities (EM, WM, SS and TS). In those 

instances, the selected CWRM nodes were considered to have the same wetland classification 

over the five (or less) years interval. For the WTT dataset, no processing was performed since 

there was no temporal overlap with the other data sources, as this classification dates mostly 

before the 2000s. Also, in order to improve confidence in wetland delineation data, areas showing 

differences in land use changes between the year of the delineation and the current year were 

removed from the dataset. For instance, polygons that belonged to a wetland class in the 1980s 
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but that are now agricultural crops or urban areas were removed. The final datasets for each 

wetland class in each lake are described in Table 38  

Table 38: Description of the datasets used to calibrate and validate the wetland models. 

 

* Vegetation surveys includes the samples from the GLPI project surveys of 2018-2019 and other vegetation surveys 

done by CWS. 
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Table 39: Wetland classification dataset used in the study and the respective survey years for each sites.  
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6.1.3. Clustering analysis 

In order to assign a wetland class to each vegetation survey point presented in the previous 

section (Section 6.1.2.1), clustering analysis were performed for each lake independently. The 

clustering analysis allows associating a wetland class to vegetation species occurrences. 

In order to minimize the bias induced by rare species, only species with a frequency higher than 

3% in each lake were included in the analyses. Forb and graminoid species with a frequency 

lower than 3% were grouped based on the combination of their growth form and wetness index 

(Table 40). Wetness index, also named wetland indicator status, indicates the probability that 

individual species of vascular plants are present in freshwater (see Reed (1997, 1998) for more 

details on wetness index). Some groups were also created prior to the clustering analyses, 

regardless of the frequency of the species for four situations (Table 40): 

1. SAV: because the goal of this project was not to model the different submerged vegetation 

communities, this group represents all submerged species present in one quadrat except 

Hydrocharis morsus-ranae and Myriophyllum spicatum, two exotic and invasive species, 

were added to form the AQUATIC group; 

2. CAREX: a group named CAREX_WET covering all Carex species associated to wetland 

habitats (wetness indexes OBL and FACW) was created; 

3. TREES: trees and shrubs were all grouped according to their wetness index;  

4. DRY: Upland species. 
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Table 40: Regrouping of species with rare frequencies or with interest prior to clustering analysis. WET group 

includes FACW and OBL. DRY group includes FACU and UPL, see Reed (1997, 1988) for more definitions on the 

wetness index.  

 

In cases where the frequency of a group remained under 3% after grouping, the group was either 

discarded for the analysis or grouped with another growth form with the same wetness index (for 

example: SHRUB with TREE_DRY). Finally, the vegetation cover matr ix was transformed with 

the Hellinger distance coefficient, which reduced the importance given to differences in the 

abundance of rare species (double-zeros; Legendre & Legendre, 1998). 

The clValid R package (Brock et al., 2008) was used to determine the best clustering method 

(between Ward’s Hierarchical and Kmeans) and the optimal number of clusters according to the 

Connectivity, and Silhouette and Dunn Indexes. Clustering analyses were performed step by step, 

removing from the dataset the quadrats that were classified into an ecologically meaningful 

wetland class in the first step, while keeping the unclassified quadrats for the subsequent 

clustering steps. This approach was used to avoid the subdivision of ecologically meaningful 

wetland classes into smaller clusters with similar plant composition (but with different covers). In 

the rare cases where the clustering method and/or number of clusters suggested by the clValid 

package did not result in the creation of a meaningful ecological wetland class, the number of 

clusters or the clustering method was modified. In general, between 4 and 8 clustering steps were 

necessary for each study site to create between 5 and 15 wetland clusters.  
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Clusters were associated to one of the seven classes listed in Table 41. A posteriori modification 

of classifications was performed for quadrats that did not follow the classification rules. For 

example, a few quadrats containing both Typha x glauca and shrubs (OBL or FACW) could be 

classified in a cluster dominated by T. x glauca emergent marsh. In such cases, the quadrats 

exhibiting a shrub cover greater than 25% were transferred a posteriori to the SS wetland class. 

Table 41: Description of the wetland classes modelled in the CWRM. 

 

1 Adapted from Warner and Rubec 1997; Bazoge et al. 2015. Classification criterias follow a top-down hierarchy where the 
classification depends on the abundance of a strata at the highest vertical layer (canopy, shrub layer, persistent emergent vegetation, 

non-persistent emergent vegetation and submerged aquatic vegetation). 
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6.1.4. Supervised machine learning model: Random Forest 

Seven distinct wetland models were calibrated using a Random Forest classifier (RF) using the 

wetland class distribution as dependent variables and the physical variables as predictors.  The 

latter, such as the minimum, maximum and mean water depth, the percentage of time a given 

node is flooded, the mean length of the cycle period, and the amplitude of the cycles period in the 

previous growth seasons (aggregated on 1, 2 and 3 previous growth season) are calculated for 

every node of the CWRM grid and for each year of the observed period (Section 3.7.2.3). 

RF is an ensemble learning method used for regression and classification. This model iteratively 

uses many permutations of the dataset to calibrate and validate an ensemble of decision trees 

where each tree votes for a given class. The class with the majority of the votes is then predicted. 

At each iteration, calibration and validation datasets are randomly selected, and the thresholds 

and the variables used at each branch of the trees are adjusted iteratively to reduce the error on 

the validation dataset (out-of-bag error). The RF iteratively builds a set of rules using various 

explanatory variables to identify features describing each wetland class. RF classifiers are widely 

used in remote sensing for wetland classification (Banks et al., 2019; Battaglia et al., 2021; 

Bourgeau-Chavez et al., 2017; Mahdianpari et al., 2020). Some studies have proven the 

performance of RF over traditional machine learning methods, such as multiple logistic regression 

models in ecohydrological modelling (Peters et al., 2007), and to study the response of wetlands 

to global warming (Liu et al., 2011; Peng et al., 2020). The RF algorithm has many advantages 

such as (Breiman, 2001): 

 Handles high dimensional data; 

 Has a quick calibration/prediction time; 

 Is robust to outliers and non-linear data; 

 Handles unbalanced data; 

 Has a low bias and moderate variance; 

 Gives useful internal estimates of error, strength, correlation and variable importance.  

The Python implementation of the RandomForestClassifier function by Scikit-learn (Pedregosa et 

al., 2011) was used to calibrate and validate the RF models and to predict the wet land classes.  
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6.1.5. Selection of the explanatory variables 

The different physical variables used as predictors of wetland communities comprise two groups: 

terrain variables and hydroperiod variables. The terrain variables are the curvature and the slope 

at different scales, whereas hydroperiod variables describe the water level fluctuations during a 

given time window. Hydroperiod variables include minimum, maximum and mean water depth, 

percentage of inundation, and the period and amplitude of the dry-wet cycles (Section 3.7). To 

calibrate the wetland model, the variables were aggregated into time windows prior to sample 

acquisition. It has been demonstrated that the distribution of wetland classes such as EM is 

influenced by water levels of the two or three previous years (Morin et al., 2005; Turgeon et al., 

2004). The aggregation of the variables on such time windows allowed us to predict the presence 

of wetlands in areas where conditions were suitable over a sufficient period and to reduce the 

influence of extreme water level years. 

In order to select the significant explanatory variables, we first made a RF model exclusively using 

the terrain variables, slope and curvature, and selected the scale between 10, 30, 130, 250 and 

310 m that had the highest importance explaining the wetland class distribution . For the 

hydroperiod variables, we used the same approach grouping the variables for different time 

windows (two and three growth seasons preceding the sampling growth season). The hydroperiod 

variables tested were the water depth, dry-wet cycle period, scale-averaged wavelet power, 

percent time flooded or stranded, flow velocity, and wave orbital velocity. Mean, maximum and 

minimum of each variable were calculated and tested for each t ime window. First, we selected 

the time window resulting in the highest accuracy. Then, we selected the hydroperiod variables 

that had the highest importance and that were minimally correlated with each other.  

The importance of variables is obtained using the Mean Decrease Accuracy and the Mean 

Decrease in Gini metrics. Mean Decrease Accuracy uses the out-of-bag (OOB) validation 

samples to compute the importance of the variable by assessing the prediction error when 

removing each variable from the model. Mean Decrease in Gini assesses the impurity of the 

variables by iteratively removing each variable from the model. The higher the value of Mean 

Decrease Accuracy or Mean Decrease in Gini score, the higher the importance of the variable in 

the model (Hong Han et al., 2016). The best variables among each group were then grouped and 

included into another RF. We looked at the importance of the variables and aimed to improve the 

accuracy for the classes that had the poorest performance. We recursively added and removed 
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variables from the model and saved the performance metrics for each model. Finally, we selected 

the model that had the highest performance on the OOB validation. 

6.1.6. Wetland succession algorithm 

Wetland succession occurs when the change in environmental conditions is maintained for a 

given time period. The succession algorithm modulates the transition time between wetland 

classes and ensures that it follows the observed wetland succession. In other words, based on 

the prediction of the RF and certain physical thresholds, it ensures that the succession of wetland 

classes for each CWRM grid node follows the ecology of the different wetland classes. For 

example, the succession algorithm ensures that one node does not transition from SAV to TS 

within a single year, as trees take years to grow. It also takes into consideration the level of 

tolerance of different wetland classes to an increasing or decreasing water level before changing 

state. For example, a single season with high water levels is not enough to induce a dieback of 

EM species like Phragmites or Typha (Seabloom et al., 2001; van der Valk et al., 1994; van der 

Valk & Davis, 1978), but will be enough to eliminate a plant community dominated by annual 

plants, like SAV (Morin et al., 2005). Another interesting example is the transition from swamp to 

an upland forest when experiencing receding water levels. As the conditions get drier, the growth 

or survival of most species of wetland trees will not be impeded and, to the contrary, will likely be 

improved by better growing conditions. As the substrate gets drier, it also becomes more suitable 

for the establishment of mesic tree species, that are, in general, more competitive than wetland 

tree species. As the density of trees increases over the years, evapotranspiration increases, 

further contributing to the reduction of the humidity content of the soil (a phenomenon often called 

biological drainage; Jutras et al., 2006). Over the years, competition for resources will 

disadvantage wetland trees at the expense of mesic tree species, up to a point where mesic trees 

will become dominant and the node will be classified as an upland forest. 

The succession algorithm predicts the distribution of each wetland class according to the temporal 

variations of the physical variables, mainly hydroperiod variables, under each climate change 

scenario. It predicts the wetland class at each grid node using the wetland class predicted by the 

RF for the current year, the physical variables occuring during the previous growing season, the 

wetland class predicted in the previous years, and the time required before environmental 

conditions result in a change of wetland class. 



 

327 

 

The succession algorithm is represented as a tile system where all the possible wetland “states” 

and transition between them are defined. The tiles system represents the entire hydrosere where 

tile #1 is the lower boundary class “open water” (OW) and tile number 105 is the upper boundary 

class “upland” (UPL) (Morin et al., 2005; 2016). Each wetland class was assigned an “optimum 

tile” representing the state where the environmental conditions are ideal for a wetland class. Some 

classes encompass more than one tile to represent a “transitioning community” towards a drier 

or wetter class. For every CWRM grid node and every year of the time series, the RF predicts a 

wetland class based on physical variables experienced at that location the preceding growing 

season. Since this prediction is based on an array of physical variables, the predictions are used 

in the succession algorithm as an estimation of the environmental conditions prevailing at that 

node. If the RF predicts a wetter community than the one that was present the previous year, it 

indicates that environmental conditions for that year were wetter and will generally lower the tile 

number for that grid node compared to the previous year. If the RF predicts the same community 

that was prevailing the year before, the tile number will generally go back to the optimal tile 

number for that community. Finally, if the RF predicts a drier community, the tile number will 

generally increase (Figure 138).  

More specifically, the following section will describe each wetland class and the rationale behind 

the numbering of the tiles that are represented in Figure 138. In the figure, the full red square 

represents a transition state that occurs when the wetland grid area is flooded or dried for too 

long a period. This transitional state is the succession from one class to another according to the 

prediction of the RF model and the environmental conditions. The succession of the wetland 

classes is presented by arrows indicating transition to drier (green arrow) or wetter (blue arrow) 

wetland classes. The succession conditions are written on each arrow. The notation {wetland 

class} + stands for {wetland class} and the other drier classes (ex. SS+ = SS, TS, UPL). Inversely, 

{wetland class} – stands for {wetland class} and other wetter classes (ex. SS- = SS, MM, EM, 

SAV, OW). For example, for SAV: p=EM or p=SS+ & FI>50% means that for SAV to become EM, 

the RF prediction has to be EM or SS+ (Shrubby swamp and drier) and the grid node should be 

flooded for more than 50% of the growing season.  

Open water (OW) was assigned tile #1 (Figure 138, blue square). This community contains only 

one tile because drier conditions can lead to the establishment of vegetation within one year. 

More specifically, OW will transition to SAV if water levels are receding gradually. In cases where 

the water level decrease is large and swift, substrate gets exposed (i.e. mudflats), which offers a 

suitable germination bed for forbs or graminoids specices. Depending on the prediction of the RF, 
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it is thus possible for OW to evolve towards an EM or WM community within one year (depending 

on the RF prediction). It is however impossible for ligneous species to become dominant only one 

year after water recedes, so if the prediction of the RF is SS+ (SS, TS or UPL), the node will 

evolve towards an EM or a WM community, depending on the proportion of time that the node 

was flooded over the growing season. Periods of extremely low water expose unvegetated lagoon 

bottoms as mud flats, providing a substrate for new plant colonization. Annuals and other 

opportunistic species such as Schoenoplectus tabernamontani rapidly increase in abundance, 

and are typically replaced by cattail as the plant community matures (Bosley, 1978; Harris et al., 

1978). 

Submerged and aquatic vegetation (SAV) was assigned tile #6 (Figure 138, violet square). 

This community contains only one tile because most of the species occupying this wetland class 

are annuals (Turgeon & Morin, 2005). More specifically, the community can evolve into OW in 

cases of water level increases or into EM or WM if water levels are decreasing. Similar to OW, 

SAV cannot evolve within one year into a swamp and will be directed towards EM or WM with the 

same flooding threshold if the prediction of the RF is SS+. 

Emergent marsh (EM) was assigned tiles #13 to 17, with an optimum at tile #15 (Figure 138, 

red square). This community is largely dominated by cattail species and Phragmites. Although it 

encompasses the highly invasive species Phragmites australis and Typha x glauca, this class is 

not intended to reproduce the dynamics of a biological invasion. The invasion aspect will rather 

be taken into account by the species models described in Section 6.2. Here, EM was considered 

to be able to tolerate 2 consecutive years of wetter conditions. In fact, several studies observed 

that it takes two to three years of unsustainably high water level to eliminate species of EM 

(Seabloom et al., 2001; van der Valk et al., 1994; van der Valk & Davis, 1978). More specifically, 

if the prediction of the RF is SAV-, the tile number will be lowered to 14 or 13 that represents EM 

transitioning towards a wetter community, but that still remain dominated by emergent plant 

species. If the prediction the next year is EM+, then the node will transition toward tile #15 (the 

optimum). EM can thus evolve toward SAV or OW only if the prediction of the RF is SAV- for three 

consecutive years. Conversely, if the conditions are getting drier (prediction of the RF is WM+), 

we considered that two consecutive years of drier conditions were necessary before experiencing 

a change in plant community. Tile #16 can thus be seen as an EM that starts to be invaded by 

WM species or shrubs. More specifically, EM can evolve towards a WM or a SS after two 

consecutive years of RF prediction of WM+. 



 

329 

 

The succession time for EM is the same for Upper St. Lawrence, Lake Ontario, Lake Erie and 

Lake St. Clair sites. For Lake Huron, we used a slightly different succession time for EM, since 

there is a higher richness of wetland species in this Lake and because the EM are highly 

dominated by non-persistent-emergent (NPE) species. In this Lake the EM may go to a wetter 

class such as OW or SAV if the wetter conditions persist for two consecutive years (one year less 

than other lakes) and require three consecutive years of dry conditions to become a WM.  

Wet meadow (WM) was assigned tiles #23 to 30, with an optimum at tile #25 (Figure 138, 

yellow square). WM can also be affected by the percentage of time they are flooded during the 

growing season (Millar, 1973; Squires & Valk, 1992). Gathman et al. (2005) documented the quick 

response of wetland plant species to a three-year (1996-1998) water level change in coastal Lake 

Huron wetlands. In their study, stem density, per plot species richness, and Shannon diversity in 

the WM and transition zones decreased as water depth increased from 1996 to 1997. An increase 

in these same measures was noted in 1998 with the decrease in water level (Gathman et al., 

2005). We estimated that it takes 5 years of continuously dry conditions before the WM becomes 

dominated by shrubs.  

In Lake Erie, the model predicts two distinct classes for swamps, the shrubby swamps (SS) and 

the Treed swamp (TS). In the other lakes there was not enough available data to model the two 

classes of swamps. Shrubby swamp (SS) was assigned tiles # 34 to 40, with an optimum at 

tile #35 (Figure 138, pink square). Forested swamp (FS) was assigned tiles #63 to 80, with an 

optimum at tile #65 (Figure 138, turquoise square). It has been suggested that the growth of 

forested wetlands, such as shrubby swamps (SS) and forested swamps (FS), was reduced and 

the regeneration of these ecosystem was interrupted when they were flooded for more than 40 to 

50% of the time over two growing seasons (Ernst & Brooks, 2003; Hall & Smith, 1955; Kozlowski, 

1997; Toner & Keddy, 1997). Inversely, SS flooded for less than 50% of the growing season or 

for which we predicted a drier wetland class for 15 consecutive years were assumed to change 

into FS. Finally, we assumed that FS had to be flooded for less than 50% of the growing season 

and found at water depths < 0.5 m for 20 consecutive years to change into terrestrial forests, 

called here “upland” here (Gauvin et al., 1998). In the other lakes, both classes were merged into 

a single Swamp (SW) class including the shrub and the trees. Swamp (SW) was assigned to 

tiles #34 to 50, with an optimum at tile #35 (not represented in Figure 138). The succession 

time for this class has been modified to 20 consecutive years for the swamp class to transition 

into terrestrial forest, called “upland” here.  
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Upland (UPL) was assigned tiles #103 to 105 (Figure 138, green square), with an optimum at 

tile #105. The upland species can persist through two consecutive years of wet condition before 

transitioning to a wetland. 
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Figure 138: Wetland succession algorithm scheme. Green arrow signifies a transition towards a drier class, whereas red arrow signifies a transition towards a 

wetter class. The red square corresponds to the re-initialization of the wetland following a disturbance. Each wetland class has their respective tile numbers and the 

proposed conditions for transition are presented along the transition arrows. 
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6.1.7. Variable importance for each wetland class 

The wetland modelling aims to find descriptive features linking wetland class distribution to 

hydrology and topography. The OW and UPL classes are the lower and upper limits of the 

wetlands and are generally identified accurately. In all lakes, for OW, the water depth is higher 

than all other classes, flooded all the time with low period of water level fluctuations (Figure 142, 

144 and 152). Upland are terrestrial ecosystem that are rarely flooded. The water depth is lower 

than all other classes (Figure 140, 142, 144, 146, 148 and 150). 

Water level fluctuations and wave energy are recognized as the main factors regulating the growth 

and distribution of SAV (Madsen et al., 2001). Water depth and hydroperiod are also important 

factors controlling their distribution and abundance in lake ecosystems (Turgeon & Morin, 2005). 

According to the wetland models of the different water bodies, the variables that describe SAV 

distribution and increase its distinction in comparison with other wetland classes are:  

 Higher water depth than other wetland classes (Figure 140, 142, 144, 146, 148 and 150); 

 Mean dry-wet cycle period higher than OW but lower than EM with a high variability in most 

models (Figure 142, 144, 148 and 150); 

 Mean flooded period lower than OW but higher than EM (Figure 142, 146 and 148); 

 Mean velocity is lower than OW but higher than other classes in Detroit River (Figure 148); 

 Wave exposure (mean orbital velocity of the Weibull distribution) higher for SAV than EM 

but lower than OW in Lake Erie (Figure 144). 

  

In general, the most important hydroperiod variables for SAV is the maximum water depth, but 

other variables are also important in specific water body, such as the flood duration in Lake Ontario 

(Figure 141) and the mean period of dry-wet cycles in the Lake Erie (Figure 143). 

EM are generally located at the land-water interface exposed to water level fluctuations and are 

subject to frequent or seasonal flooding. The observed distribution of water depth variables  for 

this class are generally similar to WM. According to wetland observations, the variables that 

describes EM and increase its distinction with other classes are: 

 Mean flooded duration is generally higher for EM than WM, SW and UPL but lower than 

SAV (Figure 140, 142 and 146); 

 Mean dry-wet cycle period and maximum scale average power is generally higher for EM 

than for other classes, which means that this wetland class is more exposed to water level 

fluctuations (Figure 142 and 148); 

 Wave exposure, which is used in the Lake Erie and Grand River Mouth models, is higher 

for EM than for WM and SW but is lower than SAV (Figure 144 and 146). 
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In exception of the topographic variables, the most important variables for EM are the water depth 

variables and hydroperiod variables such as the mean period of dry-wet cycles and maximum 

scale-average power. In Lake Erie, the most important hydroperiod variables for this class are the 

mean period of dry-wet cycles and the minimum water depth (Figure 143). In Detroit River Marsh, 

the maximum scale-average power, mean period and maximum water depth are the most 

important hydroperiod variables (Figure 147). In Lake Huron, the minimum, maximum water 

depths and the maximum scale-average power are the most important variables (Figure 151). In 

Lake Ontario and Lake St. Clair, the importance of the explanatory variables are similar (Figure 

141 and 149). 

WM are composed of flood-tolerant species but can also be favored by low water levels as they 

support conditions at the boundary of the terrestrial and aquatic habitats better than wetlands 

associated with wetter conditions (Wilcox et al., 2008), such as SAV and EM. According to wetland 

observations, the variables that describe WM and increase its distinction in the models are:  

 Mean and maximum period lower than EM but higher than SW (Figure 140, 142, 144 and 

148); 

 Maximum scale-average power lower than EM but higher than SW (Figure 142, 144, and 

148); 

 Mean flooded duration higher than SW but lower than EM (Figure 140 and 148); 

 Wave exposure lower than SAV and EM but slightly higher than SS and TS in Lake Erie 

(Figure 144). 

Across all models, the maximum scale-average power is among the most important hydroperiod 

variables for WM, along with water depth variables. Minimum water depth is important in Lake 

Ontario, Lake Erie and Lake Huron (Figure 141, 143 and 149). In Lake St. Clair, the maximum 

water depth is the most important hydroperiod variable in this lake (Figure 149). Other explanatory 

variables such as the mean and maximum period are also important in some models, such as the 

Lake Erie and Grand River Mouth models (Figure 143 and 145). 

SW are at the intermediary between the wetlands and the terrestrial ecosystems. The species 

included in that class are flood resistant shrubs and trees (shrubby swamps and treed swamps). 

SW is favored by occasional flooding but shrub and trees growth may be reduced and 

regeneration interrupted if the flooding duration exceeds 40 to 50% over two growing seasons 

(Ernst & Brooks, 2003; Hall & Smith, 1955; Kozlowski, 1997; Toner & Keddy, 1997) . According to 

wetland observations, the variables that describe SW and increase its distinction in the models, 

including SS and TS in Lake Erie sites, are: 
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 Flood duration lower than WM but higher than UPL (Figure 140 and 144); 

 Mean period of cycles lower than WM but higher than UPL (Figure 140, 142, 144, 148 and 

152); 

 Water depth slightly lower than WM but higher than UPL (Figure 140, 142, 150 and 152); 

 Wave exposure in Lake Erie is slightly lower than WM but higher than UPL (Figure 144). 

For SW, slope and curvature have an high importance for most models but the most important 

hydroperiod variables varies from one model to another. In Hill Island, the SW distribution is mainly 

explained using water depth (minimum and maximum) and with mean period of dry-wet cycles 

(Figure 139). In Lake Ontario, the mean water depth and the mean period are the most important 

hydroperiod variables (Figure 141). In Lake Erie, the minimum water depth and the mean period 

are important for SS distribution, while the maximum depth and the maximum scale-average 

power are more important for TS (Figure 143). In Grand River Mouth, the mean and maximum 

period and the maximum scale-average power are the most important hydroperiod variables 

(Figure 145). In Detroit River Marsh, the maximum water depth and the mean velocity allow to 

discriminate this class (Figure 147). In Lake St. Clair, the maximum water depth is the main 

hydroperiod variable used for this class (Figure 149). In Lake Huron, the minimum, maximum and 

mean water depth are the most important predictors (Figure 151). 

 

Figure 139: Variables importance by wetland classes (left) and global variable importance (right) for the Hill Island 

East random forest model. 
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Figure 140: Physical variables distribution by wetland class for the Hill Island East vegetation dataset. Orange line 

corresponds to the median while green dashed line corresponds to the mean. 

 

 

Figure 141: Variables importance by wetland classes (left) and global variable importance (right) for the Lake Ontario 

random forest model. 
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Figure 142: Physical variables distribution by wetland class for the Lake Ontario vegetation dataset.  Orange line 

corresponds to the median while green dashed line corresponds to the mean. 

 

 

Figure 143: Variables importance by wetland classes (left) and global variable importance (right) for the Lake Erie 

random forest model. 
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Figure 144: Physical variables distribution by wetland class for the Lake Erie vegetation dataset. Orange line 

corresponds to the median while green dashed line corresponds to the mean. 

 

 

Figure 145: Variables importance by wetland classes (left) and global variable importance (right) for the Grand River 

Mouth random forest model. 
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Figure 146: Physical variables distribution by wetland class for the Grand River Mouth vegetation dataset.  Orange line 

corresponds to the median while green dashed line corresponds to the mean. 
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Figure 147: Variables importance by wetland classes (left) and global variable importance (right) for the Detroit River 

Mouth random forest model. 

 

 

Figure 148: Physical variables distribution by wetland class for the Detroit River Marsh vegetation dataset. Orange line 

corresponds to the median while green dashed line corresponds to the mean. 
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Figure 149: Variables importance by wetland classes (left) and global variable importance (right) for the Lake St. Clair 

random forest model. 

 

 

Figure 150: Physical variables distribution by wetland class for the Lake St. Clair vegetation dataset. Orange line 

corresponds to the median while green dashed line corresponds to the mean. 
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Figure 151: Variables importance by wetland classes (left) and global variable importance (right) for the Lake Huron 

random forest model. 

 

 

Figure 152: Physical variables distribution by wetland class for the Lake Huron vegetation dataset. Orange line 

corresponds to the median while green dashed line corresponds to the mean. 
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6.1.8. Wetland model calibration and validation 

The RF models are calibrated using hydroperiod variables aggregated on a two to three year time 

window with all the vegetation samples available. The RF model is trained using bootstrap 

aggregation, where each new tree is fit from a bootstrap sample of the t raining observations 𝑧𝑖 =

(𝑥𝑖,𝑦𝑖 ). The out-of-bag (OOB) error is the average error for each 𝑧𝑖 calculated using predictions 

from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This allows the RF model 

to be fit and validated whilst being trained (Hastie et al., 2009). The out-of-bag samples are used 

to calculate the confusion matrix and other validation metrics such as the Global Accuracy, 

Precision, Recall, F1-Score, and Cohen’s kappa score (Cohen, 1960; Powers, 2008) in 

comparison with the ground truth samples. The global accuracy is the number of correct 

predictions in relation to the total number of samples. Precision measures the number of correct 

predictions in relation to the total number of predictions, thus measuring the overestimation. Recall 

measures the number of correct predictions in relation to the total number of occurrence, thus 

measuring the underestimation. A low precision score signifies the class is overestimated, 

whereas a low recall score signifies the class is underestimated. The F1-Score is the harmonic 

mean between the recall and precision. Kappa score measures the proportion of specific 

agreement of the model ranging from -1 to 1. This metric assesses whether model prediction could 

result from chance alone, as a kappa value of zero indicates no differences with random 

predictions (Cohen, 1960). Kappa scores less than 0.4 are considered low and indicate a poor 

performance of the model, whereas scores between 0.4 and 0.6 are considered moderate, and 

scores greater than 0.6 are considered high and indicate excellent performance of the model. 

Two different succession algorithms have been calibrated, one for the southern sites (Upper St. 

Lawrence, Lake Ontario, Lake Erie and Lake St. Clair) and one for Lake Huron. The succession 

algorithms were calibrated on a subset of the Lake Erie vegetation dataset and the Lake Huron 

vegetation dataset. The Lake Erie dataset was chosen because it is the dataset with the most 

high-quality data including two classes of swamps. Since most Lake Huron sites contain an 

exceptional biodiversity and high abundance of non-persistent emergent marshes, a different 

succession algorithm was calibrated for this lake using a subset of the vegetation samples. 

Succession periods and conditions were fine-tuned based on the literature and using the 

calibration dataset composed of 70% of the samples. Once a satisfying model was obtained, it 

was validated on the remaining subset of the vegetation samples.  
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Overall, the validation suggests that most models have good performance with Kappa scores 

ranging from 0.52 to 0.78 on the succession algorithm validation (Tables 42 to 48). The model 

with the highest performance is the 1HIE model (0.78 Kappa score) followed by the 12DRM model 

(0.75 Kappa score). Lake Ontario and Lake Erie models have good overall performance and 

estimate all classes with a F1-Score greater than 0.58. The Lake St. Clair model also 

demonstrates good overall performance (0.63 Kappa score), but it has a poor performance for 

WM that is confused with EM. Lake Huron model suggest some confusion between EM and WM 

but presents an overall high performance (0.6 Kappa score). The lowest performing model is the 

7GRM model (0.52 Kappa score), where there is some confusion for WM, SS and TS classes. 

CWRM predictions were compared to wetland classifications, and mapping results are presented 

in Figures 153 to 156 for some sites in Lake Erie and Lake Ontario. The results presented suggest 

performance from good to excellent for all the models. Most wetland classes present also good 

scores, maybe with an exception of WM that can have low precision or recall scores in some lakes.  

In some case, this can be due to the sparse presence of WM in the calibration dataset.  Also, the 

wetland succession model does not take into account invasive species, such as cattail, which 

have a have a wide range of tolerance to hydrophilic conditions and that are invading WM is some 

locations. This may lead to an overestimation or underestimation of WM in some sites. But overall, 

performance for most wetland class stands between good and excellent.  

Table 42: Validation metrics for Hill Island (1HIE) wetland community model. 
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Table 43: Validation metrics for Lake Ontario wetland community model . 

 

Table 44: Validation metrics for Grand River Mouth (7GRM) wetland community model . 
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Table 45: Validation metrics for Lake Erie wetland community model . 

 

Table 46: Calibration and validation metrics for the Detroit river marsh (12DRM) wetland community model . 

 



 

346 

 

Table 47: Calibration and validation metrics for the Lake Saint Clair (13LSC and 14SAM) wetland community model . 

 

Table 48: Calibration and validation metrics for the Lake Huron wetland community model . 

 



 

347 

 

 

Figure 153: Wetland model prediction using the observed water levels time series (1980-2018) at Airport Creek Marsh 

(2ACM) in 2008 (upper) and observed wetland classes by ELC (lower) for the same year. ELC wetland classes were 

converted to match with CWRM wetland classes. 

 

 

Figure 154: Wetland model prediction using the observed water levels time series (1980-2018) at South Bay Marsh 

(3SBM) in 2008 (left) and observed wetland classes by ELC (right) for the same year. ELC wetland classes were 

converted to match with CWRM wetland classes. 
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Figure 155: Wetland model prediction using the observed water levels time series (1980-2018) at Long Point (9LPW) 

in 2010 (upper) and observed wetland classes by ELC (lower) for the same year. ELC wetland classes were 

converted to match with CWRM wetland classes. 

 

 

Figure 156: Wetland model prediction using the observed water levels time series (1980-2018) at Rondeau Bay 

(10RBY) in 2010 (upper) and observed wetland classes by ELC (lower) for the same year. ELC wetland classes were 

converted to match with CWRM wetland classes. 
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6.2. Invasive species modelling 

Two invasive species were modelled in this study. These two plants are the two most abundant 

invasive plant species in the Great Lakes that threaten the biodiversity: the hybrid cattail (Typha 

glauca) and the invasive common-reed (Phragmites australis). These plants can be present in 

several wetland classes: SAV, EM, WM and SS. When the invasion of these classes is advanced, 

the wetland is trapped in an ecological “dead-end”, and the system cannot reverse to natural 

hydrosphere migration (Tougas-Tellier et al., 2015; Lavoie et al., 2012). Since both species do not 

currently fully occupy their ecological niche, it is difficult to dissociate the natural growth/invasion 

of the species with the expansion under climate change at the wetland class scale. That is why 

two distinct models were developed for these species:  

1. Suitable habitat model (SHM) estimates the suitable habitat area based on the hydrological 

conditions of a given year. The comparison of suitable area between the recent past and 

future periods indicates the impact of climate change on the invasive species.  

2. Population growth models (PGM) simulate the growth of invasive species and the impact 

on the other wetland classes.  

SHM consists of modelling the potential ecological niche of the species. As suggested by Mazur 

et al. (2014), ecological niche models assume that an invasive species colonizing a new area 

conserves its prior niche (Fitzpatrick & Weltzin, 2005). The best modelling approach would be to 

use a correlative model based on a fully realized niche to inform the vulnerability of given site to 

invasion (Beaumont et al., 2009). Since invasive species, such as Phragmities, do not fully occupy 

their respective ecological niche and are still expanding, there is no available data on the fully 

occupied niche of that species. Therefore, the current distribution of both species in its unrealized 

niche has been used to predict suitable habitat under different climate change scenarios and to 

assess the impact of climate change on the suitable habitat of both species (Peterson et al., 2003). 

A model predicting the presence or absence of each species has been developed by using 

vegetation samples from various sources. Similar to the wetland class modelling approach, this 

approach uses a Random Forest model and hydroperiod and topographic variables to predict if 

the habitat is suitable or not for the species. One model has been developed for each species 

using calibration datasets from different sites across Lake Ontario, Lake St. Clair and Lake Erie. 

The same model for each invasive species is applied for all 20 sites. The model calibration requires 

a balanced dataset where the number of presence equals the number of absence. Using the data 

available, all the presence and absence samples used are randomly selected nodes identified as 
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open water, swamps or upland. The other wetland classes were omitted from the absence record 

since those classes might correspond to the same ecological niche as both invasive species. 

PGM simulates the growth of the two species exclusively based on the hydraulic conditions and 

topography. These models are based on the literature, and the parameters were fine-tuned so the 

predictions fit with observation data. Other factors such as the road density, urbanization and 

temperature were not considered.  

PGM integrates three different models in sequence. The first part is the wetland model that 

predicts a wetland class for each node and for each year for the different climate change 

scenarios. The second part is the Typha PGM which uses the wetland model predictions as an 

input for the different functions such as the germination and the vegetative propagation (e.g. Typha 

will not germinate if the swamp class is predicted). The Phragmites model comes last and uses 

the Typha and wetland model outputs as input. Because Typha x. glauca was present in the 

system prior to Phragmites, it was important to integrate the interaction between both species. We 

also assumed, based on observations and the scientific literature, that if both invasive species 

models predict a presence, the Phragmites will dominate because of its competitive advantage.  

6.2.1. Cattail (Typha) 

Cattail is an emblematic wetland species that is part of the biological cycle of several other wildlife 

species (e.g. muskrats, least bittern). Although only one cattail species is native to the Great Lakes 

system, three cattail species are now common throughout the system (T. lagustifolia (native), T. 

angustifolia (introduced) and T. x glauca (hybrid)). Their abundance can be linked to water-level 

management and can alter the biodiversity of the wetland plant community (Wilcox & Xie 2007; 

Morin et al., 2016). The cattail models developed herein are used to simulate the growth of this 

plant under different climate-change scenarios and to evaluate the impact of this invasive plant on 

largewetland classes.  

6.2.1.1. Typha ecology 

Cattails belong to the Typha genus, a cosmopolitan taxa with about thirty species of 

monocotyledonous flowering plants within the Typhaceae family. Typha leaves are alternate and 

mostly basal on a single vertical stem reaching up to 3 m of height and a maximum single vertical 

stem up to approximately 2.5 m bearing the flowering spikes. This plant is monoecious, with 

numerous unisexual flowers developing in dense racemes (Apfelbaum, 1985). Male flowers form 
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a narrow spike at the top of the vertical stem, while female flowers form a dense, sausage-shaped 

spike just below the male spike (Ricketson, 2001). Cattails are prolific and can quickly dominate 

a wetland plant community (Zedler & Kercher, 2004). Monotypic stands of cattails reduce overall 

habitat value but are favorable for muskrats and breeding songbirds (Sojda & Solberg, 1993). 

Cattails are found in shallow and deep marshes facing limited wave action (Morin et al., 2005;; 

Turgeon & Morin, 2005; Morin et al., 2016). Marshes with cattails are also characterized by gentle 

slopes, few flooding cycles and slow-to-moderate water velocity (Table 49). Although they are 

flood-tolerant, cattails are favored by moderate flooding (Bedish, 1967; Boers & Zedler, 2008; 

Ellison & Bedford, 1995; S. W. harris & Marshall, 1963; Zedler & Kercher, 2004) , and water depths 

between 0.50 and 0.90 m appear to be optimal for the genus (Grace & Wetzel, 1981, 1982; Waters 

& Shay, 1990). T. x glauca, however, tolerates a wider range of depths than its parent species, as 

its vegetative shoots increase in height and dry mass along a water depth gradient up to 1  m 

(Waters & Shay, 1990). T. x glauca has been associated with high soil nutrients, low light, and 

large amounts of litter, contrary to the native T. latifolia, which produces shallow litter areas (Farrer 

& Goldberg, 2009; Waters & Shay, 1990). As such, invasions of T. x glauca can result in a 50% 

decline of plant diversity 10 to 25 years after the invasion and an increase in the organic layer of 

the soil after 35 years (Mitchell et al., 2011). 

Cattail can either be rooted in hydric mineral or organic soils or established on buoyant mats (Krusi 

and Wein, 1988). These mats contain belowground biomass, dead organic material, and minerals 

(Azza et al., 2006). Most of the time, mat sections closest to shore are attached to the lakebed, 

while sections toward the lake are free-floating. The initiation of floating mats occurs when 

emergent vegetation detaches from the lakebed while bringing an upper layer of soil carrying 

rooted materials. As floating mats move with water levels and are not really affected by their 

variations (Krusi & Wein, 1988; Swarzenski et al., 1991), the relation between their distribution 

and environmental variables is different than for rooted cattails. In Lake Ontario, floating mats of 

cattails occurred in some sites close to the shore just above the water and did not seem to respond 

to water-level variations (Wilcox & Xie, 2007). 
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Table 49: Cattail hydrological and topographical habitat requirements according to the life stages of the species. 

 

1
 Meng et al., 2016 

2 
Bansal et al., 2019; D. A. Wilcox et al., 2008 

3
 Bourgeois et al., 2012 

4 
Asamoah & Bork, 2010 

5 
Gucker, 2008 

6 
Snyder, 1985 

7 
Sharp, 2002 

8
 Boers & Zedler, 2008 

9
 Bedish, 1967 

10
 Bunbury-Blanchette et al., 2015 

11
 Frieswyk & Zedler, 2007 

12
 Zedler & Kercher, 2004 

13 
Morin et al., 2016

 

14 
van der Valk & Davis, 1978

 

6.2.1.2. Typha in the Great Lakes 

Even if it is possible to find cattail populations containing only one of the three taxa in the Great 

Lakes, most populations where both parental species (T. latifolia and T. angustifolia) are 

sympatric also contain the hybrid T. x glauca (Galatowitsch et al., 1999). T. latifolia is a 

cosmopolitan species found in a variety of North American wetlands (Grace & Harrison, 1986). 

Although the status of exotic T. angustifolia is still debated (Shih & Finkelstein, 2008), it seems 

that this species was introduced on the Atlantic coast when the first European settlers arrived in 

the early 19th century (Stuckey & Salamon, 1987). By the end of the 19th century, the species 

was observed on the mainland east of the Great Lakes (Galatowitsch et al., 1999). Shih & 

Finkelstein (2008) noticed that the distribution of T. latifolia and T. angustifolia has been 

expanding since the mid-20th century. The presence of T. angustifolia as a dominant species 

dates back to the 1970s (Travis et al., 2010), and it is now abundant throughout southern Canada 

and northern United States, from the Atlantic coast to the Rockies (Grace & Harrison, 1986). The 
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expansion of T. latifolia and T. angustifolia distribution has resulted in a greater coexistence of 

these species and promoted the establishment of T. x glauca. T. x glauca has been present in 

the Great Lakes region for more than 50 years (Frieswyk & Zedler, 2007; Galatowitsch et al., 

1999; S. C. Lishawa et al., 2013) and began to expand in some landscapes in the late 1980s 

(Frieswyk & Zedler, 2007). In different water bodies, T. x glauca expanded its distribution in 

response to higher and more stable water levels in regulated water bodies, like Lake Ontario 

(Seabloom et al., 2001; Wilcox et al., 2008).  

6.2.1.3. Typha dataset 

To calibrate the Typha SHM, various datasets were used for every site (Table 50). Presence data 

were taken from the vegetation surveys (CWS), ELC (Ontario Ministry of Natural Resources and 

Forestry, 2019b) and WTT (Snell and Cecile Environmental Research, 2001) datasets  (see 

Section 6.1.3. for more details on the datasets) for the Grand River Mouth (7GRM), Long Point 

(9LPW), Rondeau Bay (10RBY), St. Clair (13LSC) and Johnston Bay (14SAM) sites (Section 

6.1.3 for more details). Absence data were randomly selected to balance with the number of 

presence observations using samples that belong to the classes OW, SAV, SS, TS and UPL as 

identified by the wetland classification dataset.  
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Table 50: Description of the vegetation dataset used to calibrate the cattail suitable habitat models composed of 

presence and absence of various sources (Wetland Trends through Time, Ecological Land Classification and GLPI 

vegetation surveys). 

 

6.2.1.4. Typha SHM 

The Hydrology and Ecohydraulic Section of ECCC has developed SHM for Typha angustifolia 

and Typha latifolia in the St. Lawrence River (Champoux et al., 2002; Turgeon et al., 2004) with 

an approach inspired by Toner and Keddy (1997). The section also developed an SHM for Typha 

ssp in the Rainy Lake – Namakan reservoir that predict where the habitat is suitable for the 

establishment of the gender using logistic regression (Morin et al., 2016). The Typha SHM for the 

Great Lakes is a supervised model calibrated using absence/presence dataset (Table 50) as 

dependent variables and environmental variables (topographic and hydroperiod variables) as 

independent variables. The latter includes slope and curvature at 310 m scale, maximum, 

minimum and average water depth, average cycle period, as well as maximum scale -averaged 

wavelet power. The importance of the variables to the model is calculated with the Gini importance 

metric (hastie et al., 2009). Slope was found to be the most important variable among the 
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predictors (Figure 157). The relative importance of the water depth variables (minimum, maximum 

and average water depths) is necessarily lower since these variables are highly correlated, which 

diffuses their feature importance (Perrier, 2015). Since the water depth variables each have a 

relatively high importance, water depth is a major component to the model and allows the 

comparison of water level scenarios. Typha habitat is characterized by low slope and near 0 m 

water depth (Figure 158). Variables related to short-term water level fluctuations, i.e. the mean 

cycle period and maximum scale-averaged power, do not significantly differ between absence 

and presence samples. 

The model is applied to the recent past and future periods for each climate scenario in order to 

compare the change between both periods and to assess the impact of climate change on Typha 

suitable habitat.  

 

Figure 157: Independent variables relative importance of the cattail suitable habitat model. 
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Figure 158: Boxplot distribution of the environmental variables of the cattail suitable habitat model dataset. Orange 

line corresponds to median, w hereas green dashed line corresponds to mean. 

6.2.1.5. Typha PGM 

6.2.1.5.1. Model concept 

The Typha PGM stochastically simulates the growth (expansion) of the species by reproducing in 

a simplified way some of the plant phenological stages and invasion mechanisms such as seed 

germination, survival of seedlings and adult plants, litter accumulation and vegetative 

propagation. PGM uses some of the concepts of the Gleasonian approach in which succession 

of freshwater wetlands is based on the life history traits of the species present (van der Valk, 

1981). In Typha PGM, Typha seeds present germinate from the seedbank and grow as a result 

of a water level drawdown occurring during the previous growing season. In this approach, plant  

establishment is randomly influenced by seed dispersal.Typha PGM also included a litter 

accumulation algorithm slightly modified from the version proposed by Morin et al. (2016) in which 

wetland plant diversity decreases as litter accumulate (Lishawa et al., 2010; Mitchell et al., 2011) 

and the monotypic Typha stand can reach a floating mat stage that is no longer influenced by 
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interannual water level fluctuation (Mitchell et al., 2011; White et al., 2008). Typha PGM also 

simulates the vegetative propagation of the species to neighboring nodes, simulating the rhizome 

spread according to environmental conditions.  

Typha PGM is then is composed of five stages where different mechanisms are associated with 

each stage (Figure 159). The stages are: absence (no Typha), seedling, adult, monotypic stand 

and floating mat. The switch between stages may take one to several years, depending on the 

stages transition (e.g. No Typha to adult will take 1 year, whereas monotypic stand to floating mat 

requires at least 31 years).  

Because Typha is monoecious, it reproduces primarily by seed dispersal. Seed germination is 

therefore a critical mechanism that controls the establishment of the species. Seed germination 

mostly occurs on exposed, saturated soils but can also occurs under water where light can 

penetrate up to 40 cm of water depth (Bansal et al., 2019). Germination in PGM occurs for nodes 

that were “No Typha” during the previous year and may present adequate conditions for seedling 

establishment.  

Seedling survival is another critical mechanism, since flooding over 40 cm more than one month 

after germination can cause seedling mortality (Bansal et al., 2019). A seedling survival function 

has been developed and applied during the year of germination. This function allo ws the node 

with a stage “seedling” facing adequate conditions to move to the stage “adult” to returns to the 

stage “no Typha” if the seedling does not survive.  

The adult stage has two mechanisms to move to another stage: the adult survival and the litter  

accumulation. The adult survival function determines if the adult survives under specific 

environmental conditions. If the adult does not survive, it moves to the “No Typha” stage. If the 

adult survives, the litter accumulation function determines if the conditions are favorable for the 

node to move to the monotypic stage or not. Monotypic stands typicly occurs around 10 years 

after Typha establishment (Mitchell et al., 2011). The litter accumulation function is an incrementer 

that counts the favorable (+1) and unfavorable years ( -1). When the litter accumulation 

incrementer reachs +7, the adult transitions to monotypic stand. 

The monotypic stand has three mechanisms involved in its change of stage: Adult survival, litter 

accumulation and vegetative reproduction. If the monotypic stand does not survive, it transitions 

to adult stage. If the litter accumulation incrementer is < 7 years, it will also transition to adult the 

following year. Inversely, if the litter accumulation incrementer is > 31 years, the monotypic stand 
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becomes a floating mat. In the literature, floating mat occurs after around 35 years cumulative 

years of favorable conditions (low interannual water level fluctuation;  Mitchell et al., 2011) and 

water level control strategy are no longer an option to control them. Monotypic stands also have 

the ability to propagate vegetatively to neighboring nodes. Once a neighboring node is colonized, 

it becomes a monotypic stand. The floating mat also propagates vegetatively colonizing 

neighboring nodes into monotypic stands. 

In the following sections, more details are given concering the stages and mechanisms involved 

in the Typha PGM. 

 

Figure 159: Typha Population Growth model conceptual scheme representing the different stages (white boxes) and 

the mechanisms (grey ellipses) that cause the change of stage from one year to another. 

6.2.1.5.2. Germination  

Germination occurs in exposed and saturated soils following a period of receding water level, 

which are characterized by mudflats with suitable water depth (Bansal et al., 2019; Beule, 1979; 

Lorenzen et al., 2000; Weller, 1975). During the germination phase, a node change from a state 

defined as unsuitable to suitable for the species (from NT to TSH; step 0 to 1; Figure 159). For a 

given CWRM node, the germination probability, P g, is calculated as a function of the probability 

of water level drawdown (P wl), the probability of water depth reaching a suitable level during the 

germination period (P wd), and the establishment rate (E r) (equation 6.1)  

𝑃 𝑔 = 𝑃 𝑤𝑙 ∗ 𝑃 𝑤𝑑 ∗ 𝐸 𝑟  6.1 
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The P wl depends on the change in water level observed between the current and previous 

germination periods (start of the growing season to 1st week of July, QM25). When this change is 

less than 0, P wl value is set to 0.0. When it is higher than 0.25 m, the probability is then 1.0. 

Between this depth range (0.0-0.25 m), the probability of drawdown is calculated linearly as 

presented by the preference curve in Figure 160. 

The P wd is the probability for a seed to germinate according to the water depth reached during 

the current germination period (Figure 161). Typha germination occurs generally were water 

depth is under 40 cm and under saturated substrate (Bansal et al., 2019). The threshold used to 

predict the P wd were determined based on the biology but also using a calibration via a trial and 

error approach. It was estimated that the substrate was saturated and can be suitable for 

germination if the mean water depth during the germination period is between -35 and 35 cm. 

P wd value is 0.0 when the water depth drops below –0.35 m or rises above 0.35 m. When the 

water depth remains between -0.25 and 0.25 m, the probability value is equal to 1.0. Outside 

these ranges, P wd is calculated linearly as presented by the preference curve in Figure 161.  

Finally, the establishment rate (E r) is set at a constant value of 0.001 to simulate the natural and 

random aspects of seed dispersal in the system. This factor restricts the maximum probability of 

germination and, hence, the number of nodes that are allowed to germinate into a seedling in a 

given year. The node germinates randomly, weighted by the probability of germination, P g. 

 

Figure 160: Typha germination probability as a function of the water level variation between the preceding year and 

the current germination period.  
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Figure 161: Typha germination probability as a function of the water depth during the germination period of the 

current year. 

6.2.1.5.3. Seedling survival  

After germination, seedlings need to survive water level fluctuations to become an adult. To 

survive seedling must be in saturated substrate and that seedling can tolerate a water depth under 

40 cm one month after germination (Beule, 1979). Dry conditions also negatively affect the 

seedling survival, it was estimated that a substrate 35 cm higher than the mean water level during 

the growing season was unsuitable for Typha seedlings. Seedling survival in the PGM is a survival 

probability function (Figure 162) allowing the seedlings to become adults if the environmental 

during the whole growing season are favorable for its growth. Seedling survival probability value 

is 0.0 when water depth drops below or rises above an absolute value of 0.35 m during the entire 

growing season. When the water depth remains between -0.25 and 0.25 m, the probability is 

equal to 1.0. Outside these ranges, P wd is calculated linearly as presented by the preference 

curve in Figure 162. 

The probability must be > 0.5 to allow seedling survival, and initiate the transition of the node to 

move to adult stage the following year (Figure 159).  
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Figure 162: Typha seedling survival probability in function of the water depth during the current growing season. 

6.2.1.5.4. Adult survival  

The adult and monotypic stand stages include an adult survival mechanism (Figure 163) that 

determines whether the species survive or not. This mechanism acts as a hard reset when the 

Typha subsistence condtions are not met. Typha can generally tolerate up to 1.0 m of water over 

its top (Morin et al., 2016). However, from wetland observations, it was possible to identify a 

significant loss of Typha in Crown Marsh area (Long Point, Lake Erie) during the 1986 high water 

levels associated to at least 70 cm of mean water depth during the growing season. It was thus 

determined, that water depth has to remain between -1.0 m and 0.7 m during the growing season 

so that Typha survives. If the node was an adult and the survival criteria is not met, the node 

moves to “no Typha”, whereas if the node was a monotypic stand and the survival criteria is not 

met, the node moves to adult stage and the litter accumulation increment is reset to 1.  

6.2.1.5.5. Litter accumulation 

Once the adult and monotypic stand stages survive, the litter accumulation algorithm is applied. 

This algorithm is an incrementer that counts the favorable years. Once > 7 favorable years are 

accumulated, the node becomes a monotypic stand. When > 31 favorable years are accumulated, 

the node becomes a floating mat. Over time, the monotypic Typha stands lose biodiversity and 

the species become increasingly dominant. Organic matter accumulates in the monotypic  stands, 

which eventually separate from the substrate, creating floating mats that are no longer influenced 

by environmental conditions. 
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Favorable years (+1 to the incrementer) are defined as years where the litter accumulation 

probability exceeds 0.5 and unfavorable years (-1 to the incrementer) occur when the litter 

accumulation probability is below 0.5. 

The litter accumulation probability is 0.0 when water depth drops below -1.0 m or rises above 

0.7 m during the current growing season. When the water depth remains between -0.35 and 

0.35 m, the probability value is equal to 1.0. Outside these ranges, the litter accumulation 

probability is calculated linearly as presented by the preference curve in Figure 163.  

 

Figure 163: Typha litter accumulation probability as a function of the water depth during the current growing season. 

6.2.1.5.6. Vegetative propagation 

The vegetative propagation mechanism predicts the lateral propagation distance based on water 

depth, neighboring wetland class, and water level fluctuations. For any nodes reaching the 

monotypic stand or floating mat stages (Figure 159), vegetation propagation occurs to 

neighboring nodes. Neighbor nodes are colonized when this lateral distance becomes greater 

than the distance between the node and its neighbors, and colonized nodes are then assigned 

the monotypic stand stage.  

The lateral vegetative propagation (Vg) is calculated using five components: the previous growth, 

the vegetative propagation probabilities associated with current water depth, P wd (Figure 164), 

and year-to-year water level variation, P wl (Figure 165), the propagation probability associated 

with the predicted wetland class in adjacent nodes, P we (Table 51), and the maximum growth, 

which was estimated at 4 m for this study (Boers & Zedler, 2008).  



 

363 

 

For the first year, previous growth is equal to zero. The following years, if the Vg < distance to 

neighbors (d), the previous growth is equal to the Vg. When Vg is greater than d, the previous 

growth is equal to Vg - d (equation 6.3). This variable ensures that the growth in the previous 

years is accumulated when the distance to neighbors is not reached. 

Vg (𝑚) =  (𝑀𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ ∗ 𝑃 𝑤𝑑 ∗ 𝑃 𝑤𝑙 ∗ 𝑃 𝑤𝑒) + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑟𝑜𝑤𝑡ℎ 6.2 

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑟𝑜𝑤𝑡ℎ = {
𝑉𝑔 – 𝑑   𝑖𝑓 𝑉𝑔 > 𝑑

𝑉𝑔       𝑖𝑓 𝑉𝑔 ≤ 𝑑
 6.3 

The vegetative propagation probability associated with water depth, P wd, is 0.0 when this depth 

remains below -1.0 m or above 0.7 m during the growing season. It is 1.0 when the water depth 

remains between these values, and is otherwise calculated linearly as presented by the 

preference curve in Figure 164.  

 

Figure 164: Typha vegetative propagation probability in function of the water depth during the current growing 

season. 

The vegetative propagation probability in function of the water level variation (P wl) between the 

previous and current year is 1.0 when the variation goes between -0.125 to 0.125 m and 0.0 when 

is under -0.20 and 0.20 m. Between those values, P wl is calculated linearly as presented by the 

preference curve in Figure 165. 
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Figure 165: Typha vegetative propagation probability in function of the water level fluctuations between the preceding 

and current growing seasons. 

Finally, Typha can only expand in wetland classes suitable for this species, i.e. OW, SAV, EM 

and WM (Table 51). 

Table 51: Probability of vegetative propagation in the different wetland classes. 

 

6.2.1.5.7. Typha PGM initialization 

The year of Typha PGM initialization was selected based on literature review and the available 

data. The exact start date of T. angustifolia and hybridisation of T. X. glauca invasion in each lake 

is unknown, but pollen records of Typha in the Great Lakes date back to 1945 (Lishawa et al., 

2013) and can be used to roughly estimate the starting point. Therefore, the Typha model was 

started in 1956 in the Upper St. Lawrence, as well as in Lakes Ontario, Erie and St. Clair, at the 

beginning of the water level time series. For Lake Huron, pollen records show that T. angustifolia 

abundance was higher in the southern lakes than in Lake Huron wetlands before 1960 (Shih & 

Finkelstein, 2008), and that invasion significantly increased between 1960 and 2000. The low 

abundance of T. angustifolia and T. x. Glauca in the vegetation samples collected in Lake Huron 
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compared to those collected in southern lakes confirmed this trend. As a result, the Typha model 

was started in the 1980s at Lake Huron sites. 

For the different climate change scenarios, the physical variables are simulated using 

hydrodynamic conditions for the recent past (1980-2009) and the future (2070-2099) periods. 

Although, during transition periods (i.e. <1980 and 2010-2069), hydrodynamic conditions are not 

simulated and the wetland class model is not used. Therefore, to initiate the model and ensure  

simulations continuity, the establishment and expansion of both invasive species during those 

transition periods are simply driven by quarter month mean water depth values.  

6.2.2. Common reed (Phragmites australis) 

Common reed, Phragmites australis, is a tall (3-5 m) perennial grass that colonizes a wide 

ecological niche among wetland ecosystems. It can be found in locations ranging from aquatic to 

terrestrial habitats and on different types of soils with a wide range of organic matter content, pH 

and nutrient concentrations (Mal & Narine, 2004; Packer et al., 2017). Although native to North 

America, common reed is now considered as an aggressive exotic invader, thanks to the 

introduction of a non-native Eurasian genotype (halotype M) that started expanding in North 

Atlantic coastal marshes between 1960 and 1980 (Chambers et al., 1999; Galatowitsch et al., 

1999; Marks et al., 1994; Rice et al., 2000).  

The species possesses many characteristics that can explain its success at invading North 

American wetlands:  

1. Reproduces both sexually and vegetatively from fragments, rhizomes or stolons that can 

advance up to 10 m/yr (Hudon et al., 2005); 

2. Produces a large number of seeds that are highly viable and that are dispersed over long 

distances by wind or water (Kettenring et al., 2011); 

3. Produces allelopathic gallic acid that inhibits the growth of co-occuring plants (Rudrappa 

et al., 2007); 

4. Grows taller than any other native marsh species and produces large amount of litter 

(Hudon et al., 2004); 

5. Not consumed by herbivores during the growing season (Dvorák et al., 1998). 

Other anthropogenic factors contributed to the success of the invasion in North American 

wetlands:  
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1. The eutrophication and disturbances of wetlands (e.g. encroaching on wetlands to perform 

work with heavy machinery or when creating or refreshing road or agricultural drainage 

ditches) favored Phragmites establishment and growth by eliminating competing 

vegetation, exposing mudflats that are suitable for reed germination and creating modified 

hydrological conditions that Phragmites can better tolerate than native species (Meyer et 

al., 2001; Rice et al., 2000; Warren et al., 2001; K. L. Wilcox et al., 2003);  

2. The increased nitrogen and phosphorus runoff from agriculture favored the exotic common 

reed at the expense of the native subspecies of Phragmites because it tolerates and more 

efficiently assimilates high concentrations of nutrients (Chambers et al., 1999; 

Galatowitsch et al., 1999); 

3. The development of the road network contributed to the spread of the species throughout 

the continent by creating a perfect habitat for common reed, i.e. road ditches (Lavoie, 

2008); 

4. Lower water levels and higher temperatures possibly induced by a more variable climate 

favor the spread of the species by exposing wetland substrate (Tougas‐Tellier et al., 

2015). 

Once the non-native Eurasian genotype establishes in a wetland, it expands rapidly at the 

expense of native wetlands communities, especially Typha marsh, wet meadows, sedge/grass 

meadows, and shallow aquatic vegetation (Jung et al., 2017; Wilcox et al., 2003). Dense 

Phragmites stands, which produce large quantities of litter, will eventually alter its surrounding 

environment by modifying soil properties, hydrology, nutrient cycling, temperature and incident 

light (Hudon et al., 2004; Meyerson et al., 2000; Warren et al., 2001; Windham & Lathrop, 1999). 

Adverse effects of common reed invasion include a decrease in plant diversity; habitat loss of 

marsh-dependent birds, amphibians, and fishes; and negative effects on infrastructures (stems 

having the capacity to break up asphalt; Lavoie, 2019; Lavoie et al., 2003; Meyer et al., 2010; 

Meyerson et al., 2000). Once established, Phragmites is hard to control or remove (Hazelton et 

al., 2014), and management is very costly (Martin & Blossey, 2013). Recently, some researchers 

advocated that Phragmites control programs should prioritize the protection of non-invaded 

wetlands rather than trying to eliminate Phragmites in heavily invaded watersheds (Hazelton et 

al., 2014). Other authors pointed out that reed beds also provide valuable ecosystem services 

that can be particularly useful in the context of global warming such as providing resilient 

vegetation, accretion rates that can keep pace with increasing sea level and nutrient removal 

(Ludwig et al., 2003; Mozdzer et al., 2010; Rooth et al., 2003). 

6.2.2.1. Phragmites ecology 

Several studies report that P. australis seedlings emerge from soil seed banks. The seeds are 

dispersed in the environment by wind and water and can float on the water surface for a period 



 

367 

 

of up to 124 days in moving water (Wijte & Gallagher, 1996; van den Broek et al., 2005). Seeds 

of P. australis germinate on bare non-inundated soils like mudflats because they require moist 

conditions along with light and large diurnal temperature variations to break dormancy (Armstrong 

et al., 1999; Coops et al., 2004; Haslam, 1971; Mauchamp et al., 2001). Flooding, even by a few 

centimeters or water, reduces the germination rates (Table 52; Baldwin et al., 2010; Coops & van 

der Velde, 1995; Haslam, 1971; Meng et al., 2016; Yu et al., 2012). Germination is also influenced 

by temperature, salinity, organic content of the substrate and fungal infection (Haslam, 1972; 

Packer et al., 2017). Seed germination usually occurs within 2 to 14 days (Galatowitsch et al., 

1999; Packer et al., 2017). 

Phragmites seedlings can remain small (2-4 leaves / 2-5 cm tall) or even not develop to a further 

stage if favorable growing conditions are not present (Haslam, 1972). They grow faster without 

competition of other plants and in moist or saturated conditions (Mauchamp et al., 2001). Periodic 

phases of submergence are well tolerated by seedlings, especially as they become older (Wijte 

& Gallagher, 1996; Baldwin et al., 2010; Galatowitsch et al., 1999; Mauchamp et al., 2001). 

Seedlings survive if they are totally submerged by up to 80 cm of water during four to six 

consecutive weeks, but do not grow (Armstrong et al., 1999; Coops & van der Velde, 1995; 

Mauchamp et al., 2001). The major cause of seedling mortality is drought, although the species 

can tolerate drier conditions than most of the other wetland plants (Pagter et al., 2005). In optimal 

conditions, seedlings can become mature plants over one growing season, but the process will 

take more time if conditions are sub-optimal.  

The non-native Phragmites forms dense monotypic stands that produce three times more 

biomass than the native sub-species. Phragmites colonies grow best in shallow water (less than 

50 cm) or in areas that are not permanently flooded (Byun et al., 2014; Hudon et al., 2005; Squires 

& Valk, 1992; M. G. Tulbure et al., 2007). In flooded conditions (> 150 cm), the edge of a colony 

will retreat by a few meters, but stems located inside the colony are virtually immune from any 

adverse environmental conditions (Hudon et al., 2005). Once a common reed colony is well 

established, it is very time- and cost-consuming to eradicate. Drowning Phragmites stands by at 

least 1.5 m of water (for a minimal duration of 6 weeks) is one of the options that can be used to 

control Common reed, but, in order to be effective, it needs to be coupled with other control 

measures like cutting, rolling or burning (Ontario Ministry of Natural Resources and Forestry, 

2019). 
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Colonies expand rapidly by rhizomes or stolons that can grow up to 10 m within a single growing 

season. New erect stems grow at regular intervals (at each 10-20 cm) along the stolon, each of 

which is taking root. According to Hudon et al. (2005), the water depth of the previous growing 

season is the best predictor of the lateral expansion of colonies. In this study, later al expansion 

of colonies was the highest at locations with the water table 40 to 60 cm below the ground and 

when there was no more than 20 days of flooding over the growing season. Another study in a 

Swedish lake with water depth ranging from 0.3 to 1.4 m found that rhizome length was negatively 

correlated with water depth (Weisner & Strand, 1996). Lateral expansion is generally accelerated 

in the year following a water level drawdown (Hudon et al., 2005; M. G. Tulbure et al., 2007). 

Flooding usually substantially slows lateral expansion, especially as flooding deepens or as 

duration of flooding is longer (Alvarez et al., 2005; Hellings & Gallagher, 1992; Hudon et al., 2005). 

For example, flooding for more than 100 days results in slow propagation (1-2 m/yr), while deeper 

flooding (more than 1.0 m) results in no vegetative growth at all (Hudon et al., 2005). 

Table 52: Effects of environmental conditions on the different Phragmites australis life stages. 

 

Clevering & Lissner, 1999 1 Weisner et al., 1993 8 

Coops et al., 2004 2 Armstrong et al., 1999 9 

D. Wilcox, 2012; K. L. Wilcox et al., 2003 3 Alvarez et al., 2005 10 

Haslam, 1971 4 Pagter et al., 2005 11 

Meng et al., 2016 5 Weisner & Strand, 1996 12 

Yu et al., 2012 6 Hudon et al., 2005 13 

Byun et al., 2014 7 
Ontario Ministry of Natural Resources and Forestry et al., 
2019 14 
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6.2.2.2. Phragmites in the Great Lakes 

Exotic reeds (subspecies native to Eurasia) have been present in the Canadian Great Lakes since 

the 1940s, but have only been expanding since the mid 1990s. A study by Wilcox (2012) at the 

Dickinson Island wetland site on the St. Clair River delta showed that even if non-native 

Phragmites invasion only started becoming apparent after the 1997 water level drawdown, the 

species was already established at the site since the mid-1980s. He showed that Phragmites 

initially established on exposed sediments after the 1986 water level drawdown, along with other 

native plants that were present in the seedbanks. The cover of Phragmites remained low during 

the next decade. The water-level drawdowns between 1997 and 1999 promoted the rapid 

expansion of the common reed in the wetland in the following decades. 

This rapid expansion of Phragmites after the mid-1990s was observed in Lake Erie and Lake 

Michigan-Huron and was the result of water level drawdowns that occurred between 1997 and 

2004, increases in ambient air temperatures and the establishment of the non-native Eurasian 

lineage (Jung et al., 2017; Tulbure et al., 2007; Tulbure & Johnston, 2010; Wilcox, 2012; Wilcox 

et al., 2003). In Lake Ontario, water level regulation appears to have facilitated the establishment 

of Typha spp., which might have prevented the establishment and proliferation of Phragmities 

because they share a similar ecological niche (Amsberry et al., 2000; Keddy & Reznicek, 1986; 

Shay et al., 1999; Wilcox et al., 2008). 

A study by Mazur et al. (2014) covering the entire Laurentian Great Lakes shoreline pointed out 

that wetland habitats that were the most vulnerable to invasion by Phragmites were those in 

proximity to developed lands and to a dense road network, coupled with minimal topographic 

relief. At Long Point National Wildlife Area, Phragmites invaded and replaced mostly Typha and 

wet meadows and, to a lesser extent, sedge/grass hummocks and mixed emergent marshes 

(Wilcox et al., 2003). 

6.2.2.3. Phragmites dataset 

P. australis invasion in the Great Lakes most likely started after the 1987 mean annual water level 

drawdown which exposed bare soil and promote seed germination, but became apparent after 

the second drawdown in 1997 (Wilcox, 2012; Wilcox et al., 2003). In order to ensure that the 

selected data were uniquely identifying the invasive P. australis, presence data from only 1995 

and later were selected in the WTT dataset (Section 6.1.2). The presence data are more abundant 

in the 2010-2015 years since the invasion is more advanced (Table 53).  
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Table 53: Description of the vegetation datasets used to calibrate the Phragmites suitable habitat model composed of 

presence and absence of various sources (Wetland Trends through Time, Ecological Land Classification and GLPI 

quadrats surveys). 

 

6.2.2.4. Phragmites SHM 

Phragmites SHM, like the Typha SHM (Section 6.2.1.4), is a supervised model calibrated using 

absence/presence data (Table 53) as dependent variables and physical variables (topographic 

and hydroperiod variables; Figure 166). The topographic variables used are the slope and 

curvature at 310 m scale. The hydroperiod variables are calculated for the previous growing 

season, and include maximum, minimum and average water depth, average cycle period and 

maximum scale-average wavelet power. The relative importance of the variables to the model is 

calculated with the Gini importance metric (Hastie et al., 2009). Modelling results suggest that the 
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most important variables are the slope and curvature followed by the maximum scale average 

wavelet power. The minimum water depth is the most important water depth variable. The relative 

importance of the water depth variables are necessarily lower, since those variables are highly 

correlated and the feature importance is therefore diffused (Perrier, 2015). Since the water depth 

variables each have a relatively high importance, the water depth is a major component to the 

model and allows the comparison of water level scenarios. Suitable habitat for Phragmites is 

located at the interface of the land and water since most presence data have a  water depth close 

to 0 m with low slope (Figure 167). Phragmites suitable habitat is associated with low water depths 

and with a 40-hour period of dry-wet cycles, which corresponds to the period of wind set-ups in 

Lake Erie.  

 

Figure 166: Independent variables relative importance of the Phragmites suitable habitat model. 
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Figure 167: Boxplot distribution of the environmental variables of the Phragmites suitable habitat model dataset. 

Orange line correspond to median, whereas green dashed line corresponds to mean. 

6.2.2.5. Phragmites PGM 

The Phragmites PGM aims to reproduce the establishement of a common reed colony from the 

germination of seeds present in the seedbank to the expansion of the colony via vegetative 

propagation. Like other Phragmites models (i.e. Duncan et al., 2017; Tougas‐Tellier et al., 2015), 

this one is theoretical. It is calculated according to the water depth during the germination and 

growing season period and inter-annual water level fluctuations. The different functions 

incorporated into the model (Figure 168) reproduce the different stages and mechanisms of the 

establishment of a Phragmites colony based on a thorough review of the literature of the species 

biology. A novelty of this 2D model is that, in addition to identifying the potential sites for common 

reed establishment, as done by Tougas‐Tellier et al. (2015), it also includes a simplified seed 

propagation algorythm and predicts the advancement of the colonies by lateral vegetative 

propagation. 

The Phragmites PGM has four stages: no Phragmites, seedling, adult, and colony. Between those 

stages, there are four mechanisms allowing the stages to change from one to another: 

germination, seedling survival, seed and vegetative propagation. The Phragmites PGM was 
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presented and approuved by Claude Lavoie, a Phragmities specialist from Université Laval who 

also developed a Phragmitites habitat model (Lavoie, 2007). 

 

Figure 168: Phragmites population growth model scheme. 

6.2.2.5.1. Germination 

The first step for Phragmites establishment (going from No Phragmites to Seedling in Figure 168) 

consists of having appropriate conditions for seed germination. The model allows the germination 

for a random subset of the CWRM grid nodes weighted by the germination probability ( Pg) on 

exposed mud flats in the spring following a receding water level. For each CWRM point, a 

germination probability (Pg) is calculated similarly to the Typha model (Section 3586.2.1.5.2) as 

a function of the probability of water level drawdown (P wl), the probability of water depth reaching 

a suitable level during the germination period (P wd), probability to germinate associated with the 

various wetland classes (P we), and the establishment rate (Er). 

𝑃 𝑔 = 𝑃 𝑤𝑙 ∗ 𝑃 𝑤𝑑 ∗ 𝑃 𝑤𝑒 ∗ 𝐸𝑟 6.4 

P wl depends on the change in water level observed between the current and previous 

germination periods (start of the growing season to first week of July, QM25). When this variation 

is less than 0.125 m, P wl value is set to 0.0. When it is higher than 0.25 m, P wl is then 1.0. 

Between 0.125 and 0.25 m, the probability of drawdown is calculated linearly as presented by the 

preference curve in Figure 169. 
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Figure 169: Germination probability according to the water level variation between the preceding year and the current 

germination period. 

The P wd is the probability for a seed to germinate according to the water depth reached during 

the current germination period (Figure 170). P wd value is 0.0 when the water depth drops below 

–0.20 m or rises above 0.20 m. When the water depth remains between -0.1 and 0 m, the 

probability value is equal to 1.0. Outside these ranges, P wd follows a logarithmic function as 

presented by the preference curve in Figure 170. 

 

Figure 170: Germination probability according to the water depth during the germination period. 

In the present model, there is also a probability to germinate associated with the various wetland 

classes (P we) determine from literature review, expert consultation and iterative tries during the 

calibration process. Phragmites do not germinate in wetland classes with woody species or in 

upland sites (Table 54). A probability of 0.01 was given for Phragmites to allow the possibility of 
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Phragmites to germinate into cattail stands. However, Phragmites cannot germinate if the cattail 

stands is at the floating mat stage.  

Table 54: Germination probability in function of the wetland class predicted by the wetland model and the cattail 

models. 

  

Finally, the establishment rate is a constant to integrate the natural and random aspect of seed 

dispersal in the system. This factor restricts the maximum probability of germination, restricting 

the number of nodes that can germinate at a given year. For example, with an establishment rate 

of 0.05, and optimal environmental conditions approximatively 5% of the nodes wi ll germinate. 

6.2.2.5.2. Seedling survival  

When a node is suitable for Phragmites germination, its stage transitions from no Phragmites to 

seedling. The second mechanism of the PGM is then to evaluate the seedling survival, which is 

required for the seedling to become an adult. The seedling has to survive one complete growing 

season in order to become a Phragmites adult or mature plant. The seedling survives and 

becomes an adult if the probability of seedling survival (P ss) > 0.5.  

𝑃 𝑠𝑠 =  𝑃 𝑤𝑑 ∗  𝑃 𝑓𝑤  6.5 

P wd is the survival probability of a seedling according to the mean water depth during the 

growing season of Phragmites. P wd value is 0.0 when the water depth drops below –1.0m or 
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rises above 2.0 m. When the water depth remains between -1.0 and 2.0 m, the probability value 

is equal to 1.0 (Figure 171). 

 

Figure 171: Seedling survival probability according the mean water depth during the current growing season. 

P fw is the survival probability of seedlings as a function of the time a node is flooded 

consecutively during the growing season (Figure 172). Phragmites seedlings can completely 

survive (P fw = 1.0) when six consecutive QM and less are flooded during the growing season. 

The P fw value is 0.0 when the node is flooded for more than 14 consecutive QM. When the 

number of consecutive flooded QM is between 6 and 14, the P fw value is calculated linearly as 

presented by the preference curve in Figure 172. 

 

Figure 172: Seedling survival probability according to the number of consecutive flooded quarter-months. 
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6.2.2.5.3. Seed propagation 

Once the seedling survives, the next year it becomes a Phragmites stand with adult plants. The 

model simulates the seed propagation of the Phragmites by increasing the Establishment rate 

(Er) of the neighboring points in a 500 m radius. The seed propagation increase is maximum for 

the points within a 100 m radius and decreases as the distance approaches 500 m. Between 100 

and 500 m, the Er increase of the neighbor points is calculated linearly as presented by the 

preference curve in Figure 173. 

We assumed that there is a lag time of 5 years for the Phragmites to fully occupy a 100 m² area 

(grid resolution) and thus establish a colony. The first time a node becomes an adult from 

germination or becomes a colony from lateral propagation (next section), it seeds/germinates in 

neighboring nodes and increases their respective establishment rate depending on the distance 

of the neighboring nodes to the adult (Figure 173). There are no condition in the model that can 

remove the Phragmites adult stage. 

 

Figure 173: Establishment rate increase according to the distance between the neighbors and the pollinator. 

6.2.2.5.4. Vegetative propagation: invasion 

When the colony is well established, it can “invade” adjacent nodes of the CWRM grid by 

vegetative propagation. The vegetative propagation modelled in the Phragmites model is similar 

to the Cattail model (see Section 6.2.1.5.6). The lateral vegetative growth (Vg) is a function that 

calculates a distance of lateral propagation depending on the hydrologica l conditions and the 

wetland class predicted in the wetland model. The difference between the Phragmites adult and 

the colony is that during the five years lag time, there is no vegetative propagation possible to 
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neighboring nodes. Once it becomes a colony, the colonies expand to neighboring nodes by 

vegetative propagation. 

The vegetative propagation (Vg) (equation 6.6) is calculated using six components: 

 previous growth; 

 vegetative propagation probabilities associated with current water depth, P wd (Figure 

174); 

 slope, P sl (Figure 175); 

 year-to-year water level variation, P wl; 

  propagation probability associated with the predicted wetland class in adjacent nodes, P 

we (Table 51); 

 maximum growth, which was estimated at 10 m/year for this species in this study. 

For the first year, previous growth is equal to 0. The following years, if the Vg < distance to 

neighbors (d), the previous growth is equal to the Vg. When Vg is greater than d, the previous 

growth is equal to Vg - d (equation 6.7). This variable ensures that the growth in the previous 

years is accumulated when the distance to neighbors is not reached. 

𝑉𝑔 (𝑚) = (𝑀𝑎𝑥 𝑔𝑟𝑜𝑤𝑡ℎ ∗ 𝑃 𝑤𝑑 ∗ 𝑃 𝑠𝑙 ∗ 𝑃 𝑓𝑤 ∗ 𝑃 𝑤𝑒) + 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑟𝑜𝑤𝑡ℎ 6.6 

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑟𝑜𝑤𝑡ℎ = {
𝑉𝑔 – 𝑑   𝑖𝑓 𝑉𝑔 > 𝑑

𝑉𝑔       𝑖𝑓 𝑉𝑔 ≤ 𝑑
 6.7 

The vegetative propagation probability associated with water depth, P wd, is 0.0 when this depth 

remains below -1.5 m or above 1.0 m during the growing season. It is 1.0 when the water depth 

stays between -0.6 and 0.0 m, and it is otherwise calculated linearly as presented by the 

preference curve in Figure 174. 
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Figure 174: Vegetative propagation probability according to the mean water depth during the growing season.  

P sl is calculated by the preference curve presented in Figure 175. The value is 0.0 when the 

slope is under and over 50%. It is 0.5 when the slope is between -50 and - 5% or between 5 and 

50%. Finally, P sl is at is maximum value, 1.0, when the slope is between -5 and 5%. 

 

Figure 175: Vegetative propagation probability according to the slope with the neighboring points. 

The vegetative propagation probability in function of the water level variation (P wl) between the 

previous and current year is 1.0 when the water level declines (variation < 0.0  m) and is 0.0 when 

the water level rises (variation >0.0 m). Phragmites can invade several wetland classes, but not 

all of them. The model considers the proabibility of Phragmites propagation maximum in OW, 

SAV, EM and WM. It is also possible for Phragmites to invade cattail stands but at a much lower 

probability than other EM. Typha growth is reduced when Phragmites are present and therefore, 

Phragmites are better competitor than Typha (Chun & Choi, 2009). The rate of expansion of 



 

380 

 

Phragmites under Typha cover is dependant of many factors, thus a heuristic is used to simplify 

this interaction. The vegetative propagation probability of Phragmites expansion under Typha 

cover has been selected iteratively during the calibration process. Finally, it is not possible for 

Phragmites to have vegetative propagation in SS, TS and Upland sites (Table 55). 

Table 55: Vegetative propagation probability according to the wetland class of the neighbor point 

 

6.2.2.5.5.  Phragmites PGM initialization 

Studies showed that Phragmites invasion in Lake St. Clair and Lake Érié started in the 1980s but 

became significant after the 1997 water level drawdown (Wilcox, 2012; Wilcox et al., 2003). 

Therefore, the Phragmites model was started in 1980 for the southern lakes. In contrast, for most 

Lake Huron sites except Baie du Doré, the invasion did not occur following the water level 

drawdowns of 1997 because the species was less present in the system. The exact date of the 

start of the invasion is also unknown for these sites, but since we know that it is currently 

happening in some sites, we decided to start all sites at 2010 (end of the recent past simulation). 

For the different climate change scenarios, the physical variables are simulated using 

hydrodynamic and wave modelling for the recent past (1980-2009) and the future periods (2070-

2099). To fill the gap between those periods, the models were applied by using only the water 

level time series (i.e., because the physical and wetland model simulations were not produce 

outside of those periods). 

6.2.3. Models calibration and validation 

6.2.3.1. Suitable habitat models 

The SHM for Typha has a good overall performance (Kappa=62%, OOB error=19%,  Table 56). 

The model seems to overestimate the presence of Typha slightly more than it is underestimating 

it. This species can sustain a wide range of environmental conditions, and this overestimation is 
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considered normal since many other factors are not considered by the model (ex: soil type, 

competition, etc). The temporal distribution of the calibration dataset is relatively uniform and 

should allow for identifying the potential habitat of Typha in different conditions and for different 

sites.  

Table 56: Validation metrics for the Typha suitable habitat model OOB validation. 

 

The SHM for Phragmites has a strong performance overall (Kappa=78%, OOB error=11%, Table 

57). The model slightly overestimates the presence of Phragmites by ≈12%. However, such 

overestimation is minimal and is considered normal giving the wide range of environmental 

conditions suitable for this species. Since this model is calibrated across different years and 

different sites, and the calibration years are representative of the invasion period of Phragmites, 

this model should be able to accurately predict the suitable Phragmites habitat at other sites and 

under various climate change scenarios  

Table 57: Validation metrics for the Phragmites suitable habitat model OOB validation. 

 

 



 

382 

 

6.2.3.2. Population growth models 

6.2.3.2.1. Calibration and validation sites/data 

PGMs were calibrated using water levels (1956-1980) and hydrodynamic simulations (1980-

2018) from the measured time series of three sites in two lakes. Two calibration sites are located 

in Lake Ontario (South Bay Marsh, 3SBM and Airport Creek Marsh, 2ACM), where the invasion 

is mainly due to the expansion of T. x glauca. The invasion is promoted by past water level 

management favoring low interannual water level variability. Calibration at these sites is intended 

to replicate the invasion of Typha as well as the absence of Phragmites in Lake Ontario. The other 

calibration site is Thoroughfare (Long Point, 9LPW) located in Lake Erie, which faces an invasion 

of both species due to multiple factors. Since both species are present in this site from the late 

1990s with various historical observations of both species available (see Table 58 for more 

details), this site was used to calibrate the interaction between both species along with their 

presence. 

Heuristic parameters, simplifying growth mechanisms, such as the establishment rate and the 

expansion rate of Phragmites under Typha cover, were iteratively modified to best fit with the 

calibration data. Nevertheless, those modifications were done in the possible range o f the 

biological requirements of both species. For example, Phragmites predicted patch size and shape 

in Lake Erie sites were compared with the observations, and the parameters were optimized to 

reproduce as best as possible the species distribution. The growth mechanisms and the 

parameters are the same for each site, even if some sites may be more vulnerable to invasion 

than others (e.g. due to higher seed density in the seed bank). This consistency between model 

parameters for different sites was chosen so that the models would represent plant growth and 

interaction instead of a site-specific calibration that reproduced the observations but did not 

necessarily reproduce the behavior. Since calibration data are not available for all sites, one 

model per species for all sites was required. In addition, to allow replicable results, the Random 

Number Generator algorithm was initialized with a fixed random seed value to assure that 

predictions are not caused by randomness but by different parameters.  

To evaluate the calibration at each iteration, concordance between the species distribution 

predictions done by the model and the observations was done in order to ensure that predicted 

zones lie within the suitable habitat of the species. Also, the calibration aimed to reduce the error 

between the predicted and the observed total area occupied by each species by calculating the 

normalised root mean squared error (NRMSE) which is the root mean squared error divided by 
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the range of the observations. The NRMSE can be interpreted as a fraction of the overall range 

that is typically resolved by the model. Unfortunately, the NRMSE was calculated only based on 

the calibration data since there was not enough validation data available . 

Lynde Creek (5LCM), in Lake Ontario, and Rondeau Bay (10RBY), in Lake Erie, were used as 

independent validation sites (Table 58). Typha presence and Phragmites absence were validated 

in Lynde Creek, whereas Rondeau Bay (10RBY) was used to validate the presence and 

interaction of both species.  

Table 58: Sites and data used to calibrate and validate Population Growth Models for Typha and Phragmites 

 

6.2.3.2.2. Overall calibration 

Overall, the modelling approach is reproducing the Typha and Phragmites temporal and spatial 

distribution with more accurate predictions in some sites than others. The NRMSE of the 

Phragmites is 7% of the observed Phragmites area range, whereas the NRMSE for Typha is 15% 

of the observed Typha area range, using seven observations from the calibration dataset.  

For the calibration site in Lake Erie, Thoroughfare, the Typha and Phragmites PGM accurately 

predicts the spatial and temporal distribution of both species. The Typha PGM reproduces the 

Typha die-off following the high water levels of 1986. The Phragmites PGM reproduces the 

Phragmites invasion starting at the beginning of the 1990s.  

In Lake Ontario, the Typha PGM predictions closely reproduce the observations. However, the 

Phragmites PGM predictions are sparse and isolated. The modelling predicts more Phragmites 
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than what is actually observed, but the dominance of Typha over Phragmites in the calibration 

sites for this lake is well represented. Since the model allowed Phragmites to germinate where 

Typha is established with a 10% probability, it is expected that the model predicts some 

Phragmites stands in Lake Ontario. In addition, the Phragmites overestimation in Lake Ontario 

may be due to the underestimation of Typha. Since the modelling starts in the 1950s and Typha 

has always been present in the system at that time, Typha cover is most likely underrepresented.  

6.2.3.2.3. Site-by-site calibration 

The interaction between both species was calibrated in the Thoroughfare area of Long Point in 

Lake Erie (Figure 176). Calibration data come from WTT dataset (1985 and 1995) and the ELC 

dataset (2015) (Table 58). Note that for Typha, the shallow marsh class from ELC was used as 

presence observations.  

High water level of 1985 and 1986 caused a loss of Typha in Thoroughfare (Figure 177). In 1985-

1986, the model reproduces the major Typha die-off caused by the water level rise. Typha 

predicted area is 76 ha in 1985 and 37 ha in 1986, whereas observed area in 1985 is 45 ha 

(Figure 176). In 1995, the Typha PGM underestimated the presence of Typha, suggesting that 

the predicted Typha takes longer to recover from a major die-off. In 2015, the predicted area for 

Typha is exactly matching the observation (predicted 165 ha and observed 165 ha). In 1995, the 

observed Phragmites area is 2 ha, whereas the predicted area is 0.9 ha. The model predicts that 

Phragmites invasion begins around the mid-1990s, consistent with what is reported by Wilcox et 

al. (2003). In 2015, the predicted Phragmites area (20 ha) is close to the observed area (16 ha) 

(Figure 176). Overall, the model replicates well the temporal and spatial distribution of the 

Phragmites. Moreover, the Phragmites patch size and the general spatial distribution are similar 

to observations in the ELC dataset (Figure 178).  
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Figure 176: Predicted area (line) for Phragmites and Typha and observed area (point) for both species (Phragmites: 

red, Typha: orange) in Thoroughfare, Long Point (9LPW). Results produced using observed water level time series 

(black dash-dotted line). 

 

Figure 177: Invasive species model prediction using the observed water levels time series (1980-2018) at 

Thoroughfare, Long Point (9LPW) in 1985 (left) and observed wetland classes by WTT (right) for the same year. WTT 

wetland classes were converted to match with CWRM wetland classes. 
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Figure 178: Invasive species model prediction using the observed water levels time series (1980-2018) at 

Thoroughfare, Long Point (9LPW) in 2015 (left) and observed wetland classes by ELC (right) for the same year. ELC 

wetland classes were converted to match with CWRM wetland classes. ELC Typha class corresponds to “shallow 

marsh” class.  

In Airport Creek Marsh (2ACM), the Typha PGM overestimate the presence of Typha in 

comparison to the observations in 2008. The predicted presences are mostly located along the 

shores of the site, and the species is gradually expanding towards the higher elevation areas. For 

Phragmites, the predicted area is relatively close to the 2008 observed area (Figure 179). 

However, the model predicts Phragmites stands distributed across the study site, while 

observations are localized in the southeast (Figure 180). The difference between the predicted 

and observed Phragmites spatial distribution may be due to the random component of  the 

germination function. Given the small germination probability of Phragmites into monotypic Typha 

stands, there is a small chance for Phragmites to germinate into Typha dominated area and create 

a dominant community in a specific location, as what seems to be the case in this site. 
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Figure 179: Predicted area (line) for Phragmites and Typha and observed area (point) for both species (Phragmites: 

red, Typha: orange) in Airport Creek Marsh (2ACM). Results produced using observed water level time series (black 

dash-dotted line). 

 

Figure 180: Invasive species model prediction using the observed water levels time series (1980-2018) at Airport 

Creek Marsh (2ACM) in 2008 (lower) and observed wetland classes by ELC (upper) for the same year. ELC wetland 
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classes were converted to match with CWRM wetland classes. ELC Typha class corresponds to “shallow marsh” 

class. 

In South Bay Marsh (3SBM), Typha and Phragmites predicted area are relatively close to 

observations (Figure 181). For 1986, the model underestimates the Typha area (Figure 182). 

However, in 1999 and 2008, the predicted Typha area is relatively close to observations, and the 

predictions are located in the same area as observations (Figures 183 and 184). The model does 

not predict much Phragmites in this site (0.16 ha in 2008), consistent with the available data. 

 

Figure 181: Predicted area (line) for Phragmites and Typha and observed area (point) for both species (Phragmites: 

red, Typha: orange) in South Bay Marsh (3SBM). Results produced using observed water level time series (black 

dash-dotted line). 
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Figure 182: Invasive species model prediction using the observed water levels time series (1980-2018) at South Bay 

Marsh (3SBM) in 1986 (left) and observed wetland classes by WTT (right) for the same year. WTT wetland classes 

were converted to match with CWRM wetland classes. 

 

Figure 183: Invasive species model prediction using the observed water levels time series (1980-2018) at South Bay 

Marsh (3SBM) in 1999 (left) and observed wetland classes by WTT (right) for the same year. WTT wetland classes 

were converted to match with CWRM wetland classes. 
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Figure 184: Invasive species model prediction using the observed water levels time series (1980-2018) at South Bay 

Marsh (3SBM) in 2008 (left) and observed wetland classes by ELC (right) for the same year. ELC wetland classes 

were converted to match with CWRM wetland classes. ELC Typha class corresponds to “shallow marsh” class. 

6.2.3.2.4. Site-by-site validation 

In Rondeau Bay, the predicted Typha area (501 ha) almost perfectly matches the observed areas 

(500 ha) in 2010 (Figure 185), but Phragmites area is underestimated by around 41 ha (predicted: 

19 ha, observed: 60 ha). This site seems to be more vulnerable to Phragmites establishment 

because of the large flat area in the embayment where water level fluctuations are frequent. 

However, the general location of the predicted Phragmites and Typha corresponds to the 

observed distribution of both species (Figure 186). The Phragmites PGM model gives a 

conservative estimate of the Phragmites invasion for this site. 
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Figure 185: Predicted area (line) for Phragmites and Typha and observed area (point) for both species (Phragmites: 

red, Typha: orange) in Rondeau Bay (10RBY). Results produced using observed water level time series (black dash-

dotted line). 

 

Figure 186: Invasive species model prediction using the observed water levels time series (1980-2018) at Rondeau 

Bay (10RBY) in 2010 (left) and observed wetland classes by ELC (right) for the same year. ELC wetland classes 

were converted to match with CWRM classes. ELC Typha class corresponds to “shallow marsh” class. Phragmites 

prediction data was provided by Ontario Ministry of Natural Resources and Forestry (OMNRF, 2010).  
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In Lynde Creek (5LCM), the predicted Typha area is underestimated in 1986 and overestimated 

in 2001 and 2008 (Figure 187). The location of the Typha predicted presences matches the 

observations relatively well (Figure 188 through Figure 190). The model allowed some nodes to 

germinate into a Phragmites stand, which is slowly expanding in 2001 and 2008 (Figures 189 and 

190). These results might yield an overestimation of Phragmites in the future period since the 

species is not yet established in this site in reality. 

 

Figure 187: Predicted area (line) for Phragmites and Typha and observed area (point) for both species (Phragmites: 

red, Typha: orange) in Lynde Creek (5LCM). Results produced using observed water level time series (black dash-

dotted line). 
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Figure 188: Invasive species model prediction using the observed water levels time series (1980-2018) at Lynde 

Creek (5LCM) in 1986 (left) and observed wetland classes by WTT (right) for the same year. WTT wetland classes 

were converted to match with CWRM wetland classes. 

 

Figure 189: Invasive species model prediction using the observed water levels time series (1980-2018) at Lynde 

Creek (5LCM) in 2001 (left) and observed wetland classes by WTT (right) for the same year. WTT wetland classes 

were converted to match with CWRM wetland classes. 
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Figure 190: Invasive species model prediction using the observed water levels time series (1980-2018) at Lynde 

Creek (5LCM) in 2008 (left) and observed wetland classes by ELC (right) for the same year. ELC wetland classes 

were converted to match with CWRM wetland classes. ELC Typha class corresponds to “shallow marsh” class. 

Results and discussio 
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6.3. Results 

6.3.1. Wetland succession modelling 

6.3.1.1. Projected changes on total wetland area 

To compare changes in wetland distribution and composition, the relative change of each wetland 

class between the recent past and future periods was calculated for each climate change 

scenario. The Mann-Whitney U statistical test (α=0.05) (Mann & Whitney, 1947) was applied to 

evaluate the difference of mean area of each wetland class, including total wetland area, between 

the recent past and future periods for each wetland site. The variance in wetland class distribution 

has also been compared between the two periods for each climate change scenario using a 

Brown-Forsythe statistical test (Brown & Forsythe, 1974) (α=0.05). The difference of variation 

coefficient between the recent past and future periods was used to measure the change in 

variance.  

The range of relative projected changes in wetland area spans a decrease of 55% to an increase 

of 30% (Figure 191). Globally, for the upper-bound scenario, which has an associated average 

water level rise of 54.5 cm for all lakes (Table 59), there is an average loss of wetland area of 

16% (Table 60). In contrast, the lower bound scenario, with an average water level decrease of 

10.3 cm for all lakes (Table 59), shows an average wetland area gain of 7% (Table 60). However, 

the relative projected changes vary greatly among sites and among climate scenarios. The upper 

bound scenario shows mostly decreases in wetland area, with changes ranging from -55% to 

12%, while the lower bound scenario shows mostly increases in wetland area, with changes 

ranging from -1% to 29% across all sites (Figure 191). 

Under the upper bound scenario, in all Lakes apart Lake Ontario, a loss of total wetland area is 

predicted.The sites subject to experience the greatest changes are located in Lake Erie (9LPW: 

-55% and 10RBY: -33%) and Lake St. Clair (13LSC: -39% and 14SAM: -40%). On average, for 

Lake Erie, there is a simulated 31% loss of wetland area; similarly, wetlands are reduced by 35% 

for Lake St. Clair. Conversely, for Lake Ontario, the rise in water level suggested by the upper 

bound scenario results in an average increase in wetland area of 8%. In the Upper St. Lawrence 

River, site 1HIE experiences an average wetland loss of 19%. For Lake Huron,  there is an 

average 11% predicted loss of wetlands under the upper bound scenario. However, it is important 

to note that the predicted 30% wetland loss in Whiskey Harbor (22WHW) is most likely 

overestimated the study area was restricted by a lack of LIDAR data. The sites experiencing the 
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greatest increase in wetland area under this scenario are located in Lake Ontario (6JSM: 27%) 

and Lake Erie (8SPP: 29%). Lake Ontario also has the highest average predicted increase for all 

wetlands with 11%. Lake Erie has an average increase of 10%, Lake St. Clair , 6% and Lake 

Huron, 4%. The simulated increase in wetland area is generally below 10% for most sites (17 of 

20 sites). Of the three sites where the wetland area increases more than 10%, two are located in 

Lake Ontario (3SBM and 6JSM). The complete results of total wetland area changes are 

presented in Table 60 and the range of projected change are presented in Figure 191. 

Table 59: Difference in median water level between recent past (1980-2009) and future (2070-2099) periods for the 

lower and upper bound climate simulations. 

 

Table 60: Range of relative projected change in w etland area (%) in the future period (2070-2100) relative to the 
recent past period (1980-2009) for the low er-bound and upper-bound simulations. USL: Upper St. Laurence, LKO: 

Lake Ontario, LSC: Lake St. Clair – Detroit River, LKH: Lake Huron. Red indicates signif icative decrease, green 
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indicates signif icative increase and black indicates insignif icant change in w etland area betw een the recent past and 

future periods. Statistical analysis w ere done using a Mann-Whitney U statistical test (α=0.05). 

 

 

Figure 191: Range of relative projected change in wetland area (%) between recent past and future periods for all 

study sites, with changes defined as the difference in annual distributions between the future (2070–2099) and the 

recent past (1980–2009). Acronyms are defined in Table 60. 
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6.3.1.2. Projected changes in wetland class distribution 

For most sites, even those with minor changes in total wetland area, a projected increase in water 

level will result in significant changes in wetland class distribution, as wetland classes may migrate 

or be replaced by other ones. 

In the following subsections, the following elements are presented for each water body:  

- Total area and relative abundance of each wetland class under the reference state 

(wetland class distribution according to the historical water-level time-series from 1980 to 

2009) for each wetland site; 

- The relative change in area for each wetland class between the simulated recent past and 

the simulated future time-series under the lower and upper bound. This gives an overview 

of the ranges of possible changes in terms of wetland class distribution under climate 

change; 

- The relative change in the coefficient of variation of each wetland class between the  recent 

past and future time-series for both simulations. This is an indication that the interannual 

variability of the wetland classes may be impacted by climate change. It indicates whether 

the wetland class distribution will be stable from year to year or may change abruptly; 

- A map for a specific site of the lake showing the significant changes for two wetland 

classes between simulated recent past and future under the upper bound. 

 

6.3.1.2.1. Upper St. Lawrence River  

The Upper St. Lawrence River includes one site, Hill Island (1HIE). It is a protected embayment 

and a coastal marsh area of the natural landscape of Thousand Island National Park.  Under the 

reference state, this site is mainly dominated by SAV and EM represents about a quarter of the 

total wetland, whereas WM and SW are much less present (Figure 192). The different wetland 

classes have a low standard deviation throughout the 30 year-period, indicating a low interannual 

variability. 

Under the lower-bound scenario, the area of two wetland classes changes significantly. EM 

increases by 17%, while WM decreases by 35% in the future. It is important to note that WM does 

not occupy a very large proportion of the site in the baseline condition, which explains the large 

decrease in percentage. The total wetland area remains the same for this site. In addition, the 

variance of all the wetland classes does not change in the future under this scenario ( Table 61).  

Under the upper-bound scenario, EM decreases significantly (by 47%), and WM loses 29% of its 

area. The rise in water level causes those decreases because the topography of this site is not 
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suitable for inland wetland migration. The total wetland area is also significantly reduced by 19%. 

The mean area of SAV may be not significantly affected by the upper bound scenario, but its area 

is five times more variable from year to year in the future reacting to more variable water levels. 

The variance of EM area is also increased in the future under the upper bound scenario, as well 

as the total area of wetlands (Table 61). 

6.3.1.2.2. Lake Ontario 

In Lake Ontario, under the reference state most sites are dominated by SW and EM with the 

exception of the drowned river mouth wetlands of Jordan Station, where SAV and EM are 

predominant (Figure 192-A). SAV presents a high interannual variability in Airport Creek (2ACM), 

South Bay (3SBM) and Lynde Creek (5LCM) during the historical period.  

Under the lower-bound scenario, most Lake Ontario sites are reacting the same way: an increase 

in SAV and EM. Those increases are associated with corresponding decreases of WM and SW 

areas. For Jordan Station (6JSM), WM is the only class presenting a loss of habitat ( -48%), but it 

is also less variable. This WM decrease is associated with an increase of EM (20%) and SW 

(14%). All sites show an increase in inter-annual variability for SAV, with an increase in the 

variation coefficient between 16-24% (2ACM and 5LCM) to 71-75% (3SBM and 6JSM) (Table 

61). The interannual variability also increases for SW in most sitesIt also increases for WM in 

2ACM and for EM in 6JSM.  

Under the upper-bound scenario, impacts are more important but vary among sites (Figure 192-

C), mainly because of the local topographical setup. For all sites in Lake Ontario, the area of SAV 

almost doubled. At Airport Creek Marsh (2ACM), an open drowned river mouth wetland, the rise 

in water levels leads to an increase in open water and to a migration of the wetland classes to the 

upland areas since the flat topography is suitable for inland wetland migration . At the three other 

sites, an increase in SAV leads to a decrease of all other wetland classes, with SW suffering the 

greatest losses in area. SW tend to have a lower capacity to migrate because of unfavorable 

topography (i.e. steep slopes) and land use, whereas EM tend to suffer lower losses, as they can 

migrate upland, in places where WM and SW have recently been dominant. This wetland 

migration is notably observed at Lynde Creek Marsh (5LCM), where EM migrated in areas that 

were occupied by SW in the recent-past (Figure 193). In addition, for all sites of Lake Ontario and 

for most of the wetland classes, variance significantly increases in the future with the exception 

of WM in 3SBM and 6JSM (Table 61). Facing climate change, Lake Ontario wetland class 

distribution will likely be more variable from year to year, especially for the SAV class.  



 

400 

 

  

Figure 192: A) State of reference of wetland class area, as a proportion of total site area (%) in the recent past period 

(historic). Annotations on top of the bars represents the absolute area of the wetland class in hectares. Total wetland 

area (WETLAND) sums all classes, except OW and UPL.B) Variation (%) between the recent past and future periods 

for each wetland class for the lower-bound simulation and C) upper-bound simulation in Lake Ontario. 
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Figure 193: Changes in wetland class distribution between recent past and simulated future with the upper-bound 

scenario (red: loss, green: Gain, Black: Urban areas unsuitable to wetland establishment) at Lynde Creek (5LCM), 

Lake Ontario. Left: Upland migration of EM. Middle: Loss of SW. Right: Google Satellite imagery. 

Table 61: Coefficient of variation difference between the recent past and future periods of the lower - and upper-bound 
scenario for the different wetland classes in Upper St. Lawrence and Lake Ontario sites. Difference in variance 

between the recent past and future periods that are statistically significant according to a Brown-Forsythe test 

(α=0.05) are in bold. 

 

6.3.1.2.3. Lake Erie 

In Lake Erie, under the reference state, the wetland class distribution varies among sites (Figure 

194-A). In Grand River Mouth (7GRM) and Long Point (9LPW), SW and WM are the most 

abundant classes. In Rondeau Bay (10RBY), SW and EM are the most abundant wetland classes. 

While WM and EM are prominent in Selkirk Provincial Park (8SPP), EM is dominant in Fox Creek 

(11FCK).  

For the lower-bound scenario, relative projected total wetland area changes are minor for most 

sites, except in 8SPP where wetland area increased by 29%, mainly due to an increase of SW 

(+59%) and EM (+60%) (Figure 194-B). Similar increases in EM and SW are observed, but to a 

lesser degree, at 9LPW and 10RBY (27 and 25% respectively). An increase in SW interannual 

variability is also observed in both of these sites. In 7GRM, there is an increase of SW (+11%) 
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and a decrease of EM (-13%). The variability increases for most wetland classes in this site, with 

the exception of SAV. In 11FCK, there is an increase of SW (+26%) and WM (+113%) and a 

decrease of SAV (-21%). The internannual variability of all wetland classes is increasing in this 

site (Table 62). Generally, the moderate decrease in median water level leads to a lakeward 

wetland migration and an increase in SW areas. In large sites such as 9LPW and 10RBY, water 

level changes cause major changes in wetland class distribution where the SW area is increased 

by ~59 ha in 9LPW and ~154 ha in 10RBY.  

For the upper-bound simulation, all sites undergo an overall decrease in wetland area (Figure 

194-C). For most sites, the rise in water level leads to a decrease of most wetland classes. In  

7GRM, a barred drowned river mouth wetland, SAV increases by 98% while the SW is reduced 

by 64%. The variability of SW is also reduced in this site, while the variability of SAV and WM is 

increased (Table 62). High water levels in this scenario indicates a threat for this particular 

wetland, especially for the SW class. A similar threat is present for 8SPP where the high water 

levels reduce most wetland classes, reducing WM (-31%), SW (-19%) and EM (-13%) area. In 

9LPW, most wetland class area are also reduced, with losses in SAV (-55%), EM (-35%), WM (-

60%) and SW (-40%). The topography of this specific site is not suitable for wetland migration 

with rising water levels. The interannual variability of EM is also decreased, while SAV and WM 

variability is increased for 9LPW. In 10RBY, SW and SAV area is decreased by 50% and 53% 

respectively, while the WM area is increased by 24%. The variability for EM and WM also 

decreased in this sand-spit embayment. This site allows some wetland classes to migrate upland, 

but the overall suitable area for most wetland classes is reduced at higher elevations. In 11FCK, 

SAV and EM are negatively affected by 63% and 20% respectively. The interannual variability is 

increased for SAV and WM in this barred drowned river mouth wetland that is surrounded by 

human altered land use where wetland migration is impossible. 

It is worth noting that in some cases, wetland classes can retain a similar coverage in terms of 

hectares, while migrating inside their AOI. This is the case in 10RBY where EM migrated in areas 

predominantly dominated by SW (Figure 195-left) while covering an area only 6% lower than what 

the recent past simulation indicates. However, due to a low availability of land suitable for wetland 

migration at higher elevation, the projected SW area is reduced by 53%. The same phenomenon 

is observed in 9LPW, where the topography limits the wetland migration. In 11FCK and 8SPP, 

the anthropogenic land use also limits wetland migration to higher elevations, explaining the loss 

of almost all wetland classes at those sites. 
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Figure 194: A) State of reference of wetland class area, as a proportion of total site area (%) in the recent past period 

(historic). Annotations on top of the bars represents the absolute area of the wetland class in hectares. SS and TS 

classes were summed into a single SW class. Total wetland area (WETLAND) sums all classes, except OW and 

UPL.B) Variation (%) between the recent past and future periods for each wetland class for the lower-bound 

simulation and C) upper-bound simulation in Lake Erie. 
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Figure 195: Changes in wetland class distribution between recent past and future with the upper-bound scenario (red: 

loss, green: Gain) at Rondeau Bay (10RBY), Lake Erie. Left: Upland migration of EM. Middle: Loss of SS. Right: 

Google Satellite imagery. 

Table 62: Coefficient of variation difference between the recent past and future periods of the lower - and upper-bound 

scenario for the different wetland classes in Lake Erie sites. Difference in variance between the rec ent past and future 

periods that are statistically significant according to a Brown-Forsythe test (α=0.05) are in bold. 

 

6.3.1.2.4. Huron-Erie Corridor 

Under the reference state, SAV and EM are the most abundant wetland classes in the three 

Huron-Erie Corridor sites. In Detroit River Marsh (12DRM), some SW are present, but the WM 

presence is sparse. In the open shoreline of Lake St. Clair (13LSC), SW and WM are equally 

abundant. In Johnston Bay (14SAM), the wetland class distribution in this delta is similar to 13LSC 

(Figure 196-A).  

For the three sites in Lake St. Clair and Detroit River, relative projected total wetland area 

(WETLAND) changes under the lower-bound simulation are minor (< +10%) (Figure 196-B). The 

moderate decrease in water level under this scenario leads to a lakeward wetland migr ation and 

to a minor increase in wetland area. The area covered by SW increases in 13LSC and 14SAM 

sites by 105% and 64% respectively. However, SW are not abundant in those sites compared to 

other wetland classes (Figure 196-A). Morever, EM is favored by lower water levels in 14SAM, 

where this class increases by 24%. In the open shoreline of Detroit River Marsh (12DRM), the 
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WM and SW area increase by 23% and 40% respectively. WM is not very abundant in this site 

during the historical period of the reference state, and thus lower water levels should be beneficial 

for this class. With this scenario, the interannual variability of the wetland class areas is similar 

for most classes except for SW where the coefficient of variation increases notably (Table 63). 

There is also an increase in variability for EM in 14SAM. 

In contrast, in the upper-bound scenario, the rise in water level under this simulation leads to a 

decrease in all wetland classes of all sites. Being surrounded by dikes, agricultural lands or urban 

areas, the wetland sites located in the Huron-Erie corridor have a low capacity to migrate 

landward. Thus, the projected rise of water levels induces a reduction of wetland area in general, 

but mostly affects EM, SW and WM. 13LSC and 14SAM sites are located in the St. Clair River 

delta area and are characterized by a large shallow basin. A rise in water level in those sites 

causes major change in SAV area (-29% for both sites), increasing the open water area. In 

12DRM, SAV migrates where EM was previously distributed (Figure 197), and because of the low 

availability of lands to migrate upland, significant losses of EM area are suggested by the upper-

bound scenario. In 14SAM, similar to 12DRM, the SAV migrate where EM was present previously, 

and EM is unable to migrate inland because of the large diked area (Figure 198). In 13LSC, the 

SAV interannual variability increases with this scenario (Table 63). In 12DRM, the EM variability 

is reduced since the site is mostly flooded in the future, stopping the succession of EM to other 

wetland classes (to SAV for instance). SW variability is also reduced in this site since this class 

is mostly absent in the future. In 13LSC and 14SAM, the variability of EM distribution is increased. 

The EM establish in areas that were not suitable for this class in the past, such as previous SW 

areas. There is also a strong decrease in variability of SW in 13LSC because this class occurence 

is sparse in the future time-series. 
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Figure 196: A) State of reference of wetland class area, as a proportion of total site area (%) in the recent past period 

(historic). Annotations on top of the bars represents the absolute area of the wetland class in hectares. Total wetland 

area (WETLAND) sums all classes, except OW and UPL.B) Variation (%) between the recent past and future periods 

for each wetland class for the lower-bound simulation and C) upper-bound simulation in Lake St. Clair – Detroit River. 

 

Figure 197: Changes in wetland class distribution between recent past and future with the upper-bound scenario (red: 

loss, green: Gain, Black: Urban areas unsuitable to wetland establishment or where the physical variables could not 
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be calculated) at Detroit River Marsh 12DRM. Left: Landward migration of SAV. Middle: EM habitat loss. Right: 

Google Satellite imagery. 

 

Figure 198: Changes in wetland class distribution between recent past and future with the upper-bound scenario (red: 

loss, green: Gain, Black: Urban areas unsuitable to wetland establishment or where the physical variables could not 

be calculated) at Johnston Bay (14SAM). Left: Landward migration of SAV. Middle: EM habitat loss. Right: Google 

Satellite imagery. 

Table 63: Coefficient of variation difference between the recent past and future periods of the lower- and upper-bound 

scenario for the different wetland classes in Huron-Erie Corridor sites. Difference in variance between the recent past 

and future periods that are statistically significant according to a Brown-Forsythe test (α=0.05) are in bold. 

 

6.3.1.2.5. Lake Huron 

Wetland sites of Lake Huron have the highest biodiversity among all Great Lakes sites and are 

characterized by a large amount of annual emergent plants. During the reference period, wetland 

class distribution is relatively similar among all sites where all classes are distributed uniformly 

(Figure 199-A). Lake Huron sites are located in a natural environment that has not been impacted 

as much as other lakes by human settlement. The migration capacity of the wetlands at these 

sites is mostly limited by topography and geology. The soil at Georgian Bay sites is generally 

composed of bedrock and may limit the establishment of wetlands at higher elevations. Areas 

where bedrock was visible on satellite imagery were considered unsuitable to wetland 

establishment, although such areas under forest cover might not have been identified as such. 

Under the lower-bound scenario, total wetland area (WETLAND) remains stable or increases by 

less than 10% (Figure 199-B). Lower water levels projected with the lower-bound scenario cause 

an increase in SW area in four sites and a decrease in SAV for Baie du Doré (15BDD) and Francis 
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Point (27FPT). At the open embayment of 15BDD, the significant loss of SAV ( -15%) and EM (-

13%) is compensated by an increase in WM (25%). In Hog Bay (18HGW), a slight lakeward 

migration of wetlands occurs where EM increases by 17% and SW by 19%. For other sites, SW 

is the most affected class, increasing by up to 36% in Whiskey Harbor (22WHW). In terms of 

variance, WM area increases for nearly all wetland sites. The variation coefficient increases by 

up to 16% in 22WHW. In the protected embayment of Hay Bay (16HBW), the variance of every 

wetland class increases under the lower-bound scenario except for SAV, where the variance 

significantly decreases (Table 64). 

Under the upper-bound scenario, the wetland area (WETLAND) of the future decreases 

significantly in comparison with the recent past period, associated with a decrease in EM by up 

to 38% in 18HGW and WM by up to 47% in 22WHW (Figure 199-C). In fact, in five sites (15BDD, 

18HGW, 19BTY, 22WHM and 27FPT) all wetland classes are decreasing in the future in this 

scenario. However, the decrease is offset by an increase in SAV and/or SW caused by migration 

of wetlands in upland areas in 16HBW and Anderson Creek (23ACK). Wetland class landward 

migration is associated with the rising of median water level by 64 cm (Table 59), where EM, WM 

and SW migrate to higher elevations. This wetland migration can be observed in Treasure Bay 

(19TBY) where EM and WM establish in forested areas (Figure 200). In 22WHW, the limited 

LIDAR elevation data available might have restricted potential upland migration evaluation in the 

model outputs, since surrounding upland areas were not part of this site AOI. Therefore, modelling 

results for the simulation projecting a rise in water level (upper-bound) might overestimate wetland 

losses especially for wetland classes associated with higher elevation such as WM and SW for 

this specific site. Regarding the variance of the wetland class area, no evident pattern can be 

seen for Lake Huron sites, where significant changes in the variance are site and class specific. 

In general, the changes indicate a decrease in the interannual variability (Table 64). 
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Figure 199: A) State of reference of wetland class area, as a proportion of total site area (%) in the recent past period 

(historic). Annotations on top of the bars represents the absolute area of the wetland class in hectares. Total wetland 
area (WETLAND) sums all classes, except OW and UPL.B) Variation (%) between the recent past and future periods 

for each wetland class for the lower-bound simulation and C) upper-bound simulation in Lake Huron. 
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Figure 200: Changes in wetland class distribution between recent past and future with the upper-bound scenario 

(blue: loss, red: Gain, Black: Urban areas unsuitable to wetland establishment or where physical variables were 

unavailable) at Treasure Bay (19TBY). Up Left: EM landward migration, up right: WM landward migration, down left: 

SW landward migration, down right: Google Satellite imagery. 

Table 64: Coefficient of variation difference between the recent past and future periods of the lower- and upper-bound 

scenario for the different wetland classes in Lake Huron sites. Difference in variance between the recent past and 

future periods that are statistically significant according to a Brown-Forsythe test (α=0.05) are in bold. 
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6.3.2. Invasive species modelling 

6.3.2.1. Projected change in area of suitable habitat for Phragmities and Typha 

The relative change of invasive species suitable habitat area corresponds to the variation (%)  of 

invasive species suitable habitat area between the recent past and the future periods which is 

calculated for the lower-bound and upper-bound scenario (Figure 201). In Figure 201, dark 

colored bars indicate a significant variation (using a Mann-Whitney U stastiscal test with α=0.05) 

between the two periods according to the scenarios (teal for the lower -bound and orange for the 

upper-bound scenario). The black dotted line shows the significant range of possible outcomes.  

6.3.2.1.1. Upper St. Lawrence River and Lake Ontario 

In Lake Ontario and Upper St. Lawrence River, simulations from both scenarios indicate an 

important increase of Phragmites suitable habitat linked to climate change in all sites except 

6JSM, with changes reaching up to 150%. The upper-bound scenario is more favorable to 

Phragmites suitable habitat than the lower-bound. However, the lower-bound scenario still 

increases the Phragmites suitable habitat in the future by 24% and 28% in 2ACM and 3SBM, 

respectively. The upper-bound scenario increases the Phragmites suitable habitat by up to 150% 

in 1HIE, which corresponds to an increase of 6 ha. 2ACM and 5LCM are also severely affected, 

where the upper-bound scenario increases the Phragmites suitable habitat area by 95% (23 ha) 

and by 66% (12 ha) respectively.  

Suitable habitat area for Typha is also likely to increase in 2ACM and 5LCM, as both future 

scenarios indicate an increase. At those sites, the increase in Typha suitable habitat area is more 

important under the upper-bound scenario than the lower-bound (reaching more than 50% in 

5LCM). In 6JSM, an important decrease in Typha suitable habitat area is projected, with a 

decrease of up to 60% (10 ha) with the upper-bound scenario. Hill Island East presents a similar 

trend with a decrease of 35% of Typha suitable habitat under the upper-bound scenario.  

The upper-bound scenario appears to increase the suitable habitat area for both species in sites 

with a steady topographic gradient and natural landscape, such as 2ACM and 5LCM. Inversely, 

6JSM site is less suitable for both species at higher water levels because the wetland is more 

constrained by agricultural and residential development and cannot migrate upland (Figure 201). 
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6.3.2.1.2. Lake Erie 

In Lake Erie, it is difficult to draw clear basin-wide conclusions for both species. The lower-bound 

scenario increases the Phragmites suitable habitat by 50% (5 ha) in 8SPP, by 30% (81 ha) in 

9LPW, and by 107% (2 ha) in 11FCK. The upper-bound scenario also increases the Phragmites 

suitable habitat but to a lesser degree, with increases of 28% (27 ha) in 7GRM and 16% (38 ha) 

in 9LPW. In 10RBY, the lower and upper-bound scenarios decrease Phragmites suitable habitat 

by 5 and 55% (35 to 311 ha), respectively. 

The lower-bound scenario increases the Typha suitable habitat area by 17% (29 ha) in 9LPW and 

by 34% (5 ha) in 11FCK. The upper-bound scenario reduces Typha habitat area in most of the 

Lake Erie sites with reductions of 57% (15 ha) in 8SPP, 37% (46 ha) in Long Point, 37% (287 ha) 

in 10RBY and 21% (2 ha) in 11FCK. 

Unlike Lake Ontario, the lower-bound scenario seems to be more favorable for both invasive 

species in most sites. However, in 10RBY, the suitable habitat of both species decreases under 

each scenario. This site is characterized by a large, shallow and flat terrain sensitive to water level 

fluctuations. While this shallow area is suitable for invasive species under historically observed 

lake level conditions, it becomes largely flooded and unsuitable under projected late-century 

levels, especially under a significant increase (Table 23) in mean lake level for the upper-bound 

scenario.  

6.3.2.1.3. Huron-Erie corridor  

For the Huron-Erie corridor sites, it is also difficult to distinguish a clear trend of the impact of 

climate change on both invasive species. The upper-bound scenario is generally unfavorable for 

both species in all sites, whereas the lower-bound scenario is favorable for Phragmites in 13LSC 

and for both species in 12DRM.  

Under the lower-bound scenario, the Phragmites suitable habitat area increases by 21% (18 ha) 

in 12DRM and by 24% (80 ha) in 13LSC. With the upper-bound scenario, Phragmites habitat area 

decreases in all Huron-Erie corridor sites. Specifically, the habitat area is reduced by 34% (36 ha) 

in Detroit River Marsh, by 65% (104 ha) in Lake St. Clair and by 72% (532 ha) in Johnston Bay 

(14SAM). 

Typha suitable habitat increases in 12DRM by 10% (8 ha) with the lower-bound and decreases 

by 9% (7 ha) with the upper-bound scenario. In other sites, the projected scenarios decrease the 

habitat area. In 13LSC, the habitat area is reduced by 51% (242 ha), while the Typha suitable 
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habitat is increased by 51% (772 ha) in 14SAM with the upper-bound scenario. The lower-bound 

scenario also decreases the Typha suitable habitat in Johnston Bay by 9% (139 ha).  

In Detroit River Marshes (12DRM), the highest elevations of the site are occupied by agriculture 

and housing, limiting the inland progression of Phragmites or Typha under significant projected 

water level increases (Table 23), as expected from the upper-bound scenario. Dikes play the 

same role in 14SAM and 13LSC, which limits upland wetland migration and reduces suitable 

habitat area for invasive species (Figure 201). 

6.3.2.1.4. Lake Huron 

In sites of Lake Huron, there is no increase in Phragmites suitable habitat area in the future under 

both simulations except for 27FPT where the habitat area increases by 15 to 45%. In contrary, 

with the lower-bound scenario, a decrease in Phragmites suitable habitat area is projected in 

16HBW and 23ACK, with habitat area reduction of 15% (1 ha) and 44% (2 ha), respectively. With 

the upper-bound scenario, a decrease in Phragmites suitable habitat area is projected for four 

sites in the future, i.e. 15BDD by 9% (2 ha), 16HBW by 31% (2 ha), 22WHW by 24% (1 ha), and 

23ACK by 37% (2 ha). No significant changes for Phragmites suitable habitat area are projected 

for sites located in the southeast end of Georgian Bay (i.e. 18HGW, and 19TBY). It is worth noting 

that even if changes are statistically significant, simulated Phragmites habitat variations affects 

relatively small areas, with a maximum expected variation of 2 ha. 

In all sites of Lake Huron sites, Typha suitable habitat area is predicted to reduce or to face no 

significant changes. The lower-bound scenario reduces the habitat area by 13% (10 ha) in 15BDD 

and by 15% (1 ha) in 16HBW. The upper-bound scenario reduces the habitat area by 37% (2 ha) 

in 18HGW, by 18% (2 ha) in 19TBY, by 44% (1 ha) in 22WHW, by 31% (0.2 ha) in 23ACK and 

by 10% (0.4 ha) in 27FPT. Overall, Typha is unlikely to be favored by climate change in Lake 

Huron, with all sites displaying a decrease of the suitable habitat area that reaches 10–50%. 
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Figure 201: Range of relative changes of two invasive species habitat (%), between the recent past and the future 

periods, based on the lower-bound and upper-bound scenarios. Shaded colors indicate the scenarios (lower bound in 

teal, and upper bound in orange), as well as the level of significance of each scenarios (significant for p<5%). The 

black lines make the projected range explicit, based on the significant values. Statistically significant differences 

between recent past and future periods are calculated using Mann-Whitney U statistical test (α=0.05). 

6.3.2.2. Projected changes in Phragmites and Typha expansion 

To compare changes in Typha and Phragmites expansion between the recent past and future 

periods, the relative change in carrying capacity was estimated under each climate change 

scenario. Carrying capacity is defined as the maximum abundance of a species that a given 

habitat can support based on environmental conditions. The carrying capacity is obtained by fitting 

a logistic growth equation (Verhulst, 1838) to PGM simulations, which determines population size 

at time (t) as a function of maximum growth rate (rmax) and carrying capacity (K). Carrying capacity 

is expected to increase when environmental conditions (i.e. water depths distribution and water 

level variations) are more favorable to a species or to decrease when the species face 

competition. Species competition was integrated into the modelling approach by modelling the 

invasion of Phragmites into Typha stands. K was used to compare the maximum invasion extent 

of both species between climate change scenarios. To compare between sites, K was 

standardized by dividing it by the total wetland area simulated with the wetland succession model. 

Figure 202 presents standardized K values for each site for both invasive species and climate 

change scenarios and for the range of possible future invasion extents. 
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A different trend between the invasions of the two exotic species is observed between Lake 

Ontario and the other water bodies. In Lake Ontario, the upper -bound scenario supports 

Phragmites invasion, whereas the Phragmites invasion is limited by the dense Typha cover with 

the lower-bound scenario. It is only with the significant water level rises associated with the upper-

bound scenario reducing the Typha coverage that Phragmites is able to invade and expand during 

the following years. On the other hand, in Lake Erie and Lake St. Clair, the interannual water level 

fluctuationss are more frequent, and the Phragmites started to establish in the 1990s. With the 

lower-bound scenario, the water depth is more suitable for Phragmites, and the more frequent 

water level fliuctuations promote the Phragmites invasion and limit the Typha invasion. With the 

upper-bound scenario, the wetlands migrate towards the higher elevations and the Phragmites 

establish in those disturbed areas, whereas the establishment and expansion are limited in the 

lower elevation areas. 

 

Figure 202: Range of Carrying capacity/Wetland area ratio projected by the lower and upper bound scenarios for 

Phragmities (left) and Typha (right) population growth models. Shaded colors indicate the scenarios (lower bound in 

teal, and upper bound in orange). The black lines indicate the range of projected change (difference between both 

scenarios). 

6.3.2.2.1. Upper St. Lawrence River and Lake Ontario 

In Hill Island East (1HIE), the lower-bound scenario indicates a Phragmites carrying capacity two 

times higher than what the upper-bound scenario suggests (Figure 204 left). An opposite trend is 

seen for Typha (Figure 204, right). According to modelling results, under the lower-bound 
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scenario, the conditions are not ideal for Typha to establish early in the 1980s in this site, allowing 

an easier Phragmites establishment at the beginning of the recent past time-series. However, 

Typha increases rapidly after that, covering more than 12.5 ha at the beginning of the 2000s and 

maintaining this area through the simulated future time-series. In 2000, Phragmites covers around 

2.5 ha and continues increasing until 2100 when it covers around 10.0 ha (Figure 204). Under the 

upper-bound scenario, Typha establish and expand even more quickly than under the lower-

bound scenario and more than Phragmites. Facing climate change, the wetlands of 1HIE should 

be dominated by Typha and may lose biodiversity in several wetland classes. 

For all Lake Ontario sites, the upper-bound scenario predicts almost twice as much Phragmites 

as the lower-bound scenario. The major increase in water level in 2035 under the upper-bound 

scenario (Figure 203) causes a Typha die-off and allows Phragmites germination and expansion 

in the following years (Figure 205 through Figure 208). The Phragmites rate of expansion prior to 

the 2040s is slower under the upper-bound scenario because of less frequent water-level 

variations (Figure 203) and because the Typha is well established. It is only when the Typha die-

off happens near 2040 that the Phragmites starts to germinate and expand. Under the lower-

bound scenario, there are more frequent water-level drawdowns in the simulated future period 

(2070-2099), allowing the Phragmites to germinate; however, the pre-existant Typha cover limits 

Phragmites expansion.  

The current Lake Ontario water-level regulation system facilitates the establishment of Typha 

which might have prevented the establishment and expansion of Phragmites in the simulations 

since both taxa share the same ecological niche (Amsberry et al., 2000; Keddy & Reznicek, 1986; 

Shay et al., 1999; D. A. Wilcox et al., 2008). It is worth noting that for the reference period, the 

modelling results are slightly different from what is observed. The model tends to underestimate 

the Typha cover in Lake Ontario and leaves more room the Phragmites establishment and 

expansion, which makes it likely that the CWRM will overestimate Phragmites in the future period. 

Still, facing climate change, wetlands of Lake Ontario are at high risk to be dominated by Typha 

and with a prolonged water level increase and greater interannual water level variability, the 

models suggest that Phragmites could invade the Lake Ontario wetlands. 

The main conclusions for the Upper St. Lawrence and Lake Ontario sites are:  

 Under a climate change scenario that brings no significant change in mean lake levels  

(Table 23), such as the lower-bound scenario, and considering the current regulation plan 

for future outflow management (i.e. Plan 2014), Typha is likely to remain dominant in the 
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eastern Great Lakes, and the expansion of Phragmites should be less important than what 

is predicted by the models. 

 Conversely, if lake levels are projected to rise above historical values, as projected by the 

upper-bound scenario (~24 cm increase by the end of the century), most wetland sites are 

likely to be flooded. The rules underlying Plan 2014 are not designed to handle more water 

than observed in the past, which results in a significant rise in model-predicted Lake 

Ontario levels. Under such conditions, emergent plants, including Typha, will likely die, 

facilitating the establishment and expansion of Phragmites in the upland portion of the 

wetlands.  

 

Figure 203: Projected water levels during the growing season for the lower and upper bound climate change 

scenarios in Lake Ontario (LKO). 
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Figure 204: Phragmites (left) and Typha (right) evolution and logistic growth model in Hill Island East (1HIE) for lower 

(blue) and upper (orange) bound simulations.  

 

Figure 205: Phragmites (left) and Typha (right) evolution and logistic growth model in Airport Creek Marsh (2ACM) for 

lower (blue) and upper (orange) bound simulations. 
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Figure 206: Phragmites (left) and Typha (right) evolution and logistic growth model in South Bay Marsh (3SBM) for 

lower (blue) and upper (orange) bound simulations. 

 

Figure 207: Phragmites (left) and Typha (right) evolution and logistic growth model in Lyndee Creek Marsh (5LCM) 

for lower (blue) and upper (orange) bound simulations. 
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Figure 208: Phragmites (left) and Typha (right) evolution and logistic growth model in Jordan Station (6JSM) for lower 

(blue) and upper (orange) bound simulations.  

6.3.2.2.2. Lake Erie 

Under the lower-bound scenario, the median water level is decreasing (-13 cm) and the 

interannual variability is increasing between 2010 and 2099, causing many years of water level 

drawdowns that promote the Phragmites expansion (Figure 209). With the lower-bound scenario, 

we expect the Phragmites invasion to be much more important than with the upper-bound 

scenario across all Lake Erie sites, except for 7GRM (Figure 210). The water depth with the lower-

bound scenario is generally suitable for Phragmites, but also for Typha. Between 2018 and 2038, 

there is a major expansion of Typha in 8SPP, 9LPW and 11FCK due to relatively stable 

interannual water levels. However, a major Typha die-off is caused by an increase in water levels 

in 2039 (Figure 209) and coincides with an important expansion of Phragmites from 2040 across 

most Lake Erie sites (Figure 210 to Figure 214).  

With the upper-bound scenario, rising water levels moderate the Phragmites invasion. The water 

depth becomes unsuitable for Phragmites germination and for vegetative propagation. Some sites 

such as 8SPP and 11FCK become completely flooded and wetlands and Phragmites are unable 

to migrate upland because of land use limitations. In 9LPW, the topography limits the migration 

of wetland and of invasive species. In 10RBY, the wetlands and invasive species  migrates upland. 

Typha remains the dominant species, but major Phragmites stands are present (Figure 215). 

Since Phragmites can tolerate high water levels, this scenario predicts Phragmites stands 

establishing in deeper water when the conditions were suitable. For this scenario, water levels 

variations are important, and high water levels do not favor Typha in most sites except Grand 
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River Mouth (7GRM). In this site, the topography favors the establishment of  Typha, which can 

establish in higher elevations and survive through the water level fluctuationss. 

The main conclusions for Lake Erie are: 

 Projected water level changes in Lake Erie range from -14 to 45 cm, with little or no change 

in interannual variability (relative to recent past time-series) in the last 30-year of the 

century. However, the future water-levels time-series from 2070 to 2099 shows some 

important reduction in water levels, which indicates a larger year-to-year variability than 

typically observed during the reference period (1980–2009). These large long-term 

variations will likely favor the establishment of Phragmites at the expense of Typha by the 

end of the century, the latter being particularly sensitive to changes in mean interannual 

water levels.  

 Typha population expansion is likely to be slowed down by the end of the century by either 

(1) high interannual variability in mean lake level (lower bound scenario), which limits 

vegetation propagation, or (2) high lake levels (upper-bound scenario), which greatly 

reduce suitable habitat.  

 Under sustained lake level increase, Phragmites establishment and expansion in low 

(deep) wetland areas is likely to be limited due to unsuitable water depth. Phragmites will 

preferentially move inland, which should result in invasion of high wetland areas.  

 Overall, the models predict more Typha than Phragmites in most sites of Lake Erie. 

However, a decrease in Typha distribution is projected by the lower-bound scenario 

around 2080, a decrease likely due to the expansion of Phragmites that tends to replace 

the former.  

 

Figure 209: Projected water levels during the growing season for the lower and upper bound climate change 

scenarios in Lake Erie (LKE). 
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Figure 210: Phragmites (left) and Typha (right) evolution and logistic growth model in Grand River Mouth (7GRM) for 

lower (blue) and upper (orange) bound simulations. 

 

Figure 211: Phragmites (left) and Typha (right) evolution and logistic growth model in Selkirk Provincial Park (8SPP) 

for lower (blue) and upper (orange) bound simulations. 
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Figure 212: Phragmites (left) and Typha (right) evolution and logistic growth model in Long Point (9LPW) for lower 

(blue) and upper (orange) bound simulations. 

 

Figure 213: Phragmites (left) and Typha (right) evolution and logistic growth model Rondeau Bay (10RBY) for lower 

(blue) and upper (orange) bound simulations. 
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Figure 214: Phragmites (left) and Typha (right) evolution and logistic growth model in Fox Creek (11FCK) for lower 

(blue) and upper (orange) bound simulations. 

 

 

Figure 215: Invasive species (Phragmites: red, Typha: orange) spatial distribution at Rondeau Bay (10RBY) in 2099 

under the lower (left) and upper (right) bound scenario. 

6.3.2.2.3. Huron-Erie corridor 

For both scenarios, water levels in the Lake St. Clair present a similar pattern to what is predicted 

by the model for Lake Erie (Figure 216). With the lower-bound scenario, Phragmites and Typha 

have higher carrying capacity since water depth is more suitable for those species than with the 

upper-bound scenario (Figure 217 to Figure 219). For 12DRM, the models predict more Typha 
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than Phragmites in the future period under both scenarios. The site is mostly dominated by Typha 

but Phragmites stands are slowly advancing (Figure 220). For 13LSC and 14SAM, there is a 

similar area of Phragmites and Typha. In both sites, Typha has reached its carrying capacity and 

starts declining because the Phragmites are expanding over Typha habitat. With the lower-bound 

scenario, around 2040 the rise in water levels causes a Typha die-off followed by a water level 

drawdown causing the Phragmites to thrive in the following years in all Huron-Erie corridor sites. 

Under the upper-bound scenario, for 13LSC and 14SAM, the presence of dykes limits the 

migration of wetlands to higher elevations (Figure 221). Typha can establish in the higher 

elevation areas but occupy most of the niche and Phragmites hardly establishes because of the 

earlier Typha establishment and unsuitable water depths at lower elevations. For 12DRM, Typha 

establishes higher and small Phragmites stands establish among Typha and slowly advance.  

The main Lake St. Clair conclusions are: 

 The Typha expansion is likely to increase until the beginning of the 2020s and 2030s in 

wetlands of the Huron-Erie Corridor, after which projected distributions appear stable in 

all sites for both climate scenarios. Conversely, the projected Phragmites expansion is 

likely to continue beyond 2099, since growth curves obtained from the upper and lower-

bounds scenarios (Figure 219 to Figure 221) do not reach their stable equilibrium (i.e. 

carrying capacity). 

 Large increases in lake levels (upper-bound scenario) promote conditions unsuitable for 

Phragmites establishment and expansion in the Huron-Erie Corridor. 

 

Figure 216: Projected water levels during the growing season for the lower and upper bound climate change 

scenarios in Lake St. Clair(LSC). 
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Figure 217: Phragmites (left) and Typha (right) evolution and logistic growth model in Detroit River Marsh (12DRM) 

for lower (blue) and upper (orange) bound simulations. 

 

Figure 218: Phragmites (left) and Typha (right) evolution and logistic growth model in Lake St. Clair(13LSC) for lower 

(blue) and upper (orange) bound simulations. 
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Figure 219: Phragmites (left) and Typha (right) evolution and logistic growth model in Johnston Bay (14SAM) for 

lower (blue) and upper (orange) bound simulations. 

 

Figure 220: Invasive species (Phragmites: red, Typha: orange) spatial distribution at Detroit River Marsh (12DRM) in 

2098 under the lower (left) and upper (right) bound scenario. 
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Figure 221: Invasive species (Phragmites: red, Typha: orange) spatial distribution at Johnston Bay (14SAM) in 2098 

under the lower (left) and upper (right) bound scenario. 

6.3.2.2.4. Lake Huron 

Simulated water levels in Lake Huron present a similar trend to water levels in Lake Erie and Lake 

St. Clair (Figure 222). For Lake Huron sites, Typha is predicted to be more abundant than 

Phragmites in most sites, except for 15BDD (Figure 223 to Figure 229). It is hard to have a clear 

basin-wide conclusion for Phragmites invasion, as the results suggest varying responses to 

Phragmites invasion among sites. Site 15BDD is by far the most invaded site (Figure 223), since 

the invasion started early (1990s; Janice Gilbert, personal communication, 2021) and both climate 

change scenarios do not predict a better future. The lower-bound scenario predicts a more 

important Phragmites invasion in 18HGW, 19TBY, 22WHW and 27FPT sites. In 16HBW, 

Phragmites invasion is similar under both scenarios (Figure 224), while in 23ACK the invasion is 

more important under the upper-bound scenario (Figure 228).  

For Typha, we see a major decline for both scenarios in 15BDD caused by the aggressive 

expansion of Phragmites (Figure 223). Typha invasion is similar in 16HBW (Figure 224), 18HGW 

(Figure 225), 19TBY (Figure 226) and 22WHW (Figure 227), under both scenario. For 23ACK, 

lower-bound scenario favors Typha expansion, whereas upper-bound scenario is more favorable 

for Typha expansion in 27FPT (Figure 229).  

The main conclusions for Lake Huron are: 
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 Typha will likely be more abundant than Phragmites in all Lake Huron sites, except in 

Baie du Dorée. This site had an early Phragmites invasion, beginning in 1990s, and is 

therefore highly vulnerable to future expansion. 

 Projected lake levels patterns determine the invasive species spatial distribution. They 

will establish in lower elevations with a decrease in water levels (lower-bound scenario) 

or, inversely, colonize higher ground if water level rises occur. Nevertheless, the greater 

the increase in mean water level, the more constrained the total expansion of 

Phragmites is in most sites due to the loss of habitat with suitable water depth. 

 Since the simulations for Lake Huron were not validated, as the date when the invasion 

started in most sites is unknown for Phragmites and Typha, the results for this lake should 

be treated as hypothetical. 

 

 

Figure 222: Projected water levels during the growing season for the lower and upper bound climate change 

scenarios in Lake Huron (LKH). 
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Figure 223: Phragmites (left) and Typha (right) evolution and logistic growth model in Baie du Doré (15BDD) for lower 

(blue) and upper (orange) bound simulations. 

 

Figure 224: Phragmites (left) and Typha (right) evolution and logistic growth model in Hay Bay (16HBW) for lower 

(blue) and upper (orange) bound simulations. 
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Figure 225: Phragmites (left) and Typha (right) evolution and logistic growth model in Hog Bay (18HGW) for lower 

(blue) and upper (orange) bound simulations. 

 

Figure 226: Phragmites (left) and Typha (right) evolution and logistic growth model in Treasure Bay (19TBY) for lower 

(blue) and upper (orange) bound simulations. 
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Figure 227: Phragmites (left) and Typha (right) evolution and logistic growth model in Whiskey Harbor (22WHW) for 

lower (blue) and upper (orange) bound simulations. 

 

Figure 228: Phragmites (left) and Typha (right) evolution and logistic growth model in Anderson Creek (23ACK) for 

lower (blue) and upper (orange) bound simulations. 
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Figure 229: Phragmites (left) and Typha (right) evolution and logistic growth model in Frances Point (27FPT) for lower 

(blue) and upper (orange) bound simulations. 
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7. CONCLUSION 

Great Lakes coastal wetlands are known to be highly dynamic ecosystems, rapidly responding 

and adapting to their physical environment. Although several climatic factors influence their 

structure and distribution, hydrologic conditions are recognized as the primary driver of changes 

that result in a marked shift in habitat location, extent, productivity and diversity. These conditions 

indirectly incorporate the effect of precipitation, evaporation, winds, and topography, which are 

essential components that shape the structure and composition of  wetland plant communities. 

Any future changes in water level fluctuations will induce a change in the nominal conditions of 

these vulnerable ecosystems, which may be critical if the physical environment undergoes 

changes beyond what was observed in the past. As such, projected climate change in the Great 

Lakes basin may alter the annual and interannual variability of water levels in the various water 

bodies and the coastal wetlands that thrive there. Given the high vulnerability of these 

environments, global warming is a concern and should be studied to determine the potential 

impact on these habitats, as well as the measures that need to be taken to improve their 

resilience. 

The Great Lakes Protection Initiative Project was created to identify and quantify the impact of 

climate change on coastal wetlands, and to assess their vulnerability. ECCC-NHS Hydrodynamic 

and Ecohydraulic Section has worked intensively to define the degree of climate stress to which 

coastal wetlands are exposed, and to examine to which extent wetland classes are going to be 

impacted by projected changes. These aspects, which define the exposure and sensitivity 

components of the vulnerability assessment, were evaluated through the use of a two -

dimensional, integrated habitat-modelling platform that predicts the response of wetland classes 

to water-level changes: the Coastal Wetland Response Model (CWRM). To project future lake 

conditions, two climate scenarios were used, which are downscaled CMIP5 Atmosphere-Ocean 

General Circulation Model forced by a scenario of moderate anthropogenic CO 2 emissions (i.e. 

Representative Concentration Pathway 4.5). These two scenarios were selected to delineate the 

range of possible futures. This range covers, in the CMIP5 ensemble, the mid-range of projected 

changes in precipitation for the Midwest and Great Lakes region (i.e. positive change between 

~9% and 16%), and the lower range of projected changes in surface air temperature (i.e. positive 

change between ~3.5°C to 6.1°C). 

To model Great Lakes coastal wetland classes and their hydrological gradient from deep aquatic 

habitat to dry terrestrial areas, two main questions were answered using the CWRM: 
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1. What are the time scales and magnitude of natural disturbances within the wetland, which 

take the form of water depth variations and wave exposure?  

2. How do plants (native and invasive) move along the hydrological gradient in response to 

environmental disturbances, with migration of wetland classes that follows their inherent 

dispersal capabilities? 

The physical processes and conditions that modulate Great Lakes nearshore dynamics were 

modelled for the recent past (1980 to 2009) and future (2070 to 2099) under projected climatic 

conditions, and wetland response to key physical factors was evaluated for the selected range of 

possible climates. 

7.1. Summary of methods 

7.1.1. Physical modelling 

Two different approaches were developed to model the water level and wave dynamics of the 

Great Lakes. The first one uses unsteady simulations and thus takes into account all the physical 

processes available, modelling the seiches and setups, which was applied for the shallower lakes 

of the system (Lakes Erie and St. Clair) and connecting channels (Huron-Erie corridor and Upper 

St. Lawrence River). The second approach is scenario-based and used steady-state simulations 

to model the water level and other physical variables in the deeper lakes (Lakes Ontario and 

Huron), modelling the wind setups. This approach, which does not allow the reproduction of 

transient processes like seiches, was used due to time constraints and significant difficulties 

associated with the first approach for bodies of water with large 3D effects (e.g. vertical 

stratification, barocline circulation, etc.). In the end, both approaches have been able to accurately 

model annual and sub-seasonal fluctuations in historical water levels, with an uncertainty ranging 

from 3 cm to 5 cm, and good temporal resolution (3-hour time step). The simulated data were 

then used to generate the variables used by CWRM to describe the disturbances that modulate 

shoreline dynamics in the wetland environment by using a wavelet analysis. The waves were also 

modelled in Lakes Erie and Ontario, but not in Lakes Huron ans St. Clair due to time and 

computational resource constraints, leading to a slight degradation in wetland modelling 

performance in these lakes. 

7.1.2. Digital Elevation Model 

A collection of LIDAR point clouds and various bathymetric datasets was gathered to produce 

seamless DEMs that cover the land-water interface of all study sites. Since LIDAR tends to 
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overestimate elevation values in densely vegetated areas such as wetlands, a post -processing 

correction method, based on a statistical model using ground truth points and multispectral 

imagery, was applied to the terrestrial portion of all DEMs. This method uses a statistical model 

which, via empirical validation points and multispectral images, allows the correction of 

measurement errors. Then, various bathymetric data were combined, adjusted and interpolated 

to cover the lacustrine portion of each site which is impossible to estimate by conventional remote 

sensing. The final DEMs were obtained by merging the processed datasets and applying different 

filters to eliminate any artifacts or discontinuities. These models have a spatial resolution of 2 m 

and cover nearly 6000 ha.  

7.1.3. Wetland class succession modelling 

The wetland modelling aims to link the hydrology to wetland class spatial and temporal 

distribution. Different physical variables are therefore used to calibrate predictive models, which 

are used to reproduce observed historical conditions and the changes experienced by 

ecosystems in terms of extent and composition. This approach is based on the use of two distinct 

algorithms: a supervised machine learning (i.e. random forest) algorithm, which predicts wetland 

class based on environmental conditions, and a succession algorithm, which simulates the 

transition from one wetland class to another when the hydrology of the environment changes. The 

succession algorithm uses available empirical and theoretical knowledge of plant community 

biology to define tolerance thresholds for different wetland classes. It thus reproduces the 

sequence and latency of changes that control the transition from one state to another in a natural 

environment. In the end, five wetland classes can be predicted by the modelling, which also 

identifies open water and terrestrial areas: submerged aquatic vegetation, emergent marsh, wet 

meadow, shrub swamp and treed swamp. A variety of data sources were used to calibrate and 

validate these different algorithms, ranging from floristic inventories to cartographic classification 

sets, and allow the creation of models tailored to a lake or river reach.  

The CWRM was also adapted to predict the habitat of two invasive plant species whose presence 

and abundance in the Great Lakes basin are already well documented: hybrid cattail (Typha x 

glauca) and invasive common reed (Phragmites australis). These species, which threaten the 

biodiversity of coastal wetlands, do not occupy their entire ecological niche in the environments 

studied and should continue to expand in the coming years. It is therefore difficult to model the 

growth of Phragmites and Typha while identifying the part of the invasion attributable to the 

species growth and the part attributable to climatic disturbances alone (regardless of the intrinsic 
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capacity of the species to expand). In order to separate these two aspects, two models were 

developed for each of these species, namely a suitable habitat model, which uses a random 

forest, and a population growth model, which is a strictly theoretical model. While the former 

allows us to determine the extent of habitat deemed favorable to the species and how it evolves 

with projected global warming, the latter attempts to simulate the phenological stages and 

mechanisms that control the growth of taxa. In both cases, only hydrological and topographical 

conditions are considered as explanatory variables. The population growth model, however, uses 

the predictions obtained for the wetland classes to determine which habitats are favorable for the 

establishment of Phragmites or Typha.  

 

7.2. Summary of results and discussion 

7.2.1. Climate scenarios: Lower and upper-bound projections 

The two selected climate scenarios give the lower- and upper-bound of expected changes for the 

Great Lakes Basin. They define the climate change envelope projected for the last decades of 

the century, and can be considered as the low- and high-risk scenarios in terms of mean lake 

levels. These levels are directly linked to the conditions modelled by the AOGCMs, and the 

resulting amount of water supplied to the Great Lakes system under specific atmospheric 

regimes.  

The upper-bound scenario, driven by the GFLD-ESM2M model, projects a significant increase 

in lake levels, with a net rise of up to ~0.70 m in Lake Ontario, including the upstream portion of 

the Upper St. Lawrence River, which will likely be the most affected lake.  

The lower-bound scenario, driven by the CanESM2 GCM, rather projects a minor to moderate 

decrease in mean lake levels for the period 2070 to 2099 relative to baseline, with a maximum 

decline of -0.12 to -0.23 m in Lakes Erie, Huron, and the Huron-Erie Corridor, and no significant 

change in Lake Ontario and the Upper St. Lawrence River. Overall, the AOGCMs disagree on the 

signs of changes in the upper lakes, which include the Huron-Erie Corridor, revealing the large 

uncertainty in projections. 

7.2.2. Changes in physical variables and vegetation 

7.2.2.1. Natural variability, migration and submerged aquatic vegetation 
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The projected absolute change in mean level is 0.5 to more than 2.5 times the natural variability 

of the system, which can significantly influence the composition and positioning of wetland 

vegetation. A similar long-term change in water levels can force an up- or down-slope migration 

of plants that goes beyond the historical cycle, occasioning major changes in the wetland 

configuration. Existing anthropogenic stressors, such as urbanization, may therefore aggravate 

the situation by causing a decline in habitat quality. This situation is all the more realistic if the 

projected increase in lake levels is sustained and prolonged, as predicted in the upper-bound 

scenario, and if the topography limits any migration of plant classes. A decrease in total wetland 

area is therefore expected by the end of the century at sites where inland recovery is restricted.  

The increase in mean (upper-bound scenario) water level by 2085 is expected to reduce the total 

area of wetlands in most lakes, with the exception of Lake Ontario, where the selected sites have 

topography that is predominantly conducive to the migration of vegetation classes. Sites in Lake 

Erie and Lake St. Clair are expected to be largely affected as the landward migration of wetland 

classes is particularly limited (by topography or land use). In Lake Huron, the increase could also 

reduce total wetland area, but this loss is less than in the southern lakes because of the natural 

state of the sites, which favors migration. At the opposite end of the spectrum (lower-bound 

scenario), if a decrease in mean levels occurs, wetland area is generally expected to increase.  

In terms of wetland distribution, the projected changes are expected to result in either a gain (+) 

of wetlands or a loss (-) of submerged aquatic plants depending on whether levels are falling or 

rising, respectively. Other wetland classes are also expected to be disturbed, but their response 

is primarily site-specific. In general, the various wetland classes tend to move inland as the water 

level in the environment increases. This is particularly problematic for wetlands that are 

landlocked between the lake and habitat boundaries (i.e., agricultural land or urbanized areas).  

The projected loss of coastal wetland area is of concern as this ecosystem type is one of the 

most productive on the planet. The loss of coastal wetlands could affect a variety of species at 

risk, as well as migratory birds, fish, amphibians and a variety of plants. These environments also 

provide a large number of ecological services essential to society, such as flood mitigation, low 

water support, groundwater recharge, sediment and pollutant filtration, nutrient retention, bank 

stabilization, erosion reduction and carbon sequestration. All of these benefits could be 

significantly impacted if the extent, distribution and composition of wetlands are negatively altered 

in the future. 
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Projected changes are also expected to alter the percentage of time during the growing season 

that habitats remain underwater if nominal conditions are significantly altered. This is expected to 

be the case for most sites on Lake Ontario and the Upper St. Lawrence River, which show an 

increase of +6% to +34% in their average strictly flooded area between 2070 and 2099 (relative 

to the baseline scenario). The river systems are also more likely to become inundated than any 

other site in the same basin, particularly under the upper-bound scenario. This flooding could 

affect the dominance of submerged aquatic vegetation (SAV), alter the overall deep marsh habitat 

(i.e., aquatic habitat), and potentially the total area defined as open water if the flooding depth in 

the lacustrine boundary of coastal wetlands is substantially increased. In Lake Ontario, inundation 

of the low marshes is expected to result in an increase in the average area of SAV, which could 

undergo a relative change of up to +281% in the future period. In the remaining lakes, the water 

depth reached in the habitat area is often too deep below the upper limit of the projections to 

support SAVs, which decrease in area in favor of open water. 

The submerged aquatic plant class generally responds very quickly to hydrological changes in 

its environment because of the high degree of adaptability of its component species. However, its 

habitat must meet a certain number of requirements to ensure the maintenance and survival of 

the plants that take root in the flooded part of the wetlands. Water quality is critical to the 

establishment and growth of submerged aquatic plants, which, when present, can help maintain 

a suitable environment for the low marsh by absorbing nutrients and binding suspended 

sediments (e.g. clay and silt). Increasing SAV extent is therefore beneficial to habitat values along 

the Great Lakes shoreline, as well as enhancing habitat structure for higher trophic levels, their 

biodiversity and, more broadly, the stability of lake ecosystems. A high biomass of submerged 

aquatic plants is generally associated with lower nutrient and phytoplankton concentrations , which 

promotes good clarity (i.e., light penetration) and overall water quality. A gain in SAV thus 

maintains properties essential to shallow aquatic ecosystems, whereas a loss may accelerate 

their deterioration. The overall consequences of increasing SAV at the expense of other wetland 

classes remain, however, difficult to quantify.  

7.2.2.2. Interannual Variability and invasive species 

Interannual variability in mean lake level is expected to increase by more than 25% in the 

upcoming decades for the Lower Great Lakes, which includes the Lower Detroit River. This 

change is particularly marked in Lake Ontario and the Upper St. Lawrence River, where the year-



 

440 

 

to-year variation in mean lake levels will increase by up to 0.24 m, which represents a relative 

increase of +88% and +94% respectively.  

No significant change in this aspect is projected in Lakes St. Clair (in the Huron-Erie Corridor), 

and Huron. Consequently, the extent of the strictly flooded area is expected to be more stable in 

these lakes by 2099, with a more pronounced effect in Lake St. Clair where a -79% to -89% 

decrease in interannual variability of the flooded area is expected. This suggests more stable 

conditions in the future, which can heighten the risk of perennial habitat loss in Lake St. Clair 

under the upper-bound projection. In Lake St. Clair, most wetland classes suffer important losses 

and the total wetland area is reduced by up to -40%. The agricultural lands and urbanized areas 

that surround the wetlands and prevent migration in this specific region of the Great Lakes are 

therefore expected to greatly impair the ability of the ecosystems to adapt to the projected 

changes. 

More generally, interannual fluctuations in water levels can dramatically alter plant 

communities when periods of very high or very low water levels occur. While these types of 

fluctuations are necessary to maintain a high level of plant biodiversity, the occurrence of 

extremes encourages the establishment and expansion of invasive species, such as Typha x 

glauca and Phragmites australis. These plants, which take advantage of newly exposed mudflats 

to establish themselves, are already well established in the southern Great Lakes and threaten 

the ecological integrity of wetlands. Conversely, the absence of any variation in mean water levels 

is also detrimental to wetland biodiversity as it facilitates the expansion and invasion of Typha x 

glauca, which can quickly become dominant, a situation already observed in Lake Ontario.  

Based on the modelling results, the increase in interannual variability of Lake Ontario levels by 

2099 may be unfavorable to Typha, whose establishment has been facilitated by regulation during 

the historical period. However, this could benefit Phragmites and cause a reversal of invasion 

trends, with more Phragmites than Typha in the period 2070 to 2099. Thus, climate change should 

promote physical and ecological conditions more favorable to common reed if increased 

interannual variability takes place. Conversely, if climate change induces no change in variability 

by 2085, hybrid cattail should remain the most abundant invasive species in this portion of the 

Great Lakes. In both cases, the expansion of exotic species remains a concern for Lake Ontario 

wetland quality and should be monitored before establishment reaches a tipping point.   
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In Lake Erie and Lake St. Clair, climate change may increase or decrease the dominance of 

invasive species depending on the site and projections. Under lower average levels (lower-

bound), potential Phragmites habitat is expected to increase in a majority of wetlands, while the 

range of Typha is expected to increase at only some sites. The spread of this taxon is expected 

to be disadvantaged by the high interannual variability projected between 2009 and 2070 (lower-

bound scenario) or by high lake levels (upper-bound scenario). In the latter case, climate change 

is expected to be responsible for the decrease in the area of suitable areas for hybrid cattail 

growth. Phragmites is also expected to suffer from these conditions, as the water depth in the 

lake portion of the sites may become too deep for the species. However, reeds could migrate 

inland in the event of a sustained rise in mean lake levels in Lakes Erie and St. Clair and occupy 

habitat spared from flooding, resulting in a continued invasion. 

In Lake Huron, climate change generally appears to be reducing the potential habitat for both 

invasive species. The steep topography of some of the environments in this water body appears 

to be generally unfavorable for invasion of Phragmites and Typha compared to what is observed 

elsewhere in the basin. However, these species are expected to invade the remaining untouched 

wetlands and thus alter the overall quality of these habitats by 2099. The Baie du Doré wetlands 

(15BDD), which are already heavily impacted by Phragmites, are expected to see the total area 

of invasion increase to 50% under any scenario. At the other sites studied, Phragmites could 

occupy up to 20% of the habitat and Typha up to 35%. Although Lake Huron wetlands are less 

vulnerable to exotic species, invasion monitoring should be encouraged. Control of invasive plants 

is essential for preserving biodiversity and protecting the integrity of these valuable ecosystems.  

7.2.2.3. Transition zone and wetland composition 

The transition zone, where daily and sub-seasonal fluctuations occur, is critical to the 

establishment and persistence of various wetland classes, especially wet meadow (WM) and 

emergent marshes (EM), where the greatest species richness is found. Results indicate that a 

clear positive change is likely to affect the extent of this zone in Lake Ontario sites, with changes 

up to +6% for the period 2070 to 2099, representing a relative increase of 24% to 103%. 

Projections obtained for Airport Creek Marshes, in the Bay of Quinte, show the largest shift, with 

a projected increase in absolute mean annual values of 3.3% to 5.5%, which is comparable to the 

observed historical variability of 6.3%. River systems in Lake Erie and some sites in Lake Huron 

show similar but less pronounced dynamics. Conversely, a significant decrease in the transition 
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zone is predicted for the connecting channel sites in the lower Detroit River and Upper St. 

Lawrence River.  

This increase in the extent of the transition zone in Lake Ontario results in an overall increase in 

emergent marshes dominance. In the Airport Creek marshes, this change amounts to +44%. The 

area of wet meadows, on the other hand, is not favored by the projected physical changes. Thus, 

this class appears to be very sensitive to environmental conditions and unlikely to migrate to 

elevations where conditions are not optimal. Wet meadows essentially experience a loss of area 

in the future period. 

Finally, a net reduction in the strictly flooded area is projected at sites in Lake Ontario and at some 

sites in Lake Erie, while the area of high marsh is projected to increase in Lake Huron. These 

changes could result in a decrease in terrestrial environments by the end of the century, with 

potential impact to high elevation vegetation classes such as swamps. However, several other 

factors may influence the establishment of woody species in the terrestrial portion of sites (e.g., 

water depth and the existence of fluctuations), making it difficult to generalize. This class also 

takes much longer to establish and can be quickly (i.e. within 3 years) replaced by forbs and 

grasses under unfavourable conditions. 

7.2.2.4. Periodic events, storms and waves 

Since short-term water level fluctuations that modulate the dry/wet cycles are driven by 

atmospheric forcing, the expected changes in lake surface dynamics follow those observed in 

surface winds. Based on the selected set of AOGCMs, no clear conclusion can be drawn for near-

surface wind speeds, other than a more pronounced decrease in the mean annual daily intensity 

under the lower-bound scenario. Overall, there is great uncertainty about any change in intensity 

during the fall, while winds over Lake Huron, Lake Erie and Lake Ontario in summer and winter 

are expected to be less intense in the last decades of the century. A decrease in the climate of 

extreme winds is also predicted for all months except fall. 

The modelled lake dynamics are found to be strongly influenced by the lower-bound of the 

projected changes by 2099, i.e. the more marked decrease in mean annual maximum wind 

speeds. Projections prescribe a decrease in the maximum monthly maximum set-ups amplitude 

in all lakes, although Lower Great Lakes, including the Lower Detroit River, will likely be the most 

affected basins. The relative changes, however, remain less than 10%, or less than 4  cm in Lake 

Erie and 1 cm in Lake Ontario. Such changes are unlikely to be critical to wetland classes, which 
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typically occupy large elevation ranges. With respect to site-scale physical processes, a general 

decrease in the mean annual duration of the wet/dry cycles is projected as a result of this change 

in winds and set-ups for a majority of sites in Lakes Ontario, Erie, and St. Clair, including the 

Lower Detroit River. 

The projected future wave climate for Lakes Ontario and Erie stays similar to that observed during 

the baseline period. Relative changes in significant wave height and wave period were estimated 

to be less than 5%, with no agreement on bound values. Annual wind frequency and magnitude 

are not projected to change significantly by the horizon 2085, which is reflected in the modelled 

deep waves. Regarding near-bottom orbital velocities in the vicinity of wetlands, no clear signal 

of change is projected in Lake Ontario, although a more pronounced decrease is expected under 

the lower-bound scenario (up to -39% compared to a maximum relative change of +10%). 

Conversely, wave intensity is projected to increase by 2099 in Lake Erie wetlands, particularly in 

lacustrine sites like Long Point and Rondeau Bay where the projected changes range between 

+52% and +81%. This increase in wave exposure, which is ostensibly the result of a change in 

mean lake level and, hence, nearshore bathymetry rather than a change in deep wave climate, 

will likely limit aquatic species establishment in the outer fringe of the wetlands.  

7.2.3. Lakes modelling: Long- and short-term fluctuations 

Two modelling approaches were used to model long- and short-term lake level fluctuations: a 

non-stationary and a scenarios-based approaches. While the former gives a broad description of 

the physical processes that modulate the lake surface, including the seiches that characterize the 

Great Lakes Basin, the latter focuses only on the direct atmospheric influence, which is 

responsible for the wind set-ups. Both provided valuable information in terms of physical 

variables, but the non-stationary modelling proved to be significantly more demanding in terms of 

computational resources and storage. In such an approach, hourly and sub-hourly time series 

must be generated and stored, which covered 120 years of projections and 38 years of historical 

simulations for this specific project. Since the use of a restricted set of scenarios generated a 

large but manageable amount of data, using the conventional modelling technique would have 

been unrealistic with a larger number of possible climates. Climate change studies usually relies 

on several GCMs and RCPs to handle uncertainty in future projections. If further work is to provide 

a better understanding of the uncertainty related to future lake conditions, and more robust 

conclusions regarding the impacts of global warming for Great Lakes coastal wetlands, the 

scenario-based approach should be considered first. 
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7.2.4. Wetland modelling 

The wetland modelling approach discriminated with relatively good accuracy up to five broad 

wetland classes, including two swamp classes in Lake Erie (i.e., shrub swamps and treed 

swamps). Although modelling more classes of emergent marshes would have been relevant (e.g., 

shallow, deep, and non-persistent emergent marshes), the tests conducted did not conclude that 

this was feasible. Modelling of non-persistent emergent marshes, which are abundant in Lake 

Huron, resulted in very confusing predictions, with non-persistent emergent marshes being 

confused with emergent marshes, wet meadows or submerged aquatic vegetation. This is due to 

a lack of empirical data, as non-persistent species are generally not differentiated in map 

classification sets and available floristic inventories rarely reported their presence in the wetlands 

visited. The model is also sensitive to the number of wetland classes used, as each of these 

classes must be well differentiated in terms of its ecological niche to enable good prediction. In 

order to promote more accurate distinction, the number of vegetation classes used was 

intentionally kept small. However, the succession algorithm for Lake Huron was modified to 

account for the presence of non-persistent species. The tolerance of emergent marshes to 

adverse conditions was lowered in this water body to reflect this.  

The succession lag time are generally dependent on the species composition of a wetland class. 

The tolerance for most wetland classes were set identical for each lake, except for Lake Huron 

were the emergent marshes class time response was modified. The tolerance to dry conditions 

are a general approximation and may be different from site to site depending on soil type, nutrient 

supply, seed-bank and species composition. Conditions unfavorable to wetlands during 

prolonged high water levels are generally more consistent than those during low water leve ls, 

since these are less affected by external factors such as nutrient supply and soil type. Overall, 

the good performance of the succession models suggests that the thresholds chosen respect the 

ecological processes that control wetland ecosystems. The calibration of these thresholds was 

based on field observations. 

7.2.5. Invasive species modelling 

A simplified approach was used to model the growth of Phragmites and Typha, based on two 

distinct models: a population growth model and a suitable habitat model. The first one uses the 

knowledge acquired on the biology of the species to reproduce, in a simplified way, the 

mechanisms that govern the different stages of the plant, from seed to stand. This theoretical 
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model was calibrated with field observations, changes in satellite images and multiple years 

maps. Although the parameters used have been refined in order to ensure a reliable prediction of 

the invasion, in phase with the observations. A stochastic component was also integrated into the 

algorithm to control seed germination and reproduce the randomness of invasion, as well as the 

progressive establishment of taxa in wetlands. The suitable habitat model is complementary and 

allows us to determine to what extent climate change accelerates or hinders the invasion of  the 

two species, independently of their intrinsic growth capacity. This model uses hydroperiod 

variables as explanatory variables (or predictors) and observations as response variables.   

It is important to note that the results of invasive species modelling are highly dependent on the 

onset date of the invasion, which can be difficult to determine for a site or lake. Nevertheless, 

using available observations and knowledge from invasive species experts, we were able to 

replicate the historical invasion of the two most prevalent invasive species in the study area. With 

the CWRM, we modeled their habitat, incorporated the effect of water level changes on it, and 

determined the impact of long-term changes in the hydrologic regime on the potential expansion 

of the two invasive plants. 

7.3. Model limitations 

Like all modelling approaches, some simplifications had to be made forkeeping computation 

requirements manageable. Those model limitations are discussed in the next paragraphs 

according to the climate and physical modelling, creation of DEM and vegetation modelling 

perspectives. 

7.3.1. Climate modelling limitations 

Climate projections have a variety of sources of uncertainty, ranging from the socio-economic 

perspectives used to generate emissions trajectories, to the mitigation measures implemented, 

to the inaccuracies in the mathematical models used to simulate climate, to downscaling, to the 

assumptions used to project Great Lakes levels under extreme scenarios. It is also important to 

note that the projections are not used to predict the water level of a lake at a given date, but rather 

the range of expected values for a future period, which depends on the changes circumscribed 

by the selected scenarios (e.g., in air temperature and precipitation). Due to the estimated 

computational time to produce the necessary data set for CWRM, a single emission scenario was 

used (i.e. RC4.5), which projects a moderate increase in CO2 concentrations by the end of the 

century. The use of a more aggressive emission scenario, such as RCP8.5, would necessarily 
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have resulted in a different simulated wetland response and changed the conclusions of this 

study.  

7.3.2. Physical modelling limitations 

Various assumptions and/or simplifications had to be made in order to simplify the modelling of 

physical processes and be able to create water level time-series in such vast and heterogeneous 

wetland sites, located in four different lakes, each with its own particularities. 

First, in the hydrodynamic models, the bathymetry is considered fixed through time for all lakes. 

Therefore, sediment transport and morphodynamics were not included in the present modelling 

effort. However, these processes are more important in the riverine reaches than in the Great 

Lakes, where most sites are located (with the exception of the Rondeau Bay spit, which is 

experiencing severe erosion). Although sediment transport models exist, their use in this project 

would have resulted in an excess cost-benefit ratio due to the computational resources required 

to use them. This omission may therefore influence the resulting projections, particularly at sites 

deemed sensitive (i.e., subject to severe erosion or heavily exposed to waves).  

Second, ice conditions were not included as the simulations covered, essentially, the open water 

period (April to November), which corresponds to the plant growing season. The inclusion of ice 

would have required the parallel use of freeze-up projections and thus, the use of computationally 

heavy and time-consuming three-dimensional ocean models. 

Third, the hydrodynamic simulations performed in Lakes Huron and Ontario use a scenario-

basedapproach, which assumes stationary states that cannot allow for seiche reproduction, which 

is primarily transient. The omission of this component of lake dynamics has an impact on the 

magnitude of the simulated sub-seasonal shoreline variations. The use of this type of scenario 

nevertheless reduces the computational time otherwise required to create the time-series, which 

was necessary given the amount of work to be done in a short time frame (three lakes and two 

connecting channels, for a total of 158 years of simulations). Nevertheless, the use of the 

scenario-based approach allowed for adequate modelling of the wetlands involved, with the 

wetland succession models performing well overall. Lake Superior was also part of the project, 

but had to be excluded from the study due to time and computational constraints regarding 

hydrodynamic simulations. The two sites selected in this basin, i.e. Mission Marsh and Hurket 

Cove, nevertheless have DEMs ready for use should the project continue. The time required to 
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create and validate the hydrodynamic model for this large water body is estimated to be six to 

nine months. 

Fourth, land use in the CWRM is another component that is considered fixed in time. Any potential 

disturbance to this land use, whether through cultivation, fallow, or urbanization, could therefore 

alter the value of the physical variables in the affected wetlands. As such, if the changes lead to 

the destruction or erection of a physical barrier that impedes the free flow of water, e.g., a dike, a 

change in water depth within the habitat boundary can be anticipated, invalidating any projections. 

Nevertheless, CWRM has demonstrated that the selected wetlands are threatened by climate 

change and thus, any anthropogenic development near these sites may increase the vulnerability 

of these habitats. 

Fifth, the hydrodynamic models used simulate the action of lakes alone for the lacustrine sites, 

directly influenced by the water body. Sites protected by a natural barrier cannot be modeled by 

the current approach, as the water depth in this type of wetland also responds to the dynamics of 

the watershed to which it is attached. These sites would require an alternative modelling approach 

that would, for example, allow for the partial or sporadic opening of the barrier that cuts the link 

between the lake and the habitat, as well as non-lake influences (e.g., tributary, precipitation, 

evaporation, etc.).  

Finally, there are other processes that do not directly influence water levels, but can still alter plant 

growth and establishment. This is the case for water clarity, nutrient inputs, or potential chemical 

exposure, which have not been incorporated into this iteration of CWRM. 

7.3.3. DEM limitations 

The AOI used to delineate DEMs is limited in spatial extent at a few sites by the coverage of 

available LIDAR data. This is particularly true for selected wetlands in Georgian Bay. The inland 

migration of vegetation classes is therefore restricted to this area and consequently cannot be 

adequately simulated when water levels tend to increase. In the context of this study, o nly the 

projections obtained for the Whiskey Harbor wetlands appear to be affected by this limitation in 

the upper bound scenario. It is important to note, however, that the coverage of the areas of 

interest and DEMs should be revisited if CWRM uses alternative climate change scenarios that 

project an even more drastic increase in mean lake levels. 
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In terms of DEMs, a median error of 16 cm characterizes the elevation of the corrected models. 

This error may seem high given the accuracy with which the CWRM attempts to predict changes 

in the physical environment of wetlands, including fluctuations of only a few centimeters. 

Nevertheless, and considering the particular nature of the soil in wetlands, the high vegetation 

density, and the accuracy of the GNSS receivers used to collect the validation points (i.e., about 

5 cm), no numerical model can be completely free of uncertainty. Therefore, the accuracy 

obtained for all selected wetlands was considered adequate for CWRM purposes. In a future 

perspective, a detailed analysis of the error distribution and the use of various segmentation 

methods adapted to multispectral imagery could potentially improve the overall accuracy of the 

DEMs.  

Finally, it is important to mention that the chosen correction technique has proven to be effective 

for the selected sites, but may be difficult to implement on a large-scale model. This method 

requires the use of a very large number of ground validation points in different areas of the 

wetlands in order to properly represent the error associated with a vegetation type in a given 

location. Spectral imagery coverage must also encompass the entire study area, which can 

greatly complicate the applicability of this type of correction to an area as large as, for example, 

the entire Great Lakes basin. 

7.3.4. Vegetation modelling 

The selection of the 20 sites for this study was challenging as the Great Lakes system covers not 

only thousands of hectares of wetlands, but also a variety of ecosystems. The sites selected were, 

however, large enough to demonstrate the impacts of long-term change in coastal dynamics (i.e., 

water levels and waves) on the distribution of wetland classes. However, this project's own effort 

has focused on the Canadian Great Lakes coast, which provides only part of the answer. In order 

to provide a holistic view of the impact of climate change for coastal wetlands in this broad basin, 

sites of interest identified along the U.S. coast should also be included in the CWRM. 

With respect to invasive species modelling, the CWRM does not incorporate any form of past or 

future human intervention dedicated to exotic species management. The results of this study 

therefore demonstrate that the absence of any control of Typha and Phragmites in the wetland 

environment is, in itself, a worst-case scenario. The projected future distributions of these two 

species are alarming and demonstrate the very high vulnerability of wetlands to invasion. 

Incorporating management thresholds into the CWRM could allow comparison of the 



 

449 

 

effectiveness of different actions that can be implemented to counter or slow the invasion of these 

species in a climate change context. 

7.3.5. Implications 

The impact of these limitations or simplifications on the results of this study was considered 

insignificant or impossible to quantify. For example, sediment transport is not expected to play a 

major role in the projected changes as it only marginally affects the mean levels. Its overall effect 

on the wetland model results is also negligible. Water clarity and nutrient inputs can inf luence 

changes in wetland class distribution, but both require separate modelling and scenarios that are 

difficult to establish. The same is true for land use, where changes over time are subject to high 

uncertainty and depend on corporate governance and land-use choices.  

The primary objective of CWRM was to compare the distribution of wetland classes between the 

recent past (1980 to 2009) and the future (2070 to 2099) using climate scenarios, which determine 

the disturbances caused by carbon emissions. The use of numerical modelling, which assumes 

the same biases in both periods considered, therefore allows the study to focus on this aspect 

alone, omitting or simplifying the so-called secondary influences. The present conclusions 

therefore remain valid within the framework of the changes circumscribed by the selected 

scenarios (i.e. in terms of air temperature and precipitation). They therefore present possible 

futures in a business-as-usual world, where only global warming is responsible for the observed 

changes in environmental conditions. 

7.4. Key findings 

The CWRM is a habitat response model that integrates all the components that regulate the 

spatiotemporal distribution of wetland classes and their succession. When coupled with climate 

change scenarios, this model can be used to create projections for the recent past and the future, 

and thus simulate the evolution of ecosystems in the event of continued greenhouse gas 

emissions. In this project, a so-called moderate emission trajectory was used to project the state 

of wetlands in the Great Lakes between 2070 and 2099 (i.e., RCP4.5), as well as to simulate the 

invasion of two invasive species: Typha and Phragmites. This trajectory foresees a peak in 

emissions around 2040, followed by a decrease with stabilization that allows to limit the radiative 

forcing at the end of the century. The two general circulation models employed to constrain the 

range of changes expected under this scenario are CanESM2 and GFLD-ESM2M, which provide 

the lower and upper bounds of possible futures, respectively. While CanESM2 projects slightly 
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lower or even stable average Great Lakes levels for the period 2070 to 2099 (relative to the period 

1980 to 2009), GFLD-ESM2M projects a significant increase in Great Lakes levels by 2085. 

In addition to providing a representation of the influence of climate change on wetland 

ecosystems, the CWRM has provided a state-of-the-art method for modelling physical (water 

levels and waves) and ecosystem conditions (wetland class succession and invasive species 

expansion) specific to the Great Lakes system. The model also clarifies the link between the large-

scale processes that control climate and lake surface dynamics and the small-scale processes 

that explain the growth and establishment of plant species. These relationships are critical for 

studying the sensitivity of wetlands to climate change, and thus for assessing their vulnerability. 

A substantial number of results produced during this project will be made available to the public, 

which provide a representation of expected changes for the 20 selected sites and the two 

scenarios used. These results include high-resolution DEMs, floristic surveys, and projected 

spatiotemporal distributions for wetland classes in the form of annual maps.  

The CWRM results demonstrate that Great Lakes coastal wetlands could be significantly 

disturbed by projected climate change and thus be significantly and adversely affected. In 

summary: 

 Using the RCP 4.5 emission scenario, some models project that Lake Ontario may reach 

peak levels of around 77 m. Under the more extreme RCP 8.5 emission scenario, there 

are projections that result in even higher lake levels. However, there are various 

assumptions about the physical limitations and regulation of the system that would be 

violated with these extreme conditions. Thus further study is needed to access the 

plausibility of these very high lake levels.The transition zone expands in the future under 

the studied climate change scenario on Lake Erie and Lake Ontario and some sites on 

Lake Huron but shrinks on connecting channels. Wetlands generally establish in this 

transition zone. 

 There is a possible relative increase of wave activity between 52% to 81% on Lake Erie 

that will likely limit submerged aquatic and emergent plant species.  

 Within the lower-bound scenario, a moderate increase of total wetland area (~7%) is 

expected across all sites, with changes ranging from -1% to +29%. Under the upper-bound 

scenario, results suggest an average decrease of 16% and up to 54% decrease of total 

wetland area with greater wetland loss expected in the southern Great Lakes. Rising water 

levels cause wetlands to migrate inland, which may be constrained by land use and 

topography.  

 Phragmites will become established and more abundant than Typha in Lake Ontario by 

the end of the century. However, without significant water level change and interannual 

variability, Typha will likely remain dominant in Lake Ontario. In lakes Erie and St. Clair, 

Phragmites may expand under climate change. Higher water-level projections tend to 

reduce the growth of both invasive species but result in colonization and expansion at 
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higher elevations. For most sites in Lake Huron, CWRM predicts in the future a decrease 

in both invasive species habitat suitability. 

 

7.5. Future developments 

Although the integrated modelling approach used to simulate the state of wetlands may appear 

highly complex using different statistical analyses of data and many different models, it proved to 

be effective and even essential for this project. The processes that drive changes in the extent 

and composition of coastal wetlands need to be modeled with methods that take into account the 

variability of the system and the multi-variate relationship between the descriptive variables, 

especially in the context of climate change that is likely to significantly increase this variability. In 

other words, these processes cannot be simulated with simple methods that do not directly take 

into account the changes that affect their physical environment. Simulation of mechanisms 

involved is in fact essential to determine the impacts and, from there, to develop adaptive 

strategies that aim to ensure or enhance ecosystem resilience. Because the CWRM provides a 

robust analysis of the effects of projected climate change in a given location, the analyses 

produced are specific rather than global. This quality is valuable for any wetland protection or 

conservation intervention as it allows for differentiated action, tailored to an area or site. 

Since the conclusions of the CWRM are dependent on the climate scenarios used and thus on 

the uncertainty surrounding natural climate variability, emission trajectories and the models 

themselves, imprecisions in the model outputs are inevitable. The results are still projections, 

which present the range of possible futures over the range of changes considered, to the best of 

current knowledge. They are therefore trends, not predictions. The conclusions reached should 

be used primarily to guide and plan conservation and protection actions for Great Lakes coastal 

wetlands, ecosystems threatened by climate change. 

Nevertheless, a number of lessons have been learned from this project, both in terms of 

hydrodynamic modelling of lakes and waves, and in the use of physical variables for wet land 

modelling. This knowledge adds inestimable value to the scientific literature available today. In 

the near future, the use of stationary (i.e., scenario approach) or transient physical models for 

simulating shoreline water level dynamics should be compared. This effort would provide a better 

understanding, for the same lake, of the effect of sub-daily water level fluctuations (i.e., seiches) 

on the performance of wetland succession models. It would also ensure better planning of the 

modelling effort for any future studies. 



 

452 

 

In the future, the CWRM could be expanded and completed by adding a wider range of sites (e.g., 

Lake Superior, U.S. coastline, or barrier sites), more climate scenarios, or by developing wildlife 

habitat and population models. The CWRM could also be used to assess the effect of a non-

climate change. For example, it could be used to determine the impact of a change in land use or 

the effect of active wetland management, whether it be conservation, restoration or invasive plant 

control. As the CWRM predicts the distribution of broad wetland classes, it can also be used to 

develop specific measures dedicated to a given wetland class. In this sense, it can support efforts 

to conserve key ecosystem services, such as nesting habitat for endangered birds. Finally, it is 

important to mention that the CWRM provides detailed projections for 20 Great Lakes wetlands. 

These projections should support a call to action to limit the potential impact of climate change on 

all wetlands in this broad basin. The results should help guide funding commitments for protection, 

conservation or restoration, and make them more effective and targeted. 
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8. APPENDIXES 

 

APPENDIX A: Ground-truth points, LIDAR and bathymetry datasets used for each 

site DEM  

 

 

  

NRSI Natural  Ressource Solutions  Inc. (2018)

BC2_1 BC2 (2019)

BC2_2 BC2 (2019)

LEAP Government of Ontario. (2018)

LIO Government of Ontario. (2019)

ECCC KBM Ressources  Group (2018)

CHS_l idar IIC Technologies  (2018)

CHS https ://inter-j01.dfo-mpo.gc.ca/registry-regis tre/orderMap-commanderCarte?lang=eng

NOAA https ://maps.ngdc.noaa.gov/viewers/bathymetry/

Di l lon Di l lon Consulting (2018)

CWS Canadian Wi ldl i fe Service
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APPENDIX B: List of multispectral images used for DEM correction 
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APPENDIX C: Statistical model terms for DEM correction 

 
C = Model’s specific constant value  

l = Uncorrected LIDAR DEM elevation 

v =NDVI value 
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APPENDIX D: ASPRS Standard Lidar Point Classes 

 
Source: ASPRS (2011): https://www.asprs.org/wp-content/uploads/2010/12/LAS_1-4_R6.pdf 

 

  

https://www.asprs.org/wp-content/uploads/2010/12/LAS_1-4_R6.pdf
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APPENDIX E: Species frequency by water body 

 

Figure E-1: Species frequency (%) for the 20 most frequent species in Upper Saint-Lawrence. 

 

Figure E-2: Species frequency (%) for the 20 most frequent species in Lake Ontario. 
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Figure E-3: Species frequency (%) for the 20 most frequent species in Lake Erie. 

 

Figure E-4: Species frequency (%) for the 20 most frequent species in Lake St. Clair. 
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Figure E-5: Species frequency (%) for the 20 most frequent species in Lake Huron. 
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APPENDIX F: Observed species 

Table F-1: List of observed species in the vegetation surveys for all wetland sites. 

Species Native status 

Abies balsamea Native 

Acer negundo Native 

Acer pensylvanicum Native 

Acer rubrum Native 

Acer saccharinum Native 

Acer saccharum Native 

Acer sp. Unspecified 

Achillea millefolium Native 

Acorus americanus Native 

Acorus calamus Exotic 

Actaea pachypoda Native 

Actaea sp. Unspecified 

Agalinis purpurea Native 

Agrimonia gryposepala Native 

Agrimonia sp. Unspecified 

Agrostis gigantea Exotic 

Agrostis hyemalis Native 

Agrostis scabra Native 

Agrostis stolonifera Exotic 

Algae sp. Unspecified 

Alisma plantago-aquatica Exotic 

Alliaria petiolata Exotic 

Alnus incana Native 

Alnus incana ssp. rugosa Native 

Alnus viridis ssp. Sinuata Native 

Ambrosia artemisiifolia Native 

Ambrosia trifida Native 

Amelanchier sp. Unspecified 
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Amphicarpaea bracteata Native 

Andropogon gerardii Native 

Anemone canadensis Native 

Anemone cylindrica Native 

Anemone virginiana Native 

Angelica sylvestris Native 

Apios americana Native 

Apocynum androsaemifolium Native 

Apocynum cannabinum Native 

Apocynum sp. Native 

Aralia elata Native 

Aralia nudicaulis Native 

Arctium minus Exotic 

Arctostaphylos uva-ursi Native 

Argentina anserina (Potentilla anserina) Native 

Arisaema triphyllum Native 

Arrhenatherum elatius Native 

Artemisia campestris Native 

Artemisia sp. Unspecified 

Asclepias incarnata Native 

Asclepias syriaca Native 

Aster sp. Unspecified 

Astragalus sp. Unspecified 

Athyrium filix-femina Native 

Azolla caroliniana Native 

Azolla cristata Native 

Baptisia australis Native 

Betula alleghaniensis Native 

Betula papyrifera Native 

Bidens aristosa Native 

Bidens beckii Native 

Bidens cernua Native 
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Bidens connata Native 

Bidens discoidea Native 

Bidens frondosa Native 

Bidens sp. Native 

Bidens tripartita Native 

Boehmeria cylindrica Native 

Bolboschoenus fluviatilis Native 

Brasenia schreberi Native 

Bromus inermis Exotic 

Bryophyte sp. Unspecified 

Butomus umbellatus Exotic 

Calamagrostis canadensis Native 

Calamagrostis sp. Native 

Calamagrostis stricta subsp. inexpansa Native 

Calla palustris Native 

Callitriche hermaphroditica Native 

Callitriche heterophylla var. heterophylla Native 

Callitriche palustris Native 

Caltha palustris Native 

Calystegia sepium Native 

Campanula aparinoides Native 

Campanula rotundifolia Native 

Campanula sp. Native 

Cardamine sp. Unspecified 

Carduus nutans ssp. nutans Exotic 

Carex aquatilis Native 

Carex atherodes Native 

Carex aurea Native 

Carex blanda Native 

Carex brunnescens Native 

Carex buxbaumii Native 

Carex canescens Native 
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Carex communis Native 

Carex comosa Native 

Carex crawei Native 

Carex crawfordii Native 

Carex crinita Native 

Carex diandra Native 

Carex disperma Native 

Carex eburnea Native 

Carex echinata Native 

Carex flava Native 

Carex gracillima Native 

Carex granularis Native 

Carex hystericina Native 

Carex intumescens Native 

Carex lacustris Native 

Carex laeviconica Native 

Carex lasiocarpa Native 

Carex leptalea Native 

Carex limosa Native 

Carex magellanica Native 

Carex pellita Native 

Carex pensylvanica Native 

Carex prairea Native 

Carex projecta Native 

Carex pseudocyperus Native 

Carex retrorsa Native 

Carex rostrata Native 

Carex scoparia Native 

Carex sp. Native 

Carex stipata Native 

Carex stricta Native 

Carex tribuloides Native 
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Carex trisperma Native 

Carex utriculata Native 

Carex vesicaria Native 

Carex vulpinoidea Native 

Carya cordiformis Native 

Carya ovata Native 

Celastrus scandens Native 

Celtis occidentalis Native 

Cephalanthus occidentalis Native 

Ceratophyllum demersum Native 

Chamaedaphne calyculata Native 

Chara sp. Unspecified 

Chelone glabra Native 

Chenopodium glaucum Exotic 

Cichorium intybus Native 

Cicuta bulbifera Native 

Cicuta maculata var. maculata Native 

Cicuta sp. Native 

Cinna arundinacea Native 

Circaea alpina Native 

Circaea canadensis Native 

Circaea lutetiana (C. quadrisulcata) Native 

Cirsium arvense Exotic 

Cirsium muticum Native 

Cirsium sp. Unspecified 

Cirsium vulgare Exotic 

Cladium mariscoides Native 

Clematis sp. Unspecified 

Clematis virginiana Native 

Clinopodium vulgare Native 

Clintonia borealis Native 

Comandra umbellata Native 
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Comarum palustre (Potentilla palustris) Native 

Convallaria majalis Exotic 

Convolvulus arvensis Exotic 

Convolvulus sp. Unspecified 

Conyza canadensis (Erigeron canadensis) Native 

Cornus amomum Native 

Cornus foemina Native 

Cornus obliqua Native 

Cornus racemosa Native 

Cornus rugosa Native 

Cornus sp. Native 

Cornus stolonifera Native 

Crataegus sp. Unspecified 

Cuscuta gronovii Native 

Cyperus bipartitus Native 

Cyperus esculentus Native 

Dactylis glomerata Exotic 

Danthonia spicata Native 

Dasiphora fruticosa Native 

Daucus carota Native 

Decodon verticillatus Native 

Deschampsia cespitosa Native 

Deschampsia flexuosa Native 

Detritus sp. Unspecified 

Dichanthelium implicatum Native 

Dichanthelium sp. Unspecified 

Diervilla lonicera Native 

Digitaria sanguinalis Native 

Dipsacus fullonum Native 

Doellingeria umbellata Native 

Drosera linearis Native 

Drosera rotundifolia Native 
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Dryopteris carthusiana Native 

Dryopteris cristata Native 

Dryopteris intermedia Native 

Dryopteris marginalis Native 

Dulichium arundinaceum Native 

Echinochloa crus-galli Exotic 

Echinocystis lobata Native 

Elaeagnus umbellata Exotic 

Eleocharis acicularis Native 

Eleocharis compressa Native 

Eleocharis elliptica Native 

Eleocharis obtusa Native 

Eleocharis palustris Native 

Eleocharis quadrangulata Native 

Eleocharis quinqueflora Native 

Eleocharis rostellata Native 

Eleocharis smallii Native 

Eleocharis sp. Native 

Elodea canadensis Native 

Elodea nuttallii Native 

Elymus canadensis Native 

Elymus repens Exotic 

Elymus trachycaulus Native 

Epilobium ciliatum Native 

Epilobium coloratum Native 

Epilobium hirsutum Exotic 

Epilobium leptophyllum Native 

Epilobium parviflorum Exotic 

Epilobium sp. Unspecified 

Epipactis helleborine Exotic 

Equisetum arvense Native 

Equisetum fluviatile Native 
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Equisetum hyemale Native 

Equisetum palustre Native 

Equisetum pratense Native 

Equisetum sp. Native 

Equisetum sylvaticum Native 

Equisetum variegatum Native 

Erechtites hieracifolia Native 

Eriocaulon aquaticum Native 

Euonymus alatus Exotic 

Eupatorium perfoliatum Native 

Eurybia macrophylla Native 

Euthamia graminifolia Native 

Eutrochium maculatum Native 

Fagus grandifolia Native 

Fallopia convolvulus Exotic 

Fallopia scandens Native 

Festuca sp. Unspecified 

Filipendula ulmaria ssp. ulmaria Exotic 

Fragaria sp. Unspecified 

Fragaria vesca Native 

Fragaria virginiana Native 

Frangula alnus Exotic 

Fraxinus americana Native 

Fraxinus nigra Native 

Fraxinus pennsylvanica Native 

Fraxinus sp. Native 

Galium aparine Exotic 

Galium asprellum Native 

Galium boreale Native 

Galium mollugo Exotic 

Galium palustre Native 

Galium sp. Unspecified 
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Galium tinctorium Native 

Galium tricornutum Exotic 

Galium trifidum Native 

Gaultheria procumbens Native 

Gaylussacia baccata Native 

Gentiana andrewsii Native 

Geranium maculatum Native 

Geranium robertianum Native 

Geum aleppicum Native 

Geum canadense Native 

Geum rivale Native 

Geum sp. Native 

Glechoma hederacea Exotic 

Glyceria canadensis Native 

Glyceria grandis Native 

Glyceria sp. Native 

Glyceria striata Native 

Helianthus giganteus Native 

Helianthus tuberosus Native 

Heracleum maximum Native 

Hesperis matronalis Exotic 

Heteranthera dubia Native 

Hibiscus moscheutos Native 

Hieracium aurantiacum Exotic 

Hieracium caespitosum Exotic 

Hieracium sp. Unspecified 

Hydrocharis morsus-ranae Exotic 

Hydrodictyon sp. Unspecified 

Hypericum canadense Native 

Hypericum kalmianum Native 

Hypericum majus Native 

Hypericum perforatum Exotic 
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Hypericum prolificum Native 

Hypericum sp. Unspecified 

Ilex mucronata Native 

Ilex verticillata Native 

Impatiens capensis Native 

Inula helenium Exotic 

Iris pseudacorus Exotic 

Iris sp. Unspecified 

Iris versicolor Native 

Isoetes lacustris Native 

Isoetes sp. Unspecified 

Juglans nigra Native 

Juncus acuminatus Native 

Juncus arcticus ssp. littoralis Native 

Juncus articulatus Native 

Juncus brachycephalus Native 

Juncus brevicaudatus Native 

Juncus canadensis Native 

Juncus compressus Exotic 

Juncus dudleyi Native 

Juncus effusus Native 

Juncus nodosus Native 

Juncus pelocarpus Native 

Juncus sp. Unspecified 

Juncus tenuis Native 

Juncus torreyi Native 

Juniperus communis Native 

Juniperus horizontalis Native 

Juniperus virginiana Native 

Justicia americana Native 

Kalmia polifolia Native 

Lactuca biennis Native 
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Lactuca sp. Unspecified 

Lamium purpureum Exotic 

Laportea canadensis Native 

Larix laricina Native 

Lathyrus japonicus Native 

Lathyrus latifolius Exotic 

Lathyrus palustris Native 

Leersia oryzoides Native 

Leersia virginica Native 

Lemna minor Native 

Lemna sp. Native 

Lemna trisulca Native 

Leucanthemum vulgare Exotic 

Lichen sp. Unspecified 

Linaria vulgaris Exotic 

Lindera benzoin Native 

Littorella americana Native 

Lobelia cardinalis Native 

Lobelia kalmii Native 

Lonicera canadensis Native 

Lonicera dioica Native 

Lonicera involucrata Native 

Lonicera morrowii Exotic 

Lonicera oblongifolia Native 

Lonicera sp. Unspecified 

Lonicera tatarica Exotic 

Lonicera villosa Native 

Lonicera x bella Exotic 

Lotus corniculatus Exotic 

Ludwigia palustris Native 

Lycopus americanus Native 

Lycopus europaeus Exotic 
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Lycopus sp. Unspecified 

Lycopus uniflorus Native 

Lysimachia ciliata Native 

Lysimachia nummularia Exotic 

Lysimachia quadriflora Native 

Lysimachia quadrifolia Native 

Lysimachia sp. Unspecified 

Lysimachia terrestris Native 

Lysimachia thyrsiflora Native 

Lythrum salicaria Exotic 

Maianthemum canadense Native 

Maianthemum racemosum Native 

Maianthemum stellatum Native 

Maianthemum trifolium Native 

Malus sp. Unspecified 

Matteuccia struthiopteris Native 

Medicago lupulina Exotic 

Medicago sativa Exotic 

Melampyrum lineare Native 

Melilotus albus Exotic 

Mentha arvensis Native 

Mentha canadensis Native 

Mentha sp. Unspecified 

Mentha spicata Exotic 

Mentha x gracilis Exotic 

Menyanthes trifoliata Native 

Mimulus ringens Native 

Mitella nuda Native 

Moehringia lateriflora Native 

Monarda fistulosa Native 

Moss sp. Unspecified 

Muhlenbergia glomerata Native 
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Myosotis scorpioides Exotic 

Myrica gale Native 

Myriophyllum sibiricum Native 

Myriophyllum sp. Unspecified 

Myriophyllum spicatum Exotic 

Myriophyllum verticillatum Native 

Najas flexilis Native 

Najas gracillima Native 

Najas guadalupensis Native 

Najas minor Exotic 

Najas sp. Unspecified 

Nelumbo lutea Native 

Nitella sp. Unspecified 

Nitellopsis obtusa Exotic 

Nuphar variegata Native 

Nymphaea odorata ssp. odorata Native 

Nymphoides cordata Exotic 

Oenothera biennis Native 

Oligoneuron album (Solidago ptarmicoides) Native 

Onoclea sensibilis Native 

Osmunda claytoniana Native 

Osmunda regalis Exotic 

Ostrya virginiana Native 

Oxalis acetosella Exotic 

Oxalis sp. Unspecified 

Oxalis stricta Native 

Panicum capillare Native 

Panicum sp. Native 

Panicum virgatum Native 

Parnassia glauca Native 

Parnassia palustris Exotic 

Parthenocissus quinquefolia Native 
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Parthenocissus vitacea Native 

Pastinaca sativa Exotic 

Penthorum sedoides Native 

Persicaria amphibia Native 

Persicaria sp. Unspecified 

Phalaris arundinacea Native 

Phleum pratense Exotic 

Phragmites americanus Native 

Phragmites australis Exotic 

Physalis sp. Unspecified 

Physocarpus opulifolius Native 

Physostegia virginiana Native 

Picea glauca Native 

Picea mariana Native 

Pilea fontana Native 

Pilea pumila Native 

Pinus strobus Native 

Plantago lanceolata Exotic 

Plantago major Exotic 

Pleurozium schreberi Native 

Poa compressa Exotic 

Poa palustris Native 

Poa pratensis Exotic 

Poa sp. Unspecified 

Poaceae sp. Unspecified 

Polygala senega Native 

Polygaloides paucifolia Native 

Polygonatum biflorum Native 

Polygonatum pubescens Native 

Polygonatum sp. Native 

Polygonum amphibium stipulaceum Native 

Polygonum cilinode Native 
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Polygonum hydropiper Exotic 

Polygonum hydropiperoides Native 

Polygonum lapathifolium Native 

Polygonum persicaria Exotic 

Polygonum punctatum var. punctatum Native 

Polygonum sagittatum Native 

Polygonum sp. Unspecified 

Polygonum virginiana Native 

Polypodium virginianum Native 

Pontederia cordata Native 

Populus balsamifera Native 

Populus deltoides Native 

Populus grandidentata Native 

Populus sp. Unspecified 

Populus tremuloides Native 

Potamogeton alpinus Native 

Potamogeton amplifolius Native 

Potamogeton crispus Exotic 

Potamogeton foliosus Native 

Potamogeton friesii Native 

Potamogeton gramineus Native 

Potamogeton illinoensis Native 

Potamogeton natans Native 

Potamogeton nodosus Native 

Potamogeton obtusifolius Native 

Potamogeton pectinatus (Stuckenia pectinata) Native 

Potamogeton praelongus Native 

Potamogeton pusillus Native 

Potamogeton richardsonii Native 

Potamogeton robbinsii Native 

Potamogeton sp. Unspecified 

Potamogeton spirillus Native 
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Potamogeton strictifolius Native 

Potamogeton vaseyi Native 

Potamogeton zosteriformis Native 

Potentilla norvegica Native 

Potentilla sp. Unspecified 

Proserpinaca palustris Native 

Prunella vulgaris Native 

Prunus pensylvanica Native 

Prunus serotina Native 

Prunus sp. Unspecified 

Prunus virginiana Native 

Pteridium aquilinum Native 

Pyrola asarifolia Native 

Pyrola sp. Unspecified 

Quercus alba Native 

Quercus rubra Native 

Ranunculus acris Exotic 

Ranunculus aquatilis Native 

Ranunculus hispidus var. caricetorum Native 

Ranunculus longirostris Native 

Ranunculus recurvatus Native 

Ranunculus repens Exotic 

Ranunculus sceleratus Native 

Ranunculus sp. Unspecified 

Rhamnus alnifolia Native 

Rhamnus cathartica Exotic 

Rhamnus sp. Unspecified 

Rhus sp. Unspecified 

Rhus typhina Native 

Rhynchospora alba Native 

Rhynchospora capillacea Native 

Ribes americanum Native 
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Ribes cynosbati Native 

Ribes hirtellum Native 

Ribes lacustre Native 

Ribes oxyacanthoides var. oxyacanthoides Native 

Ribes sp. Unspecified 

Ribes triste Native 

Riccia fluitans Native 

Ricciaceae sp. Unspecified 

Ricciocarpos natans Native 

Ricciocarpus sp. Unspecified 

Rorippa palustris Native 

Rosa blanda Native 

Rosa multiflora Exotic 

Rosa nitida Native 

Rosa palustris Native 

Rosa sp. Unspecified 

Rubus allegheniensis Native 

Rubus fruticosus Exotic 

Rubus hispidus Native 

Rubus idaeus Exotic 

Rubus idaeus ssp. idaeus Exotic 

Rubus occidentalis Exotic 

Rubus odoratus Native 

Rubus pubescens Native 

Rubus setosus Native 

Rubus sp. Unspecified 

Rumex acetosella Exotic 

Rumex crispus Exotic 

Rumex obtusifolius Exotic 

Rumex orbiculatus Native 

Rumex sp. Unspecified 

Rumex verticillatus Native 
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Sagittaria cristata Native 

Sagittaria cuneata Native 

Sagittaria graminea Native 

Sagittaria latifolia Native 

Sagittaria rigida Native 

Sagittaria sp. Unspecified 

Salix alba Exotic 

Salix amygdaloides Native 

Salix bebbiana Native 

Salix candida Native 

Salix discolor Native 

Salix eriocephala Native 

Salix exigua Native 

Salix fragilis Exotic 

Salix lucida Native 

Salix nigra Native 

Salix pedicellaris Native 

Salix pellita Native 

Salix petiolaris Native 

Salix serissima Native 

Salix sp. Unspecified 

Salix x fragilis Exotic 

Sambucus nigra L. ssp. Canadensis Native 

Sanicula marilandica Native 

Saponaria officinalis Exotic 

Sarracenia purpurea Native 

Sassafras albidum Native 

Sassafras sp. Unspecified 

Schizachyrium scoparium Native 

Schoenoplectus acutus Native 

Schoenoplectus americanus Native 

Schoenoplectus pungens Native 
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Schoenoplectus subterminalis Native 

Schoenoplectus tabernaemontani Native 

Scirpus atrovirens Native 

Scirpus cyperinus Native 

Scirpus microcarpus Native 

Scirpus sp. Unspecified 

Scutellaria galericulata Native 

Scutellaria lateriflora Native 

Scutellaria sp. Unspecified 

Securigera varia Exotic 

Setaria pumila Exotic 

Setaria viridis Exotic 

Shepherdia canadensis Native 

Silene vulgaris Exotic 

Sisyrinchium montanum Native 

Sisyrinchium sp. Unspecified 

Sium suave Native 

Solanum dulcamara Exotic 

Solidago altissima Native 

Solidago caesia Native 

Solidago canadensis Native 

Solidago gigantea Native 

Solidago juncea Native 

Solidago nemoralis Native 

Solidago ohioensis Native 

Solidago rigida Native 

Solidago rugosa Native 

Solidago sp. Unspecified 

Solidago uliginosa Native 

Sonchus arvensis Exotic 

Sonchus sp. Unspecified 

Sorbaria sorbifolia Exotic 
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Sorbus decora Native 

Sorghastrum nutans Native 

Sparganium americanum Native 

Sparganium angustifolium Native 

Sparganium emersum Native 

Sparganium eurycarpum Native 

Sparganium fluctuans Native 

Sparganium natans Native 

Sparganium sp. Unspecified 

Spartina pectinata Native 

Sphagnum sp. Unspecified 

Spiraea alba var. alba Native 

Spiraea alba var. latifolia Native 

Spiraea sp. Unspecified 

Spiraea tomentosa Native 

Spiranthes romanzoffiana Native 

Spirodela polyrhiza Native 

Spongilla sp. Unspecified 

Sporobolus cryptandrus Native 

Sporobolus vaginiflorus Native 

Stachys hispida Native 

Stachys palustris Exotic 

Stachys sp. Unspecified 

Stachys tenuifolia Native 

Stellaria sp. Unspecified 

Strophostyles helvola Native 

Stuckenia filiformis subsp. occidentalis Native 

Stuckenia pectinata Native 

Symphyotrichum boreale Native 

Symphyotrichum cordifolium Native 

Symphyotrichum dumosum Native 

Symphyotrichum ericoides Native 
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Symphyotrichum laeve Native 

Symphyotrichum lanceolatum Native 

Symphyotrichum lateriflorum Native 

Symphyotrichum novae-angliae Native 

Symphyotrichum pilosum Native 

Symphyotrichum puniceum Native 

Symphyotrichum sp. Unspecified 

Symphyotrichum x amethystinum Native 

Tanacetum vulgare Exotic 

Taraxacum officinale Exotic 

Teucrium canadense Native 

Thalictrum dasycarpum Native 

Thalictrum dioicum Native 

Thalictrum pubescens Native 

Thalictrum sp. Unspecified 

Thelypteris palustris Native 

Thuja occidentalis Native 

Tilia americana Native 

Toxicodendron radicans Native 

Toxicodendron radicans var. rydbergii Native 

Tragopogon dubius Exotic 

Triadenum fraseri Native 

Triadenum virginicum Native 

Trientalis borealis Native 

Trifolium hybridum Exotic 

Trifolium pratense Exotic 

Trifolium repens Exotic 

Triglochin maritimum Native 

Tsuga canadensis Native 

Tussilago farfara Exotic 

Typha angustifolia Exotic 

Typha latifolia Native 
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Typha sp. Unspecified 

Typha x glauca Exotic 

Ulmus americana Native 

Ulmus sp. Unspecified 

Urtica dioica ssp. dioica Exotic 

USAV - uprooted SAV Unspecified 

Utricularia cornuta Native 

Utricularia gibba Native 

Utricularia intermedia Native 

Utricularia minor Native 

Utricularia sp. Unspecified 

Utricularia vulgaris Native 

Vaccinium angustifolium Native 

Vaccinium macrocarpon Native 

Vaccinium oxycoccos Native 

Vaccinium sp. Unspecified 

Vallisneria americana Native 

Verbascum thapsus Exotic 

Verbena hastata Native 

Veronica anagallis-aquatica Native 

Veronica officinalis Exotic 

Viburnum lantanoides Native 

Viburnum lentago Native 

Viburnum opulus ssp. opulus Native 

Viburnum opulus ssp. trilobum Native 

Viburnum opulus var. americanum Native 

Viburnum recognitum Native 

Viburnum sp. Unspecified 

Vicia cracca Exotic 

Vicia sp. Unspecified 

Vicia tetrasperma Exotic 

Viola sp. Unspecified 
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Vitis aestivalis Native 

Vitis riparia Native 

Vitis sp. Unspecified 

Wolffia columbiana Native 

Wolffia sp. Unspecified 

Xanthium strumarium Native 

Zanthoxylum americanum Native 

Zizania palustris Native 
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